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Transcriptome analysis of hen preadipocytes
treated with an adipogenic cocktail (DMIOA) with
or without 20(S)-hydroxylcholesterol
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Abstract

Background: 20(5)-hydroxycholesterol (20(S)) potentially reduces adipogenesis in mammalian cells. The role of this
oxysterol and molecular mechanisms underlying the adipogenesis of preadipocytes from laying hens have not
been investigated. This study was conducted to 1. Analyze genes differentially expressed between preadipocytes
treated with an adipogenic cocktail (DMIOA) containing 500 nM dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine,
20 pg/mL insulin and 300 uM oleic acid (OA) and control cells and 2. Analyze genes differentially expressed between
preadipocytes treated with DMIOA and those treated with DMIOA + 20(S) using Affymetrix GeneChip® Chicken Genome
Arrays.

Results: In experiment one, where we compared the gene expression profile of non-treated (control) cells with those
treated with DMIOA, out of 1,221 differentially expressed genes, 755 were over-expressed in control cells, and 466 were
over-expressed in cells treated with DMIOA. In experiment two, where we compared the gene expression profile of
DMIOA treated cells with those treated with DMIOA+20(S), out of 212 differentially expressed genes, 90 were over-
expressed in cells treated with DMIOA, and 122 were over-expressed in those treated with DMIOA+20(S).

Genes over-expressed in control cells compared to those treated with DMIOA include those involved in cell-to-cell
signaling and interaction (IL6, CNN2, ITGB3), cellular assembly and organization (BMP6, IGF1, ACTB), and cell cycle (CD4,
9, 38). Genes over-expressed in DMIOA compared to control cells include those involved in cellular development
(ADAM22, ADAMTS9, FIGF), lipid metabolism (FABP3, 4 and 5), and molecular transport (MAP3K8, PDK4, AGTR1). Genes
over-expressed in cells treated with DMIOA compared with those treated with DMIOA+20(S) include those involved in
lipid metabolism (ENPP2, DHCR7, DHCR24), molecular transport (FADS2, SLC6A2, CD36), and vitamin and mineral
metabolism (BCMO1, AACS, AR). Genes over-expressed in cells treated with DMIOA+20(S) compared with those treated
with DMIOA include those involved in cellular growth and proliferation (CD44, CDKe, IL1B), cellular development
(ADORA2B, ATPEVOD?2, TNFAIP3), and cell-to-cell signaling and interaction (VCAM1, SPON2, VLDLR).

Conclusion: We identified important adipogenic regulators and key pathways that would help to understand the
molecular mechanism of the in vitro adipogenesis in laying hens and demonstrated that 20(S) is capable of
suppressing DMIOA-induced adipogenesis.
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Background

Adipogenesis is the process in which preadipocytes be-
come adipocytes, and it is one of the most intensively
studied models of cellular differentiation. Adipocytes
play vital roles in energy homeostasis and possess the
largest energy reserve in the body of animals [1]. The in-
crease in adipose tissue mass results from multiplication
of fat cells through a process called adipogenesis, where
undifferentiated precursor cells (preadipocytes) differen-
tiate into fat cells [2].

A number of key transcriptional activities are involved
in the process of adipogenesis in mammals [3-5]. The
critical step in these events is the activation of the tran-
scription factor CCATT enhancer-binding protein beta
(C/EBPP) by mitogen activated protein kinase (MAPK)
and glycogen synthase kinase-3 beta (GSK3p) [6]. The
activated C/EBPP then triggers transcription of peroxi-
some proliferator-activated receptor gamma 2 (PPARy2)
and CCATT enhancer-binding protein alpha (C/EBP«),
which in turn additively activate the expression of
genes responsible for the development of mature
adipocytes [3].

Oleic acid (OA) has been implicated as a good source
of exogenous fatty acids essential for adipocyte differen-
tiation and plays an important role in the development
of adipose tissue in chickens [7]. Preadipocytes isolated
from broilers (meat-type chicken) treated with 300 uM
OA showed marked increase in the expression of genes
responsible for adipocyte formation [7].

An adipogenic cocktail containing 500 nM dexametha-
sone, 0.5 mM 3-isobutyl-1-methylxanthine, and 20 pg/
mL insulin (DMI) has been commonly used to induce
adipogenesis in various animal models [3,4,8,9]. How-
ever, DMI treatment without OA does not induce key
adipogenic transcription factors and adipogenesis in
chicken preadipocytes [7,10] explaining the unique char-
acteristic of chicken fat cell adipogenesis in vitro.

Oxysterols are bioactive molecules involved in numer-
ous biological processes including cholesterol efflux [11],
lipoprotein and calcium metabolisms [12], cell differenti-
ation [13], and apoptosis [14] and are potential candi-
dates for changing the fate of mesenchymal stem cell
(MSC) differentiation [15]. While inhibiting adipogenic
differentiation, specific oxysterols namely, 20(S)-hydro-
xycholesterol (20(S)) in combination with 22(S) - or 22
(R)-hydroxycholesterol, induce osteoblastic differenti-
ation of mouse pluripotent mesenchymal cells [16]
through protein kinase C (PKC) and protein kinase A
(PKA) dependent mechanisms [17]. These pro-
osteogenic and anti-adipogenic effects of specific oxy-
sterols are marked by the early and late markers of
osteogenic differentiation such as increased alkaline
phosphatase (ALP) activity, osteocalcin (OCN) mRNA
expression and mineralization, and reduction in markers
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of adipogenic differentiation including lipoprotein lipase
(LPL) and fatty acid binding protein 4 (FABP4) mRNA
expression and adipocyte formation [16]. Furthermore,
20(S) inhibits PPARY2 expression and adipogenic differ-
entiation of mouse bone marrow stromal cells through a
hedgehog (Hh)-dependent mechanism [15]. Similarly,
treatment of mouse M2-10B4 MSC with Oxy34 or
Oxy49 induces the expression of osteogenic differenti-
ation markers, Runx2, Osterix (OSX), ALP, bone sialo-
protein (BSP), and OCN as well as ALP enzymatic
activity and robust mineralization [18]. On the other
hand, treatment of these cells with the oxysterols in-
hibits the expression of adipogenic genes such as
(PPARY2), LPL, and FABP4, and adipocyte formation in-
duced by PPARy2 activator, troglitazone [18]. Addition-
ally, treatment of human adipose-derived stem cells with
7-Ketocholesterol and 5,6-S oxysterols has been reported
to detrimentally modulate mitochondrial activity and
adipogenic differentiation of adipose precursor cells [19].
However, no studies have been conducted to elucidate
global gene regulation of adipogenesis and anti-
adipogenic mechanisms of oxysterols in chicken preadi-
pocytes. Here, we hypothesized that treatment of hen
preadipocytes with 20(S) reduces DMIOA-induced adi-
pogenesis by affecting various pathways and gene net-
works involving key adipogeneic transcription factors.
This study was conducted to identify genes differentially
expressed between preadipocytes treated with DMIOA
and control cells and genes differentially expressed be-
tween preadipocytes treated with DMIOA alone and
those treated with a combination of DMIOA and 20(S).

