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Abstract

Obesity is a worldwide health problem that is closely linked to many metabolic disorders.

Regular physical exercise has been found to attenuate the genetic predisposition to obesity.

However, it remains unknown what kinds of exercise can modify the genetic risk of obesity.

This study included 18,424 unrelated Han Chinese adults aged 30–70 years who partici-

pated in the Taiwan Biobank (TWB). A total of 5 obesity measures were investigated here,

including body mass index (BMI), body fat percentage (BFP), waist circumference (WC), hip

circumference (HC), and waist-to-hip ratio (WHR). Because there have been no large

genome-wide association studies on obesity for Han Chinese, we used the TWB internal

weights to construct genetic risk scores (GRSs) for each obesity measure, and then test the

significance of GRS-by-exercise interactions. The significance level throughout this work

was set at 0.05/550 = 9.1x10-5 because a total of 550 tests were performed. Performing reg-

ular exercise was found to attenuate the genetic effects on 4 obesity measures, including

BMI, BFP, WC, and HC. Among the 18 kinds of self-reported regular exercise, 6 mitigated

the genetic effects on at least one obesity measure. Regular jogging blunted the genetic

effects on BMI, BFP, and HC. Mountain climbing, walking, exercise walking, international

standard dancing, and a longer practice of yoga also attenuated the genetic effects on BMI.

Exercises such as cycling, stretching exercise, swimming, dance dance revolution, and

qigong were not found to modify the genetic effects on any obesity measure. Across all 5

obesity measures, regular jogging consistently presented the most significant interactions

with GRSs. Our findings show that the genetic effects on obesity measures can be

decreased to various extents by performing different kinds of exercise. The benefits of regu-

lar physical exercise are more impactful in subjects who are more predisposed to obesity.
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Author summary

The complex interplay of genetics and lifestyle makes obesity a challenging issue. Previous

studies have found performing regular physical exercise could blunt the genetic effects on

body mass index (BMI). However, BMI does not take into account lean body mass or

identify central obesity. Moreover, it remains unclear what kinds of exercise could more

effectively attenuate the genetic effects on obesity measures. With a sample of 18,424 unre-

lated Han Chinese adults, we comprehensively investigated gene-exercise interactions on

5 obesity measures: BMI, body fat percentage, waist circumference, hip circumference,

and waist-to-hip ratio. Moreover, we tested whether the genetic effects on obesity mea-

sures could be modified by any of 18 kinds of self-reported regular exercise. Because no

large genome-wide association studies on obesity have been done for Han Chinese, we

constructed genetic risk scores with internal weights for analyses. Among these exercises,

regular jogging consistently presented the strongest evidence to mitigate the genetic

effects on all 5 obesity measures. Moreover, mountain climbing, walking, exercise walk-

ing, international standard dancing, and a longer practice of yoga attenuated the genetic

effects on BMI. The benefits of regularly performing these 6 kinds of exercise are more

impactful in subjects who are more predisposed to obesity.

Introduction

Obesity is one of the most challenging public health issues worldwide [1–6]. According to the

World Health Organization, a person with a body mass index (BMI) of 30 kg/m2 or above is

generally considered obese. Although BMI is easy to calculate and is commonly used to iden-

tify obesity, it does not take into account lean body mass or identify central obesity. Four

important metrics, body fat percentage (BFP), waist circumference (WC), hip circumference

(HC), and waist-to-hip ratio (WHR), are complementary to BMI. The BFP of an individual is

the total fat mass divided by the total body mass, multiplied by 100. HC is a useful predictor of

metabolic syndromes such as diabetes [7]. WC and WHR are indicators of central obesity [8].

Obesity is complicated as it is caused by genetics, lifestyle, and the interplay between them

[9, 10]. The heritability of BMI was reported to range from 24% to 81% [11], and many genes

have been shown to be related to obesity [12]. Although hereditary factors are critical, some

lifestyle factors can modify the genetic influences on BMI [13–24]. For example, regular physi-

cal exercise has been found to blunt the genetic effects on obesity [13–16, 18, 20, 24]. However,

most of these studies focused on only BMI, without discussing central obesity. Moreover,

investigations specific to particular kinds of exercise remain limited. It is unknown what kinds

of exercise (jogging, mountain climbing, cycling, etc.) can attenuate the genetic effects on obe-

sity measures. To fill the research gap, we here comprehensively investigated gene-exercise

interactions on the 5 obesity measures: BMI, BFP, WC, HC, and WHR. Moreover, we investi-

gated whether 18 kinds of exercise could modify the associations between genetic risk scores

(GRSs) and these 5 obesity measures.

Materials and methods

Ethics statement

TWB received ethical approval from the Institutional Review Board on Biomedical Science

Research/IRB-BM, Academia Sinica, Taiwan, and from the Ethics and Governance Council of

Taiwan Biobank, Taiwan. Written informed consent was obtained from each participant in
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accordance with institutional requirements and the principles of the Declaration of Helsinki.

Moreover, the current study was approved by the Research Ethics Committee of National Tai-

wan University Hospital (NTUH-REC no. 201805050RINB).

Taiwan Biobank

Taiwan Biobank (TWB) is the largest government-supported biobank in Taiwan. The aim of

TWB is to collect lifestyle and genomic data from Taiwan residents [25, 26]. TWB keeps

recruiting community-based volunteers who are 30 to 70 years of age and have no history of

cancers. Participants signed informed consent, provided blood samples and a range of infor-

mation via a face-to-face interview and physical examination. Our study comprised 20,287

TWB individuals who have been whole-genome genotyped until October, 2018. To remove

cryptic relatedness, we estimated the genome-wide identity by descent (IBD) sharing coeffi-

cients between any two subjects. The IBD scores for all pairs of subjects, i.e.,

PI-HAT = Probability(IBD = 2) + 0.5×Probability(IBD = 1), were obtained from PLINK 1.9

[27]. Similar to many genetic studies [28–30], we excluded third-degree relatives by removing

one individual from a pair with PI-HAT� 0.125. After this step, 18,424 unrelated subjects

(9,093 males and 9,331 females) remained in our analysis.

The majority of TWB subjects were of Han Chinese ancestry [25]. The TWB chip is based

on Axiom Genome-Wide Array Plate System (Affymetrix, Santa Clara, CA, USA). It geno-

typed a total of 646,783 autosomal single-nucleotide polymorphisms (SNPs). We excluded

51,293 SNPs with genotyping rates < 95%, 6,095 SNPs with Hardy-Weinberg test P-

values< 5.7×10−7 [31], and 1,869 variants with minor allele frequencies (MAFs) < 1%. The

remaining 587,526 SNPs were used to construct ancestry principal components (PCs) for the

adjustment of population stratification.

The TWB measured body height and weight for each participant. BMI was calculated by

weight (kg)/[height (m)]2. In addition to BMI, 4 measures including BFP, WC, HC, and WHR

were also investigated. BFP is the percentage of an individual’s weight that is made up of fat.

WHR is the ratio of WC to HC and is a commonly used index for central obesity [8].