Methods

Care of experimental birds

All experimental procedures were reviewed and ap-
proved by the University of Manitoba Animal Care
Protocol Management and Review Committee, and birds
were handled in accordance with guidelines described by
the Canadian Council on Animal Care (CCAC, 1993).

Cell culture

Abdominal adipose tissues weighing approximately 4 gm
were collected from three 19-wk old laying hens (Gallas
gallus, Lohman strain) by sterile dissection as described
in [7]. We selected 19-wk old laying hens because hens
start laying eggs, maximize their fat accumulation in the
body and have dramatic metabolic changes related to
lipid metabolism at this age. The adipose tissues were
minced into fine sections with scissors and incubated in
10 mL Dulbecco’s Modified Eagle’s Medium (DMEM)
digestion buffer containing 0.1% collagenase, 2.8 mM
glucose, and 4% bovine serum albumin (BSA) for 45 min
at 37°C in a shaking water bath. After the incubation,
the contents were filtered using 100 and 40 pm Nylon
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meshes (Fisher Scientific, China), and the filtrates were 5 mL of 1X DMEM containing 10% FBS. Then, the cells
centrifuged at 1,800 rpm for 10 min to separate floating  were plated in six-well plates at 20,000 cells/cm?* and in-
adipocytes from pellets of preadipocytes. The super- cubated until they reached confluence. The cells became
natant was discarded, and cell pellets were resuspended  confluent after two days of incubation.

in 10 mL 1X DMEM containing 10% fetal bovine serum

(FBS), 100 U/mL penicillin, 100 pg/mL streptomycin  Incubation of cells with an adipogenic cocktail and 20(S)-

and L-glutamate (Mediatech, Inc., Manassas, VA). Prea-  hydroxycholesterol

dipocytes were then seeded in 100 mm Petri dishes (MG  After confluence, the cells were treated with 1) an adipo-
Scientific, Wisconsin, USA) and cultured in an incubator  genic cocktail containing 500 nM dexamethasone,
with 95% air and 5% CO, at 37°C. Cells were checked 0.5 mM 3-isobutyl-1-methylxanthine, 20 pg/mL insulin
for viability every day, and the media were changed and 300 pM OA (DMIOA), and 2) DMIOA +5 uM 20
every three days until the cells were confluent. At con- (S) with three biological replicates per treatment for
fluence, the cells were washed twice in 5 mL phosphate 96 hr. Cells were incubated for 96 hr because our recent
buffered saline (PBS) and incubated in 3 mL of 1X Tris- observation showed that sufficient lipid droplets were
EDTA (TE) buffer for 2 min at 37°C. The cells were formed by DMIOA treatment and 20(S) started inhibit-
washed several times in seven mL of 1X DMEM con-  ing adipogenic gene (FABP4) at this time point (Figures 1
taining 10% FBS to detach adhering cells. The contents and 2). Non-treated cells were cultured in 1X DMEM
were centrifuged at 1,800 rpm for 5 min, the supernatant  containing 10% FBS without an adipogenic cocktail for
was discarded, and cell pellets were re-suspended in  comparison purpose. The media was removed from the
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Figure 1 Representative images of non-treated preadipocytes (1A), preadipocytes treated with DMIOA (1B), showing remarkable lipid
accumulation in preadipocytes treated with DMIOA and relative expressions of FABP4 and C/EBPB in control and DMIOA treated cells
(1Q). Preadipocytes were cultured in Dulbecco’s modified eagle’s medium (DMEM) containing 10% fetal bovine serum (FBS) for 96 hr. Images
were taken using an EVOS® x| core cell culture microscope (Advanced Microscopy Group, Seattle, USA) at 20X magnification. Green arrows
indicate lipid droplets stained with Qil red O stain whereas there is no lipid formation in non-treated cells. C: Fold change expression of FABP4
and C/EBP in preadipocytes treated with an adipogenic cocktail (DMIOA) compared with non-treated cells. Preadipocytes were cultured in
Dulbecco’s modified eagle’s medium containing 10% Fetal Bovine Serum for 96 hr. Bars with different letters are significantly different (P < 0.05).
The bars represent Mean + SD (N = 3).
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Figure 2 Relative expression of FABP4 in non-treated (control)
preadipocytes, preadipocytes treated with an adipogenic
cocktail (DMIOA) and those treated with DMIOA + 20(S)-
hydroxycholestrol in Dulbecco’s modified eagle’s medium
containing 10% Fetal Bovine Serum for 96 hr. Bars with different
letters are significantly different (P < 0.05). The bars represent
Mean = SD (N = 3).

cells using a vacuum aspirator, and the cells were ho-
mogenized in one mL of TRIzol (Invitrogen, Canada) for
RNA isolation.

Oil red O staining of preadipocytes

In order to examine the effect of an adipogenic cocktail
on adipogenesis and accumulation of lipid droplets, pre-
adipocytes isolated from 19-wk old laying hens were
treated with DMIOA containing 500 nM dexametha-
sone, 0.5 mM 3-isobutyl-1-methylxanthine, 20 pg/mL
insulin and 300 uM OA for 96 hr. Then, non-treated
control cells and cells treated with DMIOA were stained
with Oil Red O according to supplier’s protocol [20].

RNA isolation and array processing

Total RNA was extracted from cells representing three
biological replicates per treatment using TRIzol (Invitrogen,
Canada) according to the manufacturer’s protocol. RNA in-
tegrity and yield of each sample were determined using an
Experion™ automated electrophoresis system (Bio-Rad
laboratories Inc, USA) and a NanoDrop 2000 (Thermo
Scientific, Canada), respectively. Initial total RNA concen-
trations across all samples were adjusted to 500 ng, and this
amount of total RNA was used for the two round cDNA
synthesis and subsequent in vitro-transcription according
to the one-cycle eukaryotic target labeling assay (Affymetrix
GeneChip® 3" IVT express Kit). Fifteen pg of biotin-labeled
and amplified RNA (aRNA) of each group were hybridized
with Affymetrix GeneChip® Chicken Genome Arrays for
16 hr at 45°C. Post-hybridization staining and washing were
performed according to manufacturer’s protocols using a
Fluidics Station 450 instrument (Affymetrix, USA).
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Image capturing, quantification and data analysis

Array slides were scanned with a GeneChip™ 3000 laser
confocal slide scanner (Affymetrix, USA), and the images
were quantified using Affymetrix GeneChip Command
Console Software (Affymetrix, USA). Probe level data
were imported into FlexArray software [21]. The raw
data were background corrected, normalized, and sum-
marized using Guanine-Cytosine Robust Multichip
Average (GCRMA) function as described in [22]. The
background corrected and normalized data were then
filtered by applying a false discovery rate of < 5%. The fil-
tered genes were annotated using a chicken annotation
file (Chicken. na32.annot, Affymetrix, USA). Genes dif-
ferentially expressed (1) between non-treated (control)
cells and cells treated with DMIOA and (2) between
cells treated with DMIOA alone and a combination of
DMIOA and 20(S) were identified using a t-test at a fold
change of >2 and probability (P <0.05). The raw data
from all arrays in this study are available online at
http://www.ncbi.nlm.nih.gov/geo/ with GEO accession
number GSE50880.

Lists of genes over-expressed in either group were
uploaded into Ingenuity Pathways Analysis [23] to iden-
tify the most significantly affected gene networks and
cellular functions, relationships between the genes of
interest, and pathways involved.

Validation of microarray data using quantitative real-time
reverse transcription polymerase chain reaction (qRT-PCR)
The same RNA samples that were used for array
hybridization were used for cDNA synthesis. First strand
¢DNA was synthesized using a high capacity reverse
transcription kit according to the supplier’s protocol
(Applied Biosystems, Canada). Pairs of primers for each
gene were designed from the mRNA sequence of target
gene using the National Centre for Biotechnology Infor-
mation (NCBI). Quantitative real-time RT-PCR was per-
formed in duplicate reactions including nuclease free
water, the forward and reverse primers of each gene,
template cDNA and SYBR Green using a CFX Connect

Real-Time PCR Detection System (Life Science
Research, Bio-Rad, Canada). Data were generated using
a AACt method by normalizing the expression of the
target genes to a housekeeping gene (GAPDH), and the
values were reported as fold changes of the expression
of the target genes in DMIOA treated cells compared
with the control group and the expression of target
genes in DMIOA +20(S) treated cells compared with
DMIOA group. Gene expression and correlation be-
tween microarray and qRT-PCR data were analysed
using t-test and correlation procedures of SAS software
[24], respectively. Means were declared significant at
P <0.05. Pairs of primers used for qRT-PCR assay and
their sequences are presented in Table 1.
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Table 1 List of primers used for quantitative real-time polymerase chain reaction
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Name Forward Reverse Product length (base pair) Annealing temperature (°C)
FABP4 GAGTTTGATGAGACCACAGCAGA ATAACAGTCTCTTTGCCATCCCA 106 57
IGFBP7 TCCATCGTGACCCCTCCTAA GAGAGATCAGTACCCAGCCG 228 55
VEGFc AAGTGTGTGTGGATGTGGGG TGACAGTTACGGGTTTGGGG 201 55
CD44 CGCTGTGCGGAGATACAGAA CCTATGGCTCTTCCTGGCTG 199 55
MMP1 GCAGTCTCCTCTGCTTTCCC GTCACGGTCAGGTTTCCCAG 209 58
STARD4 GGGACAGCACAAGCCCTAAT GCCTAGCTTGACTGGGTTCA 219 54
INSIG1 GCATGGTGCCAGTGTGAAAG TCCAGAGAACAGCCATACGC 222 54
GAPDH GCTAAGGCTGTGGGGAAAGT TCAGCAGCAGCCTTCACTAC 116 55
TGM4 TGGATGTCCTCTGACTCCGT CAGTAGACCTTGTCGGCGTT 238 54
cCL4 CTCATGGCAGGTGCTGTTTG CCTCCCTTAAATGCCCTCCC 207 55
TNFAIP3 CAGAAAAGAGGCCTGCTCCA CCTTCAGTTTCTCGGGTGCT 202 54
GSTA3 GCCAAAGGAAACCACGCCTA GTTTCATCCAGTGTACCGCCT 218 55
APOA1 CTCGCTGTGCTCTTCCTGAC GTCAGCCAGCTTCAGGTCAA 191 55
KLF2 CTTACCCGCCACTACCGAAA TTGTCCGGCTCTGTCCTAAG 123 58
HAS2 CACTGGGAGAAGCGTGGAAT GCACTGTACGCAGCCAAAAT 203 56
Results differentially expressed between the two groups are indi-

The effect of DMIOA on the adipogenesis and expression
of key adipogenic transcripts

The results of our pre-experiment investigation indi-
cated that, preadipocytes treated with DMIOA had re-
markably higher lipid accumulation (Figure 1B) and
significantly higher (P <0.05) expression of key adipo-
genic transcripts such as FABP4 and C/EBPB compared
with non-treated cells (Figure 1C).

The effect of 20(S)-hydroxycholesterol (20(S)) on the
expression of FABP4

In order to study the effect of oxysterol on the expres-
sion of adipogenic transcripts, preadipocytes isolated
from 19-wk laying hens were treated with DMIOA with
or without 20(S). The result indicated that DMIOA
treatment significantly increased (P <0.05) the expres-
sion of one of the key adipogenic transcript (FABP4)
compared to control cells, whereas DMIOA + 20(S)
treatment significantly reduced DMIOA-induced FABP4
expression (Figure 2).

Transcriptome profiles of chicken preadipocytes treated
with DMIOA relative to non-treated (control) cells

Global transcriptome expression analyses of preadipo-
cytes treated with DMIOA and non-treated cells showed
that of 1,221 differentially expressed genes, 755 were
over-expressed in non-treated cells (Additional file 1),
and 466 were over-expressed in cells treated with
DMIOA (Additional file 2). Hierarchical clustering of all
genes differentially expressed between control cells and
cells treated with DMIOA and the top 20 genes

cated in Additional files 3 and 4, respectively.