In addition to a physical examination, each participant completed a questionnaire through

a face-to-face interview with one of the TWB researchers. Questions addressed personal infor-

mation and lifestyle factors. Regular exercise was defined as engaging in 30 minutes of “exer-

cise” three times a week. “Exercise” included only leisure-time activities such as jogging, yoga,

mountain climbing, cycling, swimming, dance dance revolution (DDR, a computer game

based on dancing with music videos), playing basketball, etc. Occupational activities such as

physical work or heavy manual work were not counted as “exercise”.

Covariates adjusted in all models

Sex and age (in years) have been considered as important covariates in most obesity studies

[13–16, 18, 20, 24, 32–34]. Moreover, some studies also adjusted for drinking status, smoking

status, and educational attainment [16]. A previous large-scale study has found an inverse

association between BMI as well as WC and education level [35]. Therefore, we also consid-

ered educational attainment as one of the covariates for obesity measures. Educational attain-

ment was recorded as a value ranging from 1 to 7, where 1 indicated “illiterate”, 2 meant “no

formal education but literate”, 3 represented “primary school graduate”, 4 indicated “junior

high school graduate”, 5 meant “senior high school graduate”, 6 represented “college gradu-

ate”, and 7 indicated “Master’s or higher degree”.

Drinking was defined as a subject having a weekly intake of more than 150 cc of alcohol for

at least 6 months and having not stopped drinking at the time his/her obesity measures were
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being assessed. Smoking was defined as a subject who had smoked for at least 6 months and

had not quit smoking at the time his/her obesity measures were being assessed.

Genetic risk scores (GRS) for the five obesity measures

In most gene-environment interaction (G×E) studies, investigators typically constructed a

GRS and tested the significance of the GRS×E interaction term (E represents the environmen-

tal factor) [13–24]. A GRS was a weighted sum of risk-allele counts, where the weights were

usually retrieved from large published genome-wide association studies (GWASs) or meta-

analyses [13–24]. Recent G×E studies related to obesity measures [14, 16–19, 21, 23] usually

constructed a GRS according to the results of a large meta-analysis [34], in which 97 BMI-asso-

ciated SNPs reaching the genome-wide significance level (p< 5×10−8) were reported [34].

A total of 20 out of the 97 SNPs were genotyped in the TWB chip. We imputed the geno-

types of other SNPs using the Michigan Imputation Server (https://imputationserver.sph.

umich.edu/index.html), with the reference panel based on the East Asian (EAS) population

from the 1000 Genomes Phase 3 v5. After removing SNPs with MAFs < 1% and SNPs with

Hardy-Weinberg test P-values < 5.7×10−7 [31], 86 SNPs remained in S1 Table. The European-

based GRS was calculated as EuGRS ¼
P86

j¼1
wjSNPj, where the weights (wj,j = 1,� � �,86) were

the effect sizes reported by Locke et al. [34], and SNPj was the number of effect alleles at the jth

SNP. Each EuGRS was then transformed into a z-score that indicated how many standard

deviations an EuGRS was from the mean. Although EuGRS is positively associated with the 5

obesity measures (S2 Table) (the results of EuGRS×exercise interactions can be found from

S3–S5 Tables), it may not be an efficient GRS to detect TWB G×E for the following three

reasons.

First, the 97 SNPs account for 2.70% of BMI variation in Europeans [34]. However, in TWB

subjects, these SNPs can only explain 1.92%, 1.05%, 1.43%, 1.60%, and 0.79% of variation of

BMI, BFP, WC, HC, and WHR, respectively (S6 Table). Second, all the 97 BMI-associated

SNPs reached the genome-wide significance level (p< 5×10−8) in Europeans. However, in

TWB, only rs1558902 located in the fat mass and obesity-associated (FTO) gene was associated

with BMI at the genome-wide significance level, and only 29 were associated with BMI at the

significance level of 0.05 (S1 Table). Third, none of the 97 BMI-associated SNPs were associ-

ated with the other 4 obesity measures at the genome-wide significance level (S1 Table). BMI

is the most commonly investigated obesity measure. SNPs robustly associated with other obe-

sity measures have not been reported.

Based on the above three reasons, using EuGRS may be inefficient for Han Chinese and for

obesity measures other than BMI. However, large obesity-related GWASs in Han Chinese are

unavailable. To overcome this problem, we used internal weights to construct a GRS, and then

tested the GRS×E interaction term in a regression model. This approach has been proposed in

genome-wide [36], pathway-based [37, 38], and gene-based G×E studies [39, 40].

Initially, SNPs in high linkage disequilibrium (LD) were first pruned to avoid multicolli-

nearity [41, 42]. We used PLINK 1.9 command “plink--bfile TWBGWAS--chr 1–22--indep

50 5 2” to prune SNPs in high LD [27]. In this way, we removed SNPs with a variance inflation

factor> 2 within a sliding window of size 50, where the sliding window was shifted at each

step of 5 SNPs. After this pruning stage, 142,040 SNPs remained. We then regressed BMI on

each of the 142,040 SNPs while adjusting for covariates including sex, age, educational attain-

ment, drinking status, smoking status, and the first 10 PCs. The 142,040 regression models

were built as follows:

BMI ¼ b0 þ bSNP;iSNPi þ βCCovariatesþ ε; i ¼ 1; � � � ; 142040; ð1Þ

Exercise, genetic risk and obesity measures
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where SNPi is the number of minor alleles at the ith SNP (0, 1, or 2) and ε is the error term. By

testing H0: βSNP,i = 0 vs. H1: βSNP,i 6¼ 0, we obtained a P-value regarding the marginal associa-

tion of the ith SNP with BMI.

Considering the model incorporating SNP-by-environment interactions, as follows:

BMI ¼ g0 þ gSNP;iSNPi þ gEEþ gInt;iSNPi � Eþ γCCovariatesþ ε; i ¼ 1; � � � ; 142040; ð2Þ

b̂SNP;i (estimated from model 1) and ĝInt;i (estimated from model 2) are asymptotically indepen-

dent under the null hypothesis of no SNP-by-environment interaction (proved in corollary 1

of [43]). A two-stage approach that first filters SNPs by a criterion independent of the test sta-

tistic (ĝInt;i estimated from model 2) under the null hypothesis, and then only uses SNPs that

pass the filter, can maintain type I error rates and boost power [44, 45].

Given a P-value threshold (a filter), the 142,040 SNPs were allocated into a BMI-associated

set and a BMI-unassociated set according to their marginal-association P-values. Suppose

there were m SNPs associated with BMI, the BMI genetic risk score (BMIGRS) was calculated

as
Pm

j¼1
b̂SNP;jSNPj, where the weights (b̂SNP;j; j ¼ 1; � � � ;m) had been estimated from model

(1), and SNPj was the number of minor alleles at the jth SNP in the BMI-associated set.

Because BMI-unassociated SNPs were filtered out from the construction of BMIGRS, this

approach is the so-called “marginal-association filtering” in G×E analyses [40, 43, 45]. Follow-

ing the suggestion from our previous methodological study [36], 10 P-value thresholds were

considered: 0.0001, 0.00025, 0.0005, 0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, and 0.1. S7 Table

shows the numbers of SNPs in the BMI-associated sets under the 10 P-value thresholds. For

each TWB subject, 10 BMIGRSs were calculated based on the 10 sets of SNPs. For example,

the 9th BMIGRS accumulated the information of 7,753 SNPs (S7 Table).