Genes over-expressed in control cells compared to
those treated with DMIOA include those involved in
cell-to-cell signaling and interaction such as interleukin
6 (IL6), calponin 2 (CNN2), and integrin beta 3 (ITGB3),
cell morphology such as ATPase, Ca*" transporting,
plasma membrane 2 (ATP2B2), insulin like growth fac-
tor 3 (IGFB3), and inhibin beta A (INHBA), cellular as-
sembly and organization such as bone morphogenetic
protein 6 (BMP6), insulin like growth factor 1 (IGF1),
beta actin (ACTB), and adenylyl cyclase-associated Pro-
tein 2 (CAP2), cellular function and maintenance such
as integrin alpha 4 (ITGA4), integrin beta 2 (ITGB2),
and growth and differentiation factor 9 (GDF9), and cell
cycle such as CD4, 9 and 38 molecules (CD4, CD9,
CD38), and cyclin-dependent kinase inhibitor 2B
(CDKNZ2B). Genes over-expressed in DMIOA compared
to control cells include those involved in cellular devel-
opment such as ADAM metallopeptidase domain 22
(ADAM?22), ADAM metallopeptidase with thrombos-
pondin type 1 motif, 9 (ADAMTS9), c-fos induced
growth factor (FIGF), and matrix metallopeptidase 1
(MMP1), lipid metabolism such as fatty acid binding
protein 3, 4, and 5 (FABP3, 4 and 5), and apolipoprotein
1 (APOA1), molecular transport such as mitogene acti-
vated protein 3 kinase 8 (MAP3KS), pyruvate dehydrogen-
ase kinase, isozyme 4 (PDK4), solute carrier organic anion
transporter family, member 2B1 (SLCO2B1), and nicotina-
mide phosphoribosyltransferase (NAMPT), and small
molecule biochemistry such as angiotensin II receptor, type
1, 2 and 3 (ATGR1, ATGR2, ATGR3), and glutamine-
fructose-6-phosphate transaminase 2 (GFPT2) (Figure 3).



Regassa and Kim BMC Genomics (2015) 16:91

Functional grouping (canonical pathways) of genes
that were over-expressed in control preadipocytes rela-
tive to those treated with DMIOA is presented in
Figure 4. Several key gene networks were also affected
by DMIOA treatment relative to control cells. An ex-
ample of a gene network (lipid metabolism) showing the
relationships between molecules over-expressed in prea-
dipocytes treated with DMIOA compared with control
cells is presented Figure 5.

Transcriptome profile of chicken preadipocytes treated
with DMIOA alone and a combination of DMIOA and 20
(S)

The gene expression data indicated that of 212 differen-
tially expressed genes, 90 were over-expressed in cells
treated with DMIOA alone (Additional file 5), and 122
were over-expressed in those treated with a combination
of DMIOA and 20(S) (Additional file 6). Hierarchical
clustering of all genes differentially expressed between
cells treated with DMIOA and those treated with
DMIOA +20(S) and the top 20 genes differentially

Cell morphology

Cell-to-cell signaling and interaction
Cell cycle

Cellular function and maintenance

Hl Up in Control
3 Up in DMIOA

Cellular assembly and organization

Cellular movement — —

Small molecule biochemistry +————
Molecular transport ——
Lipid metabolism +———
Cellular development ——

0 5 101520
Proportion of over expressed genes

GO categories

Figure 3 The top significantly changed gene ontology (GO)
terms (molecular and cellular functions) with the proportion of
genes involved among these over-expressed in non-treated
preadipocytes (black bars) and those treated with an adipogenic
cocktail (DMIOA) (white bars) in Dulbecco’s modified eagle’s
medium containing 10% Fetal Bovine Serum for 96 hr. Lists of
genes over-expressed in a given treatment group relative to the
other were imported into IPA and the number of genes that were
associated with a given GO term in the IPA database was determined
at P <0.0001. The P-value, calculated using the right-tailed Fisher Exact
Test, is a measure of the likelihood that the association between the
number of focus genes in the data set and a given GO term is due to
random chance. The smaller the P-value is the less likely that the
association is random, and the more significant the association is. The
p-value for a given GO term was calculated by considering the number
of focus genes that participate in a given GO term and the total
number of genes that are known to be associated with that GO term
in the Ingenuity Knowledge Base. Then, the proportion of genes in a
given GO term was calculated by dividing the number of genes
determined by IPA that are associated with a given GO term in the
Ingenuity® Knowledge Base by the total number of genes
over-expressed in one treatment group relative to the other multiplied
by 100.
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expressed between the two groups are indicated in
Additional files 7 and 8, respectively.

Genes over-expressed in cells treated with DMIOA
alone compared with those treated with DMIOA + 20(S)
include those involved in lipid metabolism such as ecto-
nucleotide pyrophosphatase/phosphodiesterase 2 (ENPP
2), 7-dehydrocholesterol reductase (DHCR7), 24-dehyd
rocholesterol reductase (DHCR24), 3-hydroxy-3-methyl-
glutaryl-CoA reductase (HMGCR), farnesyl-diphosphate
farnesyltransferase 1 (FDFT1), and farnesyl diphosphate
synthase (FDPS), small molecule biochemistry such as
solute carrier family 16 member 10 (SLC16A10), fibro-
blast growth factor 7 (FGF7), StAR-related lipid transfer
(START) domain containing 4 (STARD4), and insulin
induced gene 1 (INSIG1), molecular transport such as
fatty acid desaturase 2 (FADS2), solute carrier family 6
member 2 (SLC6A2), glypican 1 (GPC1), and CD mol-
ecule 36 (CD36), and vitamin and mineral metabolism
such as beta-carotene 15,15’'-monooxygenase (BCMO1),
acetoacetyl-CoA synthetase (AACS), androgen receptor
(AR), and hydroxysteroid (17-beta) dehydrogenase 7
(HSD17B7). Genes over-expressed in cells treated with
DMIOA +20(S) compared with those treated with
DMIOA alone include those involved in cellular growth
and proliferation such as CD molecule 44 (CD44), cyclin
dependent kinase 6 (CDK®6), interleukin 1 beta (IL1B),
interleukin 6, and 8 (IL6, and 8), cellular development
such as adenosine A2b receptor (ADORA2B), ATP syn-
thase (ATP6), tumor necrosis alpha induced protein 3
(TNFAIP3), and tumor necrosis factor (ligand) super-
family, member 15 (TNESF15), cellular movement such
as chemokine (C-C motif) ligand 20 (CCL20), chole-
cystokinin (CCK), and vasoactive intestinal polypeptid
(VIP), and cell-to-cell signaling and interaction such as
vascular cell adhesion molecule 1 (VCAM1), spondin 2,
extracellular matrix protein (SPON2), very low density
lipoprotein receptor (VLDLR), and cytoplasmic polyade-
nylation element binding protein 1 (CPEB1). The gene
ontology (GO) terms (cellular and molecular functions)
and functional groups (canonical pathways) of genes dif-
ferentially expressed between cells treated with DMIOA
alone and those treated with DMIOA + 20(S) are shown
in Figures 6, 7 and 8, respectively. The results of func-
tional (pathway) analysis indicated that the majority of
genes over-expressed in cells treated with DMIOA rela-
tive to those treated with DMIOA + 20(S) are involved
in cholesterol biosynthesis I, II and III pathways
(Figure 7). On the other hand, the majority of genes
over-expressed in cells treated with DMIOA + 20(S) are
involved in hepatic cholestasis, IL-6, IL-10, and LPS
(IL-1) mediated inhibition of RXR function (Figure 8).