Similar with model (1), BFP, WC, HC and WHR were regressed on each of the 142,040

SNPs while adjusting for the same covariates, respectively. A total of 10 BFPGRSs, 10

WCGRSs, 10 HCGRSs, and 10 WHRGRSs were obtained under the 10 P-value thresholds.

Each GRS was then transformed into a z-score that indicated how many standard deviations a

GRS was from the mean. The number of SNPs to form each GRS was listed in S7 Table.

The GRS approach based on marginal effects of SNPs (GRS-M)

We investigated whether the association of BMIGRS with BMI could be modified by regular

physical exercise (yes or no). BMI was regressed on a BMIGRS, regular exercise or not (E: 1 vs.

0), and the interaction between them (BMIGRS×E), while adjusting for sex, age, educational

attainment, drinking status, smoking status, and the first 10 PCs. The regression model was

built as follows:

BMI ¼ b0 þ bGRSBMIGRSþ bEEþ bIntBMIGRS� Eþ βCCovariatesþ ε: ð3Þ

With 10 BMIGRSs, 10 regression models like (3) were fitted and 10 P-values regarding test-

ing H0: βInt = 0 vs. H1: βInt 6¼ 0 were obtained. To adjust for multiple testing, the Bonferroni-cor-

rected P-value was calculated as 10 times the minimum P-value of the 10 BMIGRS×E

interaction tests. This approach is called “the GRS approach based on marginal effects of SNPs”,

abbreviated as the “GRS-M” method [36]. The comprehensive simulations performed by Hüls

et al. [37, 38] and Lin et al. [36] have confirmed the validity of building GRS with marginal

effects of SNPs in detecting G×E. Extracting weights from other cohorts or splitting data in two

subsets is not required for the GRS-M approach [36]. The GRS-M approach is valid in the sense

that the empirical type I error rate is satisfactorily controlled. Furthermore, it is generally the

most powerful test if some phenotype-associated SNPs also exhibit interactions with E [36].

Exercise, genetic risk and obesity measures
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Similarly, we also investigated GRS-exercise interactions on the other 4 obesity measures.

The significance level throughout this work was set at 0.05/550 = 9.1x10-5 because 275 tests for

GRS-exercise interactions and 275 tests for main effects of exercises were performed.

Results

Basic characteristics of the TWB subjects

Table 1 presents the basic characteristics of the TWB subjects, stratified by the quartiles of the

9th BMIGRS. The aim of this study was to test whether the genetic effects on obesity measures

can be modified by any of 18 kinds of exercise. A previous large-scale study has found an

inverse association between BMI as well as WC and education level [35]. Our TWB analysis

results also show improvements when including educational attainment as a covariate for all 5

obesity measures. By including educational attainment as a covariate, the adjusted R-square

increased from 5.9% to 7.3% for BMI, from 34.8% to 35.9% for BFP, from 14.3% to 15.6% for

WC, from 4.5% to 4.8% for HC, and from 23.2% to 24.6% for WHR, respectively.

To explore the associations of covariates with the 5 obesity measures, Table 2 shows the

results of regressing each obesity measure on sex, age, educational attainment, drinking status,

smoking status, regular exercise, and the first 10 PCs. Sex was the most significant predictor

for all 5 obesity measures. Except for BFP, males had larger mean values than females in the

other 4 obesity measures. Educational attainment and regular exercise were also significant

predictors for all 5 metrics. These results were consistent with previous findings: attaining a

higher education degree [35] and performing regular physical exercise [46] were associated

with a decrease in obesity measures.

Interactions between GRS and regular physical exercise

Among the 18,424 subjects, 7,652 (41.5%) reported performing regular exercise, while 10,764

reported no regular exercise. A total of 8 subjects did not respond to this question. For a sub-

ject who reported performing regular exercise, he/she would then be asked questions regard-

ing the kinds of exercise, the frequency of engaging in a particular exercise per month, and the

duration in each practice. An individual could enumerate up to 3 kinds of regular exercise.

Table 3 shows that each 1 s.d. increase in BMIGRS was associated with a 0.43 kg/m2 lower

BMI in exercisers than in nonexercisers (p = 1.3×10−32). Each 1 s.d. increase in BFPGRS was

Table 1. Basic characteristics stratified by the quartiles of the 9th BMIGRS (marginal-association P-value threshold = 0.05).

Overall Q1 (lower BMIGRS) Q2 Q3 Q4 (higher BMIGRS)

Total, n 18 424 4 606 4 606 4 606 4 606

Males, n (%) 9 093 (49.4) 2 196 (47.7) 2 246 (48.8) 2 381 (51.7) 2 270 (49.3)

Age (years), mean (s.d.) 48.9 (11.0) 48.0 (11.3) 49.3 (10.9) 49.4 (10.9) 48.9 (10.8)

Educational attainment (s.d.) 5.46 (0.99) 5.45 (0.97) 5.46 (1.00) 5.47 (0.99) 5.44 (1.00)

Drinking, n (%) 1 345 (7.3) 316 (6.9) 323 (7.0) 358 (7.8) 348 (7.6)

Smoking, n (%) 2 134 (11.6) 528 (11.5) 541 (11.7) 525 (11.4) 540 (11.7)

Regular exercise, n (%) 7 652 (41.5) 1 900 (41.3) 2 023 (43.9) 1 922 (41.7) 1 807 (39.2)

BMI (kg m-2) (s.d.) 24.31 (3.66) 21.22 (2.20) 23.10 (2.19) 24.77 (2.33) 28.15 (3.53)

Body fat % (s.d.) 27.29 (7.38) 22.63 (5.88) 25.68 (5.71) 27.98 (6.11) 32.89 (7.57)

Waist circumference (cm) (s.d.) 83.93 (10.03) 76.88 (7.50) 81.32 (7.66) 85.09 (7.89) 92.43 (9.74)

Hip circumference (cm) (s.d.) 96.34 (6.90) 91.49 (4.84) 94.39 (4.93) 97.11 (5.17) 102.40 (7.16)

Waist-to-hip ratio (s.d.) 0.87 (0.068) 0.84 (0.063) 0.86 (0.063) 0.88 (0.063) 0.90 (0.066)

Jogging, n (%) 1 107 (6.0) 264 (5.7) 305 (6.6) 294 (6.4) 244 (5.3)

https://doi.org/10.1371/journal.pgen.1008277.t001
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associated with a 0.62% lower BFP in exercisers than in nonexercisers (p = 1.2×10−15, Table 3).

Regular physical exercise also significantly attenuated the genetic effects on WC and HC.

However, the WHRGRS-exercise interaction was not significant (p = 1). Fig 1 shows the aver-

age BMI, BFP, WC and HC stratified by GRS quartiles and regular exercise. The effects of

GRSs on these 4 obesity measures were smaller in physically active subjects than in physically

inactive subjects. Regular exercise attenuated the genetic predisposition to obesity measures.

Interactions between GRS and eighteen kinds of exercise

We then performed a specific analysis for the 18 kinds of exercise. Some TWB individuals

reported multiple kinds of regular exercise, and a limit of 3 kinds could be recorded by TWB

interviewers. Therefore, when we assessed the interaction between a GRS and a kind of exer-

cise, whether a person also engaged in other kinds of exercise should be considered. The

regression models were similar with model (3), but more covariates were adjusted in the mod-

els. For example, to investigate the BMIGRS-jogging interaction on BMI, we regressed BMI on

a BMIGRS, jogging or not (1: yes vs. 0: no), the interaction between them, while adjusting for

sex, age, educational attainment, drinking status, smoking status, the first 10 PCs, 17 covariates

regarding engaging in the other 17 kinds of exercise or not, and the 17 BMIGRS-exercise inter-

action terms.