Key gene networks showing the relationships between
molecules over-expressed in cells treated with DMIOA
and those treated with DMIOA + 20(S) relative to each
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Figure 4 Functional grouping of genes that were over-expressed in non-treated preadipocytes relative to those treated with an adipogenic
cocktail (DMIOA) showing the most significant functional groups, with P value < 0.05. The bars represent the P-value in a logarithmic scale for
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other are presented in Figures 9 and 10. One of the gene
networks that were affected by DMIOA treatment is a
lipid metabolism gene network including signaling mole-
cules such as INSIG1, STARD4, SQLE and others
(Figure 9), whereas the network affected by DMIOA +
20(S) includes genes that are involved in interleukin sig-
naling pathways such as IL-1, IL-1R, IL1RL2, TNFAIP3,
CCL20 (Figure 10).

Validation of microarray data using quantitative real-time
reverse transcription polymerase chain reaction (qRT-PCR)
In order to validate the microarray data, we selected rep-
resentative genes and analyzed their expression using
qRT-PCR. Except for one gene, HAS2, the results were
consistent with the microarray data. Additionally,
correlation analysis of the microarray and qRT-PCR data
showed a strong positive correlation (r=0.989;
P <0.001) between the two data sets. Microarray and
RT-PCR fold differences are shown in Table 2.

Discussion

The role of microarray in chicken transcriptomics

The use of microarray in chicken transcriptome analysis
is recently increasing. For instance, microarray-based
gene expression studies were conducted on adipose tis-
sues collected from 7- [25] and 9- [26] wk old broiler
chickens to identify genes differentially expressed be-
tween fat and lean lines. Systematic identification of can-
didate genes and new pathways related to intramuscular
fat deposition in chicken breast tissues has also been
made using gene expression profiles of two distinct
breeds [27] showing the wide use of microarray in gene
expression studies and identification of important path-
ways and biological processes in chicken.

The effect of an adipogenic cocktail (DMIOA) on
adipogenesis and expression of adipogenic genes

In the present study, we detected numerous genes over-
expressed in preadipocytes treated with DMIOA com-
pared with non-treated cells including ENPP2, RLN3,
ADAMTS9, HPGD, LCNS8, HPX, OLFM1, ST6GALI,
CHRDL2, CIDEC, CKB, AVPR2 and others (Additional
file 2). Although some of the genes over-expressed in
preadipocytes treated with DMIOA relative to non-
treated cells are known to have roles in adipogenesis, the
majority of them are genes with currently unknown
function related to adipogenesis. Although we believe
that the study of these genes may provide new insight
about adipogenesis, only genes that are known to have
direct or indirect roles in adipogenesis and involved in
known pathways and molecular functions are discussed
here.

Fatty acids have been implicated as potent inducers of
adipogenic genes in mammalian [28,29] and chicken
[7,10] preadipocytes. Fatty acids, certain prostaglandins,
and prostaglandin metabolites are known to function as
ligands of PPARY2 to induce adipogenic differentiation
[30]. Treatment of 3 T3-L1 mouse preadipocytes with
medium size fatty acids increases the expression of adi-
pocyte specific transcription factors, such as PPARy2, C/
EBPa and sterol regulatory element binding protein 1 C
(SREBP1C), and the major adipocyte marker genes, such
as FABP4 and glycerol-3-phosphate dehydrogenase
(GPDH) [28]. Rapid increase in PPARy2 and FABP4
mRNA expression has been reported in preadipocytes
isolated from broiler chicken between 9 and 12 hr of
OA treatment [7]. In the present study, PPARy2 and C/
EBPa mRNAs were not differentially expressed between
cells treated with DMIOA and non-treated cells after
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Figure 5 An example of a gene network (lipid metabolism) showing the relationships between molecules over-expressed in cells
treated with an adipogenic cocktail (DMIOA) compared with non-treated control cells. The type of the association between two molecules
is shown by a letter on the line that connects them. The number in parenthesis next to the letter represents the number of bibliographic
references currently available in the Ingenuity Pathways Knowledge Base that support each one of the relationships. Direct or indirect
relationships between molecules are indicated by solid or dashed lines connecting them, respectively. P = phosphorylation, A = gene activation,
E=increase in expression, PP = protein-protein interaction, MB = membership in complex, LO =localization, L = proteolysis, RB = regulation of
binding, TR = Translocation and T = Transcription. Rhombus, triangular, rectangular, oval, and circular shapes indicate that the molecule belongs to
a family of enzymes, phosphatases, growth factors, transmembrane receptors, and other families, respectively.

J

96 hr of incubation. These data are consistent with the
findings of [7] where higher levels of PPARy2 and C/
EBPa mRNAs measured between 9-12 hr, and after
24 hr of incubation, respectively, were followed by a
sharp decline, suggesting the induction of these genes
during the early stages of differentiation as they were
not differentially expressed in cells treated with DMIOA
after 96 hr incubation in the present study.

Histone deacetylase 9 (HDAC9) was over-expressed in
non-treated cells compared with those treated with
DMIOA (Additional file 1). Similarly, over-expression of
HDACY reduces C/EBPa expression and adipogenesis,
whereas its knock-out enhances the expression of C/

EBPa and accelerated adipogenesis in 3 T3-L1 cell
lines, demonstrating the anti-adipogenic effect of this
gene [31].