As shown in Table 3, all types of exercise generally attenuate the genetic contributions of BMI,

BFP, WC and HC, as indicated by the direction of the interaction terms (b̂Int < 0). Among the 18

kinds of exercise, jogging, mountain climbing, walking, exercise walking, and international stan-

dard dancing significantly attenuated the genetic effects on BMI (p< 9.1x10-5). Moreover, jogging

additionally attenuated the genetic effects on BFP and HC. As shown in Table 3, across all 5 obe-

sity measures, jogging consistently presented the most significant interactions with GRS (i.e., the

Table 2. The regression models for the 5 obesity measures (prior to GRS-exercise interaction analysis).

BMI (kg/m2) Body fat % Waist

circumference

(cm)

Hip circumference

(cm)

Waist-to-hip ratio

Explanatory variables in the regression model 1 Beta P-value Beta P-value Beta P-value Beta P-value Beta P-value

Sex

(1: female vs. 0: male)

-1.846 3.8E-229 8.472 2 0 3 -7.141 0 3 -2.590 5.3E-126 -0.0505 0 3

Age

(in years, continuous variable)

-0.001 0.67 0.007 0.17 0.089 6.0E-35 -0.070 9.1E-40 0.0016 1.0E-259

Educational attainment

(a value ranging from 1 to 7)

-0.489 9.3E-62 -0.876 3.3E-67 -1.279 1.0E-61 -0.436 8.1E-15 -0.0092 6.2E-79

Drinking status

(1: yes vs. 0: no)

0.058 0.58 0.487 6.5E-3 0.702 0.010 -0.031 0.877 0.0078 7.1E-6

Smoking status

(1: yes vs. 0: no)

0.165 0.059 0.608 4.8E-5 0.942 4.0E-5 -0.091 0.589 0.0101 4.8E-12

Regular exercise

(1: yes vs. 0: no)

-0.286 4.7E-7 -0.813 4.6E-17 -1.242 6.7E-17 -0.644 3.0E-9 -0.0067 1.1E-12

R-square 4 7.4% 36.0% 15.7% 4.9% 24.7%

1. Each obesity measure was regressed on sex, age, educational attainment, drinking status, smoking status, regular exercise, and the first 10 PCs. To save space, we here

omit the results of the 10 PCs.

2. Compared with males, females have a greater mean body fat percentage by 8.472%.

3. A P-value of “0” is smaller than “1.0E-259”, representing the test is extremely significant.

4. R-square: the proportion of variance in an obesity measure that can be explained by sex, age, educational attainment, drinking status, smoking status, regular exercise,

and the first 10 PCs.

https://doi.org/10.1371/journal.pgen.1008277.t002
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smallest P-value). Fig 2 shows the average BMI, BFP, WC and HC stratified by GRS quartiles and

jogging. The effects of GRSs on these 4 obesity measures were smaller in joggers than in nonjog-

gers. The results of exercise frequency (Table 4) and duration (Table 5) were similar to those of

engaging in the kind of exercise (Table 3). Additionally, a longer practice of yoga could blunt the

genetic effects on BMI (Table 5).

Table 3. Interaction between GRS and exercise on each obesity measure (significant results with p< 9.1x10-5 are highlighted).

Regular exercise x 5 obesity measures = 5 tests

18 kinds of exercise x 5 obesity measures = 90 tests

BMI (kg/m2) Body fat % Waist

circumference

(cm)

Hip

circumference

(cm)

Waist-to-hip ratio

No. of

subjects

% of

males

Age (years),

mean (s.d.)
β̂ Int

GRS-M P-

value 1
β̂ Int

GRS-M P-

value 1
β̂ Int

GRS-M P-

value 1
β̂ Int

GRS-M P-

value 1
β̂ Int

GRS-M P-

value 1

Regular exercise 7,652 50.9 53.5 (10.3) -0.43 2 1.3E-32

(4,047) 3
-0.62 1.2E-15

(865)

-0.70 3.0E-13

(3,987)

-0.70 1.0E-18

(1,652)

-0.001 1

Specific analysis for kinds of exercise: Some subjects engage in 2 or 3 kinds of regular exercise.

The following 18 kinds of exercise were sorted according to popularity.

Walking 2,637 47.3 55.8 (9.2) -0.25 5.3E-07

(7,753)

-0.15 4.0E-01 -0.52 8.6E-04 -0.30 4.7E-03 0.00293 0.049

Exercise walking 1,439 52.3 54.6 (9.3) -0.35 3.5E-06

(4,047)

-0.57 1.2E-04 -0.85 2.0E-03 -0.64 1.7E-04 -0.00266 0.671

Jogging 1,107 81.1 45.4 (10.1) -0.41 1.1E-07

(7,753)

-0.59 4 7.7E-05

(4,101)

-0.68 2.7E-04 -0.86 2.8E-06

(1,652)

-0.00382 0.010

Cycling 989 68.6 51.4 (10.4) -0.24 4.4E-01 -0.48 3.8E-02 -0.46 3.4E-01 -0.24 1 -0.00459 0.130

Mountain climbing 628 57.3 55.2 (8.2) -0.57 3.1E-07

(4,047)

-0.49 3.5E-03 -0.78 2.7E-03 -0.61 6.8E-04 -0.00387 0.486

Stretching exercise 602 33.9 58.1 (8.4) -0.26 2.5E-01 -0.52 3.3E-01 -0.58 5.4E-01 -0.33 1 -0.00342 0.752

International

standard dancing

513 13.8 56.8 (7.7) -0.43 1.8E-05

(7,753)

-0.57 1.3E-03 -0.49 2.5E-01 -0.36 2.0E-01 -0.00181 1

Swimming 486 66.5 52.7 (10.7) -0.29 5.3E-01 -0.51 4.4E-01 0.63 2.0E-01 -0.23 1 0.00580 0.172

Tai Chi 449 55.7 56.5 (9.1) -0.60 3.7E-04 -1.09 2.3E-04 -1.01 5.8E-02 -1.03 7.2E-04 -0.00719 0.053

Dance dance

revolution

420 8.3 50.5 (10.6) -0.31 7.0E-02 -0.69 1.0E-01 -0.79 1.7E-01 -0.64 1.9E-02 0.00280 0.671

Yoga 379 10.3 51.5 (9.8) -0.74 4.5E-04 0.19 1 -1.23 4.1E-02 -0.75 3.2E-01 0.00250 1

Qigong 377 36.3 58.1 (7.8) -0.39 2.6E-01 -0.28 7.5E-01 -0.71 8.7E-01 -1.08 2.4E-02 -0.00238 1

Others 285 41.4 53.5 (11.7) -0.22 1 -0.59 5.1E-01 -0.87 1 0.64 5.0E-01 -0.00511 0.997

Weight training 218 72.9 45.4 (11.3) -0.33 1.2E-01 -0.63 4.5E-02 -0.82 2.8E-01 -0.47 6.7E-01 0.00333 1

Badminton 204 78.9 46.0 (9.5) -0.28 1 -0.50 1 -0.39 1 -0.57 1 0.00564 1

Table tennis 169 76.3 54.1 (10.6) -0.62 5.4E-02 -0.65 3.3E-01 -0.77 8.1E-01 -0.73 1.3E-01 0.00718 0.916

Basketball 119 97.5 40.8 (9.0) 0.40 9.7E-01 -0.81 1 1.12 5.0E-01 -1.29 2.9E-01 -0.00708 0.232

Tennis 110 80.9 54.2 (10.0) -0.39 1 -1.52 7.3E-02 1.85 6.9E-01 0.95 1 -0.00325 1

1. For each obesity measure, 10 GRSs were calculated, and then 10 regression models were fitted. To adjust for multiple testing, the GRS-M P-value was reported as 10

times the minimum P-value of the 10 GRS-exercise interaction tests.

2. Each 1 s.d. increase in BMIGRS was associated with a 0.43 kg/m2 lower BMI in exercisers than in nonexercisers. The regression model was built as BMI = β0 +

βGRSBMIGRS +βERegular exercise + βIntBMIGRS x Regular exercise + βCCovariates + ε. Covariates adjusted in the regression model included sex, age, educational

attainment, drinking status, smoking status, and the first 10 PCs. The main effect of regular exercise (b̂ E) could be found from S8 Table.

3. The significant BMIGRS-exercise interaction was detected at the 8th BMIGRS (the marginal-association P-value threshold = 0.025), which included the information of

4,047 SNPs.

4. Each 1 s.d. increase in BFPGRS was associated with a 0.59% lower BFP in joggers than in nonjoggers. The regression model was built as BFP = β0 + βGRS BFPGRS +

βERegular jogging + βIntBFPGRS x Regular jogging + βCCovariates + ε. Covariates adjusted in the regression model included sex, age, educational attainment, drinking

status, smoking status, the first 10 PCs, 17 covariates regarding engaging in the other 17 kinds of exercise or not, and the interaction terms between BFPGRS and the 17

kinds of exercise. The main effect of regular jogging (b̂E ) could be found from S8 Table.

https://doi.org/10.1371/journal.pgen.1008277.t003
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Fig 3 shows the effect of BMIGRS on BMI, stratified by exercise types. All types of exercise

generally attenuate the genetic effects of BMI, as indicated by b̂GRS of each exercise type < b̂GRS

of no exercise. The GRS effects on other 4 obesity measures can be found from S1–S4 Figs.

Fig 1. Average BMI (A), BFP (B), WC (C) and HC (D) stratified by their respective GRS quartiles and regular exercise. Each plot shows the average of an obesity

measure stratified by regular exercise and the quartiles of the 9th GRS, where the marginal-association P-value threshold was set at 0.05. We used this GRS for plots

because 0.05 is generally considered as the significance level in statistical analyses. The title on each plot is the GRS-M P-value that can be found from Table 3. “4”

represents the difference in average BMI (A), BFP (B), WC (C) or HC (D) between the top GRS quarter and the bottom GRS quarter. From the plots we can see that

the effect of GRS was larger in the physically inactive subjects than in the physically active subjects. The plots for WHR are not presented because the WHRGRS-

exercise (p = 1) interaction was not significant (Table 3).

https://doi.org/10.1371/journal.pgen.1008277.g001
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Fig 2. Average BMI (A), BFP (B), WC (C) and HC (D) stratified by their respective GRS quartiles and jogging. Each plot shows the average of an obesity

measure stratified by jogging and the quartiles of the 9th GRS, where the marginal-association P-value threshold was set at 0.05. We used this GRS for plots because

0.05 is generally considered as the significance level in statistical analyses. The title on each plot is the GRS-M P-value that can be found from Table 3. “4” represents

the difference in average BMI (A), BFP (B), WC (C) or HC (D) between the top GRS quarter and the bottom GRS quarter. From the plots we can see that the effect of

GRS was larger in the nonjoggers than in the joggers. The plots for WHR are not presented because the WHRGRS-jogging (p = 0.01) interaction was not significant

(Table 3).

https://doi.org/10.1371/journal.pgen.1008277.g002
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S11–S13 Tables present the results of GRS×exercise interactions, stratified by sex. The

directions of b̂Ints were in line with the results in Tables 3–5 where sex was treated as a covari-

ate adjusted in model (3). All types of exercise generally attenuate the genetic contributions of

BMI, BFP, WC and HC, as indicated by the direction of the interaction terms (b̂Int < 0).

Discussion

Obesity is a major global public health problem, especially in developed countries [47]. Obesity

is complicated as it is caused by an interplay of multiple genes and lifestyle factors [9]. Numer-

ous studies have reported that the effects of a BMIGRS are larger in physically inactive subjects

Table 4. Interaction between GRS and exercise frequency per month (significant results with p< 9.1x10-5 are highlighted) (18 exercise frequencies x 5 obesity mea-

sures = 90 tests).

Frequency per month BMI (kg/m2) Body fat % Waist

circumference (cm)

Hip circumference

(cm)

Waist-to-hip ratio

Mean Standard

deviation
β̂ Int

GRS-M P-

value 1
β̂ Int

GRS-M P-

value 1
β̂ Int

GRS-M P-

value 1
β̂ Int

GRS-M P-

value 1
β̂ Int

GRS-M P-

value 1

Walking 20.2 9.6 -0.011 1.7E-07

(7,753)

-0.009 7.0E-02 -0.021 2.1E-03 -0.015 1.0E-03 0.00008 0.988

Exercise walking 18.5 8.8 -0.022 4.9E-06

(481)

-0.030 4.8E-05

(1,638)

-0.044 4.7E-04 -0.033 3.1E-05

(1,652)

-0.00013 0.215

Jogging 14.5 7.7 -0.025 2 9.4E-08

(7,753) 3
-0.027 3.5E-03 -0.043 1.9E-02 -0.052 1.6E-06

(1,652)

-0.00018 0.343

Cycling 15.2 9.8 -0.017 4.6E-02 -0.023 9.0E-02 -0.037 2.6E-01 -0.015 1 -0.00029 0.053

Mountain climbing 9.0 7.9 -0.039 6.7E-05

(4,047)

-0.032 2.9E-02 -0.048 1.1E-01 -0.034 6.5E-02 -0.00027 0.690

Stretching exercise 21.3 8.4 -0.014 1.7E-01 -0.024 2.3E-01 -0.016 1 -0.015 1 -0.00016 0.587

International

standard dancing

16.3 8.2 -0.022 1.3E-04 -0.027 9.9E-03 -0.029 1.5E-01 -0.026 2.8E-02 0.00017 1

Swimming 15.4 9.6 -0.021 1.2E-01 -0.032 2.8E-01 0.027 5.1E-01 -0.029 9.0E-01 0.00034 0.098

Tai Chi 18.7 9.5 -0.028 2.5E-03 -0.048 2.3E-03 -0.038 3.0E-01 -0.041 7.6E-03 -0.00030 0.145