Higher expression of one of the key adipocyte specific
transcription factors, C/EBPJ, was also measured in cells
treated with DMIOA compared with non-treated control
cells, and this is consistent with the findings of [7] where
its expression level has been progressively increased after
24 hr of incubation, showing an increasing trend with
incubation time. However, our data are not fully consist-
ent with the results from 3 T3-L1 mouse preadipocytes
study where higher expression of SREBP1C and GPDH
activities have been reported [28], explaining the possible
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Figure 6 The top significantly changed GO terms (molecular
and cellular functions) with the proportion of genes involved
among these over-expressed in cells treated with an adipogenic
cocktail (DMIOA) (black bars) and those treated with a combination
of DMIOA and 5 pM 20(S) (white bars) relative to each other. Lists
of genes over-expressed in a given treatment group relative to the
other were imported into IPA and the number of genes that were
associated with a given GO term in the IPA data base was
determined at P <0.0001. The P-value, calculated using the
right-tailed Fisher Exact Test, is a measure of the likelihood that the
association between the number of focus genes in the data set and
a given GO term is due to random chance. The smaller the P-value
is the less likely that the association is random and the more
significant the association is. The p-value for a given GO term was
calculated by considering the number of focus genes that participate
in a given GO term and the total number of genes that are known to
be associated with that GO term in the Ingenuity Knowledge Base.
Then, the proportion of genes in a given GO term was calculated by
dividing the number of genes determined by IPA that are associated
with a given GO term in the Ingenuity® Knowledge Base by the total
number of genes over-expressed in one treatment group relative to
the other multiplied by 100.
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inter-species and incubation time differences in the
characteristics of adipocyte differentiation.

The ingenuity pathway analysis indicated that treat-
ment of preadipocytes with DMIOA increased the ex-
pression of genes involved in lipid metabolism, including
CD36, AGTR2, MAP3KS8, APOA1, PTX3, HMOX1 and
others (Figure 3). CD36 is a fatty acid transporter mol-
ecule that has been implicated to play a functional role
in the differentiation of 3 T3-F442A murine preadipo-
cytes into matured adipocytes in in-vitro and in-vivo en-
vironments [32], and impaired fatty acid influx and
triglyceride synthesis were reported in adipocytes lacking
CD36 [33]. Higher expression of CD36 in cells treated
with DMIOA compared with non-treated cells in the
present study suggests the importance of this transcript
in the adipogenesis of hen fat cells.

MAP3KS is specifically involved in IL-1p and tumor
necrosis alpha (TNF-a) activated MAPK pathway in adi-
pocytes and up-regulated in adipose tissue of obese sub-
jects [34]. Similarly, pentraxin 3 (PTX3) mRNA levels
were higher in adipose tissue of genetically obese mice
versus control mice [35]. However, whether this higher
expression of PTX3 and MAP3KS8 in adipose tissue of
genetically obese subjects and in DMIOA treated cells is
associated with their roles in adipogenesis is not well
understood.

Another interesting gene highly expressed in DMIOA
treated cells, but not in agreement with the result from
mouse study, was heme oxygenase 1 (HMOX1).
HMOX1 has been reported to lower the elevated levels
of key adipogenic genes, such as PPARy, FABP4, C/
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Figure 7 Functional grouping of genes that were over-expressed in cells treated with an adipogenic cocktail (DMIOA) relative to those
treated with a DMIOA + 5 pM 20(S)-hydroxycholesterol showing the most significant functional groups, with P values, 0.05. The bars
represent the P-value in a logarithmic scale for each functional group.
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Figure 8 Functional grouping of genes that were over-expressed in preadipocytes treated with an adipogenic cocktail (DMIOA) + 5 pM
20(S)-hydroxycholesterol relative to those treated with DMIOA alone showing the most significant functional groups, with P values,
0.05. The bars represent the P-value in a logarithmic scale for each functional group.

EBPp, and Wnt5B, but increased the expression of anti- We found higher transcript expression for arginase 2
adipogenic transcription factors, such as sonic hedgehog  (ARG2), hemopexin (HPX), and vitronectin (VIN) in
(Shh), Wntl0B and p-catenin, in adipocytes isolated cells treated with DMIOA compared with non-treated
from mice fed a high fat diet [36]. However, whether this  cells. These genes are involved in liver X receptor
observed difference is attributed to inter-species differ- (LXR)/Retinoid X receptor (RXR) activation pathway, in-
ences or high fat diet need to be elucidated. dicating OA possibly induce adipogenesis in hen fat cell

Figure 9 An example of a gene network (lipid metabolism) showing the relationships between molecules over-expressed in cells
treated with an adipogenic cocktail (DMIOA) compared with those treated with a combination of DMIOA and 5 pM 20(S)-hydroxycholesterol.
The type of the association between two molecules is shown as a letter on the line that connects them. The number in parenthesis next to the
letter represents the number of bibliographic references currently available in the Ingenuity Pathways Knowledge Base that support each one of
the relationships. Direct or indirect relationships between molecules are indicated by solid or dashed lines connecting them, respectively.

A = activation, E=increase in expression, PP = protein-protein interaction, L = proteolysis, and UB = ubiquitination. Rhombus shape indicates that
the molecule belongs to the family of enzymes, whereas circular shape indicates the molecule belongs to other families.
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Figure 10 An example of a gene network (cell-to-cell signaling) showing the relationships between molecules over-expressed in cells
treated with an adipogenic cocktail (DMIOA) + 5 pM 20(S)-hydroxycholesterol compared with those treated with DMIOA alone. The
type of the association between two molecules is shown as a letter on the line that connects them. The number in parenthesis next to the letter represents
the number of bibliographic references currently available in the Ingenuity Pathways Knowledge Base that support each one of the relationships. Direct or
indirect relationships between molecules are indicated by solid or dashed lines connecting them, respectively. P = phosphorylation, A = gene activation,

E =increase in expression, PP = protein-protein interaction, MB = membership in complex, LO = localization, L = proteolysis, RB = regulation of binding,

TR =Translocation and T = Transcription. Triangular, rectangular, oval, and circular shapes indicate that, the molecule represented belongs to the family of
phosphatases, growth factors, transmembrane receptors, and others, respectively.

through activation of LXR/RXR pathways. The role/s of
LXR/RXR pathway appears to vary from cells to cells
and from species to species. For instance, suppression
of LXRa markedly reduces the expression of lipogenic
Table 2 Fold change and probability values of qRT-PCR (FAS and SREBP1C) and adipogenic transcription factors
and micro array data (PPARy2 and FABP4) and adipogenesis in 3 T3-L1
mouse cells [37]. Similarly, suppression of LXR nega-