Dance dance

revolution

14.1 7.7 -0.020 3.3E-02 -0.046 8.3E-02 -0.041 4.4E-01 -0.031 1.2E-01 0.00019 0.438

Yoga 11.9 8.1 -0.056 1.8E-04 -0.025 1 -0.117 3.0E-03 -0.042 5.7E-02 0.00021 1

Qigong 21.4 9.4 -0.009 1 -0.009 1 0.014 1 -0.036 1.3E-01 -0.00007 1

Others 18.3 11.9 -0.019 5.1E-01 0.030 4.0E-01 -0.050 4.0E-01 0.015 1 -0.00025 0.998

Weight training 15.4 9.1 -0.017 1.4E-01 -0.034 3.6E-02 -0.050 1.0E-01 -0.028 4.0E-01 0.00020 1

Badminton 11.4 6.9 -0.030 4.0E-01 -0.071 1.0E-01 -0.057 6.9E-01 -0.044 4.4E-01 -0.00025 1

Table tennis 15.7 8.4 -0.036 8.3E-02 -0.033 2.3E-01 -0.028 1 -0.046 5.9E-02 0.00057 0.118

Basketball 10.9 7.6 0.024 1 -0.055 1 0.060 1 -0.088 6.5E-01 -0.00056 0.099

Tennis 16.7 8.4 -0.035 2.5E-01 -0.089 3.4E-02 0.077 1 -0.023 1 0.00029 1

1. For each obesity measure, 10 GRSs were calculated, and then 10 regression models were fitted. To adjust for multiple testing, the GRS-M P-value was reported as 10

times the minimum P-value of the 10 GRS-exercise interaction tests.

2. Each 1 s.d. increase in BMIGRS was associated with a 0.025 kg/m2 lower BMI in subjects having 1 more jog per month. The regression model was built as BMI = β0 +

βGRSBMIGRS + βEJogging frequency + βIntBMIGRS x Jogging frequency + βCCovariates + ε. Covariates adjusted in the regression model included sex, age, educational

attainment, drinking status, smoking status, the first 10 PCs, 17 covariates regarding the frequencies per month of the other 17 kinds of exercise, and the interaction

terms between BMIGRS and the frequencies of the 17 kinds of exercise. For subjects who did not engage in jogging, their jogging frequencies were coded as 0. The main

effect of jogging frequency (b̂ E) could be found from S9 Table.

3. The significant interaction between BMIGRS and jogging frequency per month was detected at the 9th BMIGRS (marginal-association P-value threshold = 0.05),

which included the information of 7,753 SNPs.

https://doi.org/10.1371/journal.pgen.1008277.t004
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than in physically active subjects [13–15, 18, 20]. However, most of these studies focused on

only BMI, without discussing central obesity. Moreover, it remains unknown what kinds of

exercise could more effectively blunt the genetic effects on obesity measures. We here used the

GRS-M approach [36] to investigate interactions between GRSs and 18 kinds of exercise on 5

commonly used obesity measures.

Method of G×E analysis

Because 95% of the subjects in Locke et al.’s study [34] were of European descent, building

GRS according to these 97 SNPs may not be appropriate for other ethnic populations.

Table 5. Interaction between GRS and exercise duration (in hours) (significant results with p< 9.1x10-5 are highlighted) (18 exercise durations x 5 obesity mea-

sures = 90 tests).

Duration for each

exercise (hours)

BMI (kg/m2) Body fat % Waist

circumference (cm)

Hip circumference

(cm)

Waist-to-hip ratio

Mean Standard

deviation
β̂ Int

GRS-M P-

value 1
β̂ Int

GRS-M P-

value 1
β̂ Int

GRS-M P-

value 1
β̂ Int

GRS-M P-

value 1
β̂ Int

GRS-M P-

value 1

Walking 0.78 0.39 -0.26 5.4E-06

(7,753)

-0.13 6.9E-01 -0.60 5.6E-04 -0.33 6.5E-03 0.00365 0.019

Exercise walking 0.81 0.38 -0.35 4.1E-05

(4,047)

-0.63 1.9E-04 -0.78 1.2E-02 -0.67 1.6E-04 -0.00289 0.596

Jogging 0.70 0.33 -0.60 3.9E-08

(4,047)

-0.84 4.4E-06

(4,101)

-0.79 9.0E-04 -1.01 2.1E-05

(1,652)

-0.00417 0.034

Cycling 1.16 0.89 -0.06 1 -0.26 3.6E-01 -0.34 2.6E-01 -0.24 1 -0.00205 0.734

Mountain climbing 1.99 1.22 -0.24 1.9E-06

(4,047)

-0.20 9.9E-03 -0.38 4.1E-04 -0.25 3.3E-03 -0.00148 0.103

Stretching exercise 0.73 0.36 -0.29 4.3E-01 -0.50 9.0E-01 -0.75 3.8E-01 -0.30 1 -0.00358 1

International standard

dancing

1.28 0.61 -0.28 9.1E-05

(7,753)

-0.38 1.3E-03 -0.35 2.9E-01 -0.22 3.6E-01 -0.00128 1

Swimming 0.84 0.50 -0.15 1 -0.24 1 0.51 4.9E-01 -0.34 7.0E-01 0.00577 0.203

Tai Chi 1.13 0.54 -0.36 3.0E-03 -0.77 1.5E-03 -0.91 1.8E-02 -0.83 5.4E-04 -0.00395 0.599

Dance dance

revolution

1.01 0.43 -0.22 3.1E-01 -0.45 5.3E-01 -0.67 2.4E-01 -0.48 8.6E-02 0.00226 1

Yoga 1.17 0.49 -0.66 2 5.3E-05

(481) 3
-0.33 1 -1.10 1.1E-02 -0.71 8.5E-02 0.00230 0.566

Qigong 1.01 0.46 -0.33 1.8E-01 -0.53 1.8E-01 -0.61 9.9E-01 -0.99 3.1E-02 -0.00163 1

Others 0.96 0.65 -0.31 1 -0.58 4.2E-01 -0.95 3.1E-01 0.29 1 -0.00567 0.349

Weight training 0.80 0.48 -0.30 2.6E-01 -0.41 7.7E-01 -1.18 4.7E-02 -0.49 4.3E-01 -0.00556 1

Badminton 1.40 0.60 -0.22 1 -0.41 8.4E-01 -0.21 1 -0.33 1 0.00437 1

Table tennis 1.34 0.59 -0.40 1.3E-01 -0.42 3.4E-01 -0.43 1 -0.60 1.1E-01 0.00365 1

Basketball 1.40 0.68 0.32 3.5E-01 -0.60 7.8E-01 0.74 3.7E-01 -0.97 2.0E-01 -0.00626 1

Tennis 1.41 0.64 -0.40 4.7E-01 -1.09 2.6E-02 0.68 1 0.60 1 -0.00330 1

1. For each obesity measure, 10 GRSs were calculated, and then 10 regression models were fitted. To adjust for multiple testing, the GRS-M P-value was reported as 10

times the minimum P-value of the 10 GRS-exercise interaction tests.

2. Each 1 s.d. increase in BMIGRS was associated with a 0.66 kg/m2 lower BMI in subjects with 1 more hour in each yoga practice. The regression model was built as

BMI = β0 + βGRS BMIGRS + βE Yoga duration + βInt BMIGRS x Yoga duration + βCCovariates + ε. Covariates adjusted in the regression model included sex, age,

educational attainment, drinking status, smoking status, the first 10 PCs, 17 covariates regarding the duration (in hours) of the other 17 kinds of exercise, and the

interaction terms between BMIGRS and the duration of the 17 kinds of exercise. For subjects who did not choose yoga as their regular exercise, their yoga duration was

coded as 0. The main effect of yoga duration (b̂ E) could be found from S10 Table.