Gene name  Fold change P value el : di ' in C57BL/6 I
RT-PCR  Microaray  RT-PCR Micro array tively regu afces adipogenesis in C57 ‘/ mouse cells
[38] suggesting that LXRa can be an important tran-
CD44 8.2 55 P=002 P=0011 C c . . c .
scription factor mediating adipocyte differentiation
IGFBP7 121 o1 P=00002  P=0046 as well as adipogenic gene expression. On the contrary,
VEGFc 4.1 85 P=00001  P=0027 knock-down of LXRa and LXRP in mouse M2 bone
MMP1 367 5980 P =0.001 P =0001 marrow stromal cells significantly reduced the expres-
APOA1 610 122 P=00009 P=0021 sion of key osteogenic genes, BSP, OCN, and HESI,
STARDA 40 62 P=00008 P=0043 showing the c‘rltlc‘al role’ of LXRs in regulating mouse
MSC osteogenic differentiation [39] that has a reciprocal
INSIG1 6.8 6.9 P =0.0005 P=0012 . . . . . . c .
interaction with adipogenic differentiation. In another
ToM4 4> 42 P=00004  P=0032 study, activation of LXRa resulted in lipolysis of human
TNFAIP3 46 9.7 P=0.001 P=0.008 3 T3-L1 cells [40] showing inter-species differences.
GSTA3 14 59 P=004 P=0049 We also found higher expression of genes involved in
KLF2 6.5 39 P =0.001 P=004 I1L-10 Signaling, such as IL—lRl, IL—IRLL and IL-lRL2,
HAS2 08 62 P=015 p_ooooas  and these involved in lipopolysaccharide (LPS)/IL-1 me-

YV ———— r p— diated inhibition of RXR including FABP3, 4, 5, and

’ ,an c were genes over expressed in control cells an . .

MMP1 and APOA1 were genes over expressed in cells treated with DMIOA SOD3 pathways in cells treated with DMIOA compared

relative to each other. Similarly, STARD4, INSIG1, and TGM4 were genes over with non-treated cells. Interleukin 10 (IL-10) is a potent

expressed in DMIOA treated cells whereas TNFAIP3, GSTA3, and KLF2 were .. . . .
anti-inflammatory and immunosuppressive cytokine me-

genes over expressed in cells treated with DMIOA + 20(S) relative to
each other. diating its pleiotropic effects on different immune cells



Regassa and Kim BMC Genomics (2015) 16:91

through the trans-membrane heterotetrameric complex
composed of IL-10R1 and IL-10R2 chains [41]. Adipose
tissue is a rich source of anti-inflammatory factors such
as IL-10 [42,43], and adipose size is an important deter-
minant of adipokine secretion [44]. However, data show-
ing the role of IL-10 signaling pathway itself in
adipogenesis is not available and hence molecular mech-
anisms of the IL-10 and other signaling pathways in adi-
pogenesis by DMIOA treatment is to be elucidated.

Fatty acid binding proteins (FABP3, 4 and 5) play im-
portant roles in adipogenic differentiation of fat cells in
various species [7,10,45]. Consistent with this, DMIOA
treatment increased the expression of molecules in-
volved in the lipid metabolism gene network such
FABP3, 4 and 5, APOA1, LDL, and others (Figure 5). Al-
though both FABP4 and FABP5 are expressed in adipose
tissue, only the regulatory role of FABP4 in adipogenesis
has been widely investigated. Increased expression of
FABP4 has been reported in DMIOA-induced adipo-
genic differentiation of preadipocytes isolated from
chicken [7,10]. A coordinated expression of FABP3,
FABP4 and FABP5 together with that of PPARa, PPARy1
and PPARy?2 is critical for metabolic regulation of adipo-
genesis in porcine preadipocytes [45]. Contrastingly,
FABPs are not differentially expressed between fat and
lean lines of 7-wk old broiler chicken [25].

It has been reported that basic fibroblast growth factor
enhances PPARy2 ligand-induced adipogenesis in rat
MSC [46], and FGFR1 is a key regulator of adipogenesis
in human [47,48]. In the present study, we also found
higher expression of FGFR1 in cells treated with
DMIOA compared to non-treated cells showing the in-
volvement of this transcript in chicken adipogenesis.

The effect of 20(S) hydroxycholesterol on adipogenesis
and expression of adipogenic genes

Studies have indicated that specific oxysterols are cap-
able of inhibiting the expression of several adipogenic
transcription factors and adipogenesis in mammalian
cells [15,16,18,19]. Here, we report for the first time that
20(S) inhibits the adipogenic differentiation of preadipo-
cytes in laying hen.

It has been reported that treatment of murine M2-
10B4 MSC with 20(S) completely inhibits troglitazone-
induced PPARy2 expression and adipocyte formation
through the activation of the Hh signaling pathway [15].
Moreover, 20(S) induces the expression of notch target
genes such as HEY 1/2 and HES1 in M2-10B4 pluripo-
tent mouse stromal cells [39]. Osteogenic oxysterols
have also been reported to inhibit adipogenesis and the
expression of LPL and FABP4 in murine pluripotent
MSC [16]. In this study, treatment of laying hen preadi-
pocytes with 20(S) inhibited the mRNA expression of
adipogenic differentiation marker (FABP4) and fatty acid
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transporter molecule (CD36) (Additional files 5 and 6).
However, PPARy2, LPL, C/EBPf, C/EBPa and other adi-
pogenic transcription factors were not differentially
expressed between DMIOA and DMIOA + 20(S) treated
cells. This could be attributed to the fact that these key
adipogenic genes are induced during the earlier stages of
adipogenic differentiation and hence their mRNA
changes were not detected at the later stages, where cells
already differentiated. Although 20(S) inhibits PPARy2
expression and adipogenesis through the activation of
the Hh signaling pathway in mouse MSC [15], Hh sig-
naling pathway was not activated by 20(S) treatment in
the present study explaining inter-species differences.
This suggests that the anti-adipogenic effects of 20(S)
may not be mediated through Hh signaling pathway in
chicken. Additionally, the network analysis of genes
over-expressed in DMIOA treated cells relative to
DMIOA +20(S) showed large proportion of molecules
involved in lipid metabolism indicating the potential of
20(S) to reduce excessive fat accumulation (Figure 9).
We found over-expression of genes such as INSIGI,
STARD4, DHCR? and 24 and others in cells treated with
DMIOA compared with those treated with DMIOA + 20
(S). Studies have indicated that INSIG1 is expressed in
parallel with FABP4 in differentiating 3 T3-L1 mouse
preadipocytes [49], and STARD4 mediates cholesterol
transport during cholesterol homeostasis [50]. Genes in-
volved in cell-to-cell signaling networks such as IL1, IL-
1R, IL1RL2, CCL20, TNFAIP3, IKB, TNIP2, CSF3 and
RIPK2 were also over-expressed in preadipocytes treated
with DMIOA + 20(S) compared with those treated with
DMIOA (Figure 10). Interleukin 1 (IL-1) plays an im-
portant role in bone metabolism through activation of
receptor activator of NF-kB signaling pathway in mouse
models [51], and IL-1R is an important mediator
involved in many cytokine induced immune and inflam-
matory responses [52]. Additionally, it has been shown
that cytokines such as IL-1 and tumour-necrosis factor-
alpha (TNFA) inhibit adipogenesis in bone marrow [53].
Hence, over-expression of IL-1, its receptor mRNA
(IL-1R) and tumor necrosis alpha induced protein 3
(TNFAIP3) in cells treated with DMIOA +20(S) relative
to those treated with DMIOA indicates that 20(S) poten-
tially inhibits chicken adipogenesis through induction of
anti-adipogenic cytokines. However, the role/s of cyto-
kines on adipogenesis and adipogenic gene expression in
hen preadipocytes need further elucidation.