3. The significant interaction between BMIGRS and the duration in each yoga practice was detected at the 5th BMIGRS (marginal-association P-value

threshold = 0.0025), which included the information of 481 SNPs.

https://doi.org/10.1371/journal.pgen.1008277.t005
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Although the same data set is used to estimate βSNP,i (i = 1,� � �,142040) and to test the signifi-

cance of GRS×E, this GRS-M approach is valid in the sense that the type I error rates are satis-

factorily controlled [36]. Corollary 1 of Dai et al. [43] has justified the validity of using

marginal associations (between SNP and an obesity measure) as the filtering test statistics, and

Fig 3. The effect of BMIGRS on BMI. The regression model (stratified by exercise types) was built as BMI = β0 + βGRS BMIGRS + βCCovariates + ε, where

BMIGRS was calculated at the marginal-association P-value threshold of 0.05. We used this BMIGRS for plots because 0.05 is generally considered as the

significance level in statistical analyses. The orange bars represent b̂ GRS on BMI (stratified by exercise types), and the black segments mark

½b̂GRS � standard error of b̂ GRS; b̂GRS þ standard error of b̂GRS�. The text on each bar is the P-value of testing H0: βGRS = 0 vs. H1: βGRS 6¼ 0. Covariates

adjusted in the regression model included sex, age, educational attainment, drinking status, smoking status, and the first 10 PCs. Consistent with Table 3, the

18 kinds of exercise were sorted according to popularity.

https://doi.org/10.1371/journal.pgen.1008277.g003
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the data-splitting strategy is not required. Building GRS with internal weights has been used in

some G×E analyses [36–40, 48].

Previous G×E analyses have typically constructed a GRS using SNPs that reached the

genome-wide significance level (i.e., p< 5×10−8) [13–24]. However, some studies have sug-

gested that a GRS comprising more SNPs can improve the prediction for a phenotype [41, 49–

51]. SNPs that interact with an environmental factor may not necessarily present a strong mar-

ginal association with the phenotype. To explore G×E, it is worthwhile to consider a more lib-

eral threshold than the genome-wide significance level (5×10−8). For example, the “Set-Based

gene-EnviRonment InterAction test” (SBERIA) constructs a GRS by using all SNPs with a

marginal-association P-value< 0.1 [39, 40]. In fact, the optimal filtering P-value threshold var-

ies with environmental factors and phenotypes [52].

Therefore, the GRS-M method considers 10 P-value thresholds for marginal-association fil-

tering [36]. For each obesity measure, 10 GRSs were calculated, and then 10 regression models

were fitted. To adjust for multiple testing, the GRS-M P-value was reported as 10 times the

minimum P-value of the 10 GRS-exercise interaction tests. The GRS-M test is a valid statistical

method by controlling type I error rates well [36]. As summarized in S7 Table, significant

GRS-exercise interactions were detected at a marginal-association P-value threshold between

0.0025 and 0.05, and the number of SNPs used to construct each of the GRSs ranged from 481

to 7,753. With the development of relatively inexpensive SNP arrays, using more SNPs than

those achieving the genome-wide significance level is currently feasible [53].

Main findings

Previous studies have found that performing regular physical exercise could blunt the genetic

effects on BMI [13–16, 18, 20, 24]. However, few studies have investigated BFP or measures of

central obesity. These obesity measures are even more relevant to health than BMI. For exam-

ple, central obesity is considered to be a predominant risk factor for metabolic syndrome [54,

55]. We here show that performing regular exercise attenuates the genetic effects on 4 obesity

measures, including BMI, BFP, WC, and HC (Table 3).

Regarding exercise types, regular jogging mitigated the genetic effects on BMI, BFP, and

HC. Mountain climbing, walking, exercise walking, and international standard dancing also

attenuated the genetic effects on BMI (Table 3). Moreover, a longer practice of yoga blunted

the genetic effects on BMI (Table 5). These results indicated that although hereditary factors

are critical to obesity, performing different kinds of exercise can modify this relationship to

various extents.

A BMI that is too high or too low is associated with an increased mortality rate. According

to studies from western Europe and North America [56], a BMI ranging from 22.5 to 25 kg/m2

corresponded to the lowest overall mortality. Fig 1(A) shows that regular physical exercise was

associated with an increase in BMI at a low BMIGRS (the bottom quarter: Q1) but a decrease

in BMI at a high BMIGRS (the top quarter: Q4). Performing regular exercise was associated

with a reduced risk of having a too-high or a too-low BMI.

Summarizing Tables 3–5, a total of 12 kinds of exercise did not achieve significance for the

attenuation of the genetic risk of obesity measures. Plausible reasons included (1) less popular-

ity or (2) a smaller GRS-exercise interaction effect. Exercises such as cycling (989 subjects),

stretching exercise (602 subjects), swimming (486 subjects), DDR (420 subjects), and qigong

(377 subjects) were more popular or as popular as yoga (379 subjects), but their evidence of

interacting with GRS was relatively weak (Table 3). These 5 kinds of exercise may have limited

effects on mitigating the genetic risk of obesity measures. In contrast, although the evidence of

GRS-Tai Chi interactions did not achieve the Bonferroni-corrected significance level (9.1x10-
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5), the small P-values implied that engaging in Tai Chi (449 subjects) might potentially blunt

the genetic effects on obesity measures.

Few studies have investigated the interplay between particular kinds of exercise and genetic

risk of obesity measures. Therefore, we can hardly compare our results with previous findings.

We here provide possible explanations for these results. Cycling (989 subjects), stretching exercise

(602 subjects), and qigong (377 subjects) usually require less energy expenditure than the 6 exer-

cises that demonstrate interactions with GRS [57]. Exercises in cold water such as swimming (486

subjects) can especially stimulate appetite and food intake [58, 59]. DDR (420 subjects), a com-

puter game based on dancing with music videos, is not as formal as international standard danc-

ing. These reasons may possibly explain why these 5 popular exercises (cycling, stretching

exercise, qigong, swimming, and DDR) cannot mitigate genetic susceptibility to obesity measures.

Because relatively few subjects engaged in weight training (218 subjects), badminton (204

subjects), table tennis (169 subjects), basketball (119 subjects), or tennis (110 subjects), the sta-

tistical power to detect the interplay between GRS and these exercises was limited. Further

research on these 5 kinds of exercise will be interesting.

Comparison between our findings and previous studies

A G×E study for BMI using 362,496 UK Biobank subjects has reported that a quicker walking

pace attenuated the genetic effects on BMI (the top row in Tables 2–3 of [14]). This is consis-

tent with our findings in Tables 3–5, i.e., jb̂Intj of BMIGRS×jogging > jb̂Intj of BMIGRS×
exercise walking > jb̂Intj of BMIGRS×walking. Because pace of jogging > pace of exercise

walking > pace of walking, our results also show that a quicker walking pace could more effec-

tively attenuate the genetic effects on BMI. Moreover, the frequency of stair climbing in last 4

weeks has been found to blunt the effect of BMIGRS (Tables 2–3 of [14]). Similarly, we here

detected significant interactions between BMIGRS and both the frequency (Table 4) and dura-

tion (Table 5) of mountain climbing.