Genes over-expressed in preadipocytes treated with
DMIOA + 20(S) relative to those treated with DMIOA
alone include KLF2 and 6, early growth response 1
(EGR1), CD44, and CCK. The Kruppel-like factor
(KLF2) has been implicated to reduce adipogenesis by
inhibiting PPARy expression in 3 T3-L1 cells [54]. Simi-
larly, ectopic expression of EGR1 has been reported to
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inhibit adipocyte differentiation in murine 3 T3-L1 prea-
dipocytes [55]. Consistent with these findings, KLF2 and
EGR1 were over-expressed in cells treated with DMIOA
+20(S) relative to cells treated with DMIOA where adi-
pogenesis was markedly reduced. Interestingly, these
genes were over-expressed in control cells relative to
those treated with DMIOA, indicating that KLF2 and
EGRI could potentially involve in the inhibition of adi-
pogenesis in chicken fat cells.

Studies have shown that increased CD44 expression is
accompanied with obesity-induced hepatic steatosis and
white adipose tissue-associated inflammation in human
and mouse, suggesting CD44 might play a critical role in
regulating obesity and associated pathologies [56,57]. On
the other hand, because it is a multifunctional cell mem-
brane protein, CD44 can act as a receptor for hyaluro-
nan (HA) and osteopontin [58,59]. In line with this,
exogenous HA application increased calcium deposition
in pig bone marrow stromal cells [59], and osteopontin
expression was enhanced during bone formation in
mouse [60], indicating the possible involvement of CD44
in bone development. Considering the potential of 20(S)
to induce the expression of genes associated with osteo-
genesis in M2-10B4 bone marrow stromal cells [15],
increased expression of CD44 in cells treated with
DMIOA +20(S) in the present study may explain the
pro-oesteogenic property of 20(S) [15] which could
negatively modulate key adipogenic regulators by enhan-
cing the expression of CD44. The expression of CCK
was also increased in hen preadipocytes treated with
DMIOA +20(S) compared with those treated with
DMIOA alone. Cholecystokinin (CCK) is involved in
regulating the metabolic rate and is important for lipid
absorption and control of body weight in mice placed on
a high-fat diet [61], showing its anti-adipogenic effect
in vivo. However, the potential of this gene as an anti-
adipogenic factor in hen adipocytes needs further
investigation.

In summary, treatment of hen preadipocytes with
DMIOA highly induced the expression of genes involved
in lipid metabolism relative to non-treated cells. On the
other hand, preadipocytes treated with a combination of
DMIOA and 20(S) inhibited expression of key adipo-
genic transcripts and adipogenesis as compared with
cells treated with DMIOA alone. Moreover, 20(S) in-
creased the expression of many key genes previously re-
ported to enhance osteogenesis which has a reciprocal
relationship to adipogenesis.

Conclusions

This study generated important gene expression data
that would enhance our understanding of the biology of
adipocytes. The study demonstrated that 20(S) is capable
of reducing DMIOA-induced adipogenesis and identified
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potential adipogenic and anti-adipogenic regulators in
hen preadipocytes that require further investigation.

Supporting data
All supporting data for this study are included as
additional files.
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Additional file 1: List of genes over-expressed (Fold change > 2) in
control cells relative to cells treated with an adipogenic cocktail
(DMIOA) for 96 hr.

Additional file 2: List of genes over-expressed (Fold change > 2) in
cells treated with an adipogenic cocktail (DMIOA) for 96 hr.

Additional file 3: Hierarchical clustering and heat map of all genes
differentially expressed between control cells and cells treated with
an adipogenic cocktail (DMIOA) for 96 hr. Numbers 1 and 2 at the top
of the heat map indicate the three biological replications representing
control cells and cells treated with DMIOA, respectively. The fold change
increases from green to red.

Additional file 4: Hierarchical clustering and heat map of the top
20 genes differentially expressed between control cells and cells
treated with an adipogenic cocktail (DMIOA for 96 hr. Numbers 1
and 2 at the top of the heat map indicate the three biological
replications representing control cells and cells treated with DMIOA,
respectively. The fold change increases from green to red.

Additional file 5: List of genes over-expressed (Fold change > 2) in
cells treated with an adipogenic cocktail (DMIOA) for 96 hr.

Additional file 6: List of genes over-expressed (Fold change > 2) in
cells treated with an adipogenic cocktail (DMIOA) for 96 hr.

Additional file 7: Hierarchical clustering and heat map of all genes
differentially expressed between cells treated with an adipogenic
cocktail (DMIOA) for 96 hr. Numbers 1 and 2 at the top of the heat
map indicate the three biological replications representing cells treated
with DMIOA and DMIOA + 20(5), respectively. The fold change increases
from green to red.

Additional file 8: Hierarchical clustering and heat map of the top
20 genes differentially expressed between cells treated with an
adipogenic cocktail (DMIOA) for 96 hr. Numbers 1 and 2 at the top of
the heat map indicate the three biological replications representing cells
treated with DMIOA and DMIOA + 20(S), respectively. The fold change
increases from green to red.
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