Associations of 18 kinds of exercise with obesity measures (Main effects of

exercises)

Some previous studies investigated the efficacy of performing several kinds of exercise in pre-

venting obesity [60, 61]. For example, a randomized controlled trial with 64 subjects assigned

to the Tai Chi group and 78 assigned to the control group demonstrated that performing Tai

Chi led to a marked but non-significant reduction in WC [60]. For comparison, in S8–S10

Tables, we listed the associations of 18 kinds of exercise with obesity measures, i.e., b̂E esti-

mated from model (3). Our results showed that performing Tai Chi was significantly associ-

ated with a reduction in WC and BFP (p< 9.1x10-5). Regular jogging, performing yoga and

Tai Chi were associated with a decrease in multiple obesity measures. Moreover, playing table

tennis was associated with a reduction in WHR. WC and WHR are indicators of central obe-

sity [8]. Our results show that performing Tai Chi or playing table tennis was related to a

reduced risk of central obesity, presumably because waist turning is frequently required when

engaging in these two kinds of exercise.

The results for associations of 18 kinds of exercise with obesity measures were robust to the

exclusion of GRS and GRS-exercise interaction terms. In addition to obtaining b̂E from model

(3), we additionally fitted the following model without GRS and the relevant interaction terms:

BMI ðor another obesity measureÞ ¼ b0 þ bEEþ βCCovariatesþ ε; ð4Þ

where E was some kind of exercise, and covariates included sex, age, educational attainment,
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drinking status, smoking status, the first 10 PCs, and 17 covariates regarding engaging in the

other 17 kinds of exercise or not. The results were similar to those obtained from model (3),

i.e., regular jogging, performing yoga, Tai Chi and playing table tennis were associated with a

decrease in obesity measures.

To sum up, regular jogging and performing yoga were not only associated with a decrease

in obesity measures, but they also attenuated the genetic predisposition to obesity measures.

Exercises such as walking, exercise walking, mountain climbing, and international standard

dancing, were not significantly associated with a change in obesity measures, but these 4 kinds

of exercise could blunt the genetic effects on BMI. By comparing rows of “walking” and “yoga”

in S8–S10 Tables, our result is consistent with a previous finding that engaging in yoga shows

a larger reduction in BMI than walking [61].

It is interesting that, across all 5 obesity measures, regular jogging consistently presented

the most significant interactions with GRSs (Table 3). The genetic effects on obesity measures

can be decreased to various extents by performing different kinds of exercise. The benefits of

regular physical exercise, especially jogging, are more impactful in subjects who are more pre-

disposed to obesity.

Supporting information

S1 Fig. The effect of BFPGRS on BFP. The regression model (stratified by exercise types) was

built as BFP = β0 + βGRSBFPGRS + βCCovariates + ε, where BFPGRS was calculated at the mar-

ginal-association P-value threshold of 0.05. We used this BFPGRS for plots because 0.05 is gen-

erally considered as the significance level in statistical analyses. The orange bars represent b̂GRS

on BFP (stratified by exercise types), and the black segments mark ½b̂GRS � standard error of
b̂GRS; b̂GRS þ standard error of b̂GRS�. The text on each bar is the P-value of testing H0: βGRS =

0 vs. H1: βGRS 6¼ 0. Covariates adjusted in the regression model included sex, age, educational

attainment, drinking status, smoking status, and the first 10 PCs. Consistent with Table 3, the

18 kinds of exercise were sorted according to popularity.

(JPG)

S2 Fig. The effect of WCGRS on WC. The regression model (stratified by exercise types) was

built as WC = β0 + βGRSWCGRS + βCCovariates + ε, where WCGRS was calculated at the mar-

ginal-association P-value threshold of 0.05. We used this WCGRS for plots because 0.05 is gen-

erally considered as the significance level in statistical analyses. The orange bars represent b̂GRS

on WC (stratified by exercise types), and the black segments mark ½b̂GRS � standard error of
b̂GRS; b̂GRS þ standard error of b̂GRS�. The text on each bar is the P-value of testing H0: βGRS =

0 vs. H1: βGRS 6¼ 0. Covariates adjusted in the regression model included sex, age, educational

attainment, drinking status, smoking status, and the first 10 PCs. Consistent with Table 3, the

18 kinds of exercise were sorted according to popularity.

(JPG)

S3 Fig. The effect of HCGRS on HC. The regression model (stratified by exercise types) was

built as HC = β0 + βGRSHCGRS + βCCovariates + ε, where HCGRS was calculated at the mar-

ginal-association P-value threshold of 0.05. We used this HCGRS for plots because 0.05 is gen-

erally considered as the significance level in statistical analyses. The orange bars represent b̂GRS

on HC (stratified by exercise types), and the black segments mark ½b̂GRS � standard error of
b̂GRS; b̂GRS þ standard error of b̂GRS�. The text on each bar is the P-value of testing H0: βGRS =

0 vs. H1: βGRS 6¼ 0. Covariates adjusted in the regression model included sex, age, educational

attainment, drinking status, smoking status, and the first 10 PCs. Consistent with Table 3, the
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18 kinds of exercise were sorted according to popularity.

(JPG)

S4 Fig. The effect of WHRGRS on WHR. The regression model (stratified by exercise types)

was built as WHR = β0 + βGRSWHRGRS + βCCovariates + ε, where WHRGRS was calculated

at the marginal-association P-value threshold of 0.05. We used this WHRGRS for plots because

0.05 is generally considered as the significance level in statistical analyses. The orange bars

represent b̂GRS on WHR (stratified by exercise types), and the black segments mark ½b̂GRS�

standard error of b̂GRS; b̂GRS þ standard error of b̂GRS�. The text on each bar is the P-value of

testing H0: βGRS = 0 vs. H1: βGRS 6¼ 0. Covariates adjusted in the regression model included sex,

age, educational attainment, drinking status, smoking status, and the first 10 PCs. Consistent

with Table 3, the 18 kinds of exercise were sorted according to popularity.

(JPG)

S1 Table. The associations of 5 obesity measures with 97 BMI-associated SNPs identified

from Europeans (only 86 are polymorphic in TWB subjects).

(XLSX)

S2 Table. The association of European-based GRS with the 5 obesity measures.
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S6 Table. The cumulative variance explained by the 86 European BMI-associated SNPs.

(DOCX)

S7 Table. The numbers of SNPs used to form the GRSs under 10 P-value thresholds.
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S8 Table. Main associations of exercises with obesity measures (significant results with

p< 9.1x10-5 are highlighted).

(DOCX)

S9 Table. Main associations of exercise frequencies per month with obesity measures (sig-

nificant results with p< 9.1x10-5 are highlighted).

(DOCX)

S10 Table. Main associations of the exercise duration (in hours) with obesity measures

(significant results with p< 9.1x10-5 are highlighted).

(DOCX)

S11 Table. Interaction between GRS and exercise on each obesity measure (stratified by sex).

(DOCX)

S12 Table. Interaction between GRS and exercise frequency per month (stratified by sex).
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S13 Table. Interaction between GRS and exercise duration (in hours) (stratified by sex).

(DOCX)
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