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Abstract: Platinum-based chemotherapies, such as cisplatin, play a large role in cancer treatment.
The development of resistance and treatment toxicity creates substantial barriers to disease control,
yet. To enhance the therapeutic index of cisplatin-based chemotherapy, it is imperative to circumvent
resistance and toxicity while optimizing tumor sensitization. One of the primary mechanisms by
which cancer cells develop resistance to cisplatin is through upregulation of DNA repair pathways.
In this review, we discuss the DNA damage response in the context of cisplatin-induced DNA
damage. We describe the proteins involved in the pathways and their roles in resistance development.
Common biomarkers for cisplatin resistance and their utilization to improve patient risk stratification
and treatment personalization are addressed. Finally, we discuss some of the current treatments and
future strategies to circumvent the development of cisplatin resistance.
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1. Introduction

Since receiving Food and Drug Administration (FDA) approval in 1978 [1], the widely
known platinum-based chemotherapy, cisplatin, has gained clinical indications for the
treatment of a broad spectrum of cancers including multiple myeloma, lung, breast, colorec-
tal, gynecologic, and head and neck cancers [1,2]. While cisplatin confers strong cytotoxic
activity, especially in combination with other treatment modalities, such as radiotherapy
or surgery [3], the development of drug resistance represents one of the major obstacles
to the cure of cancer. Even tumors that are initially sensitive to cisplatin may later re-
lapse and develop mechanisms to evade growth restriction and cell death [2]. Cancer
control can be further hindered when cisplatin-induced toxicities lead to dose reduction or
discontinuation [4].

Resistance to cisplatin has been associated with multiple mechanisms, including
alteration of target molecules, production of cisplatin-sequestering proteins, induction of
drug efflux pumps, upregulation of DNA repair pathways, and alterations in pro-survival
and pro-apoptotic pathways [2,5]. Tumors may also possess multiple mechanisms of
resistance simultaneously [5]. Cisplatin exerts its antineoplastic activity primarily through
the formation of DNA platination products; therefore, sensitivity of tumors to cisplatin
greatly depends on the ability of tumor cells to recognize and repair cisplatin-induced
DNA damage. In fact, there is strong evidence to show that the functionality of various
DNA repair pathways significantly impacts tumor response to cisplatin treatment [6–10].
Treatment toxicity is similarly mediated by, at least in part, DNA damage and the efficacy
of DNA repair pathways in normal tissues.

Circumventing cisplatin resistance and toxicity remains a critical goal in enhancing the
therapeutic index of cisplatin and achieving sustained cancer control. Here, we summarize
the reported evidence from studies on the mechanism of DNA damage response and repair
in cisplatin-mediated cytotoxicity. We additionally discuss the DNA repair pathways and
proteins implicated in cisplatin sensitivity and toxicity, as well as predictive markers for
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cisplatin resistance. These biomarkers might allow for improved risk stratification of pa-
tients and selection of more individualized treatment regimens. Finally, we discuss current
and future treatment strategies targeting DNA repair pathways that impact therapeutic
index of cisplatin treatment of cancers.

2. Cisplatin Mechanism of Action in Cancer Control and Toxicity

Despite decades of research and early identification of DNA as the primary cellular
target of cisplatin, the mechanisms involved in cisplatin sensitivity and toxicity remain
to be fully elucidated. Cisplatin’s antitumor activity begins with cellular uptake through
copper [11], anion [12–14], and cation transporters [15–18]. It is subsequently aquated,
allowing it to bind to the guanine N7 position on DNA [19]. By doing so, cisplatin generates
DNA adducts in a highly conserved manner. The most common of these adducts are
1,2-intrastrand d (GpG) (between adjacent guanine bases on the same DNA strand) and 1,2-
intrastrand d (ApG) (between adjacent adenine and guanine bases on the same DNA strand)
crosslinks. These adducts distort the helical structure of the DNA molecule, disrupting
replication and transcription [20–22]. Disruption of nuclear DNA is the most studied
mechanism of cisplatin cytotoxicity; however, mitochondrial DNA damage is also indicated.
In fact, studies show that cisplatin binds to both nuclear and mitochondrial DNA with
the same affinity. Disruption of mitochondrial DNA replication and transcription leads
to mitochondrial degradation and apoptosis [2,23]. In addition to DNA damage, cisplatin
binds to cytoplasmic molecules, such as glutathione (GSH) and metallothionein (MT).
Binding of these substrates results in the generation of reactive oxygen species (ROS) that
disrupt mitochondrial membranes, damage DNA, and eventually induce apoptosis [19]
(Figure 1).
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Figure 1. Mechanisms of cisplatin therapeutic action. The dark blue border represents the cell membrane, with the light
blue interior being the cytosol and the white oval being the nucleus. Cisplatin first undergoes cellular uptake mediated by
copper transporters, indicated by the cylindrical structure crossing the cell membrane. It is then activated in the cytosol
through aquation. Aquated cisplatin induces nuclear DNA damage, such as the intrastrand crosslinks represented by
the red bar linking two adjacent DNA bases, and mitochondrial DNA damage. The activated drug also attacks reduced
glutathione (GSH) and metallothionein (MT) to generate reactive oxygen species (ROS). ROS generation induces apoptosis
through mitochondrial outer membrane permeabilization (MOMP) and DNA damage.
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3. DNA Repair Pathways

In response to DNA damage, a DNA damage response (DDR) is activated, resulting
in suppression or complete interruption of DNA synthesis, inhibition of the cell cycle,
and activation of DNA repair pathways [24]. These pathways are critical to maintaining
genome integrity to prevent carcinogenesis [25–28]. In fact, DDR defects confer increased
risk for the development of cancer over a person’s lifetime.

DNA damage is first recognized by molecular “sensors”, most notably ataxia-telan
giectasia mutated (ATM), ATM- and Rad3-related (ATR), and DNA-dependent protein
kinase (DNA-PK). These proteins are members of the phosphatidylinositol-3-kinase- like
(PIKK) family, each regulating DNA repair pathways with different specificities and func-
tions [29,30]. ATM kinase phosphorylates proteins that mediate cell-cycle arrest, DNA
repair, and apoptosis in response to recognition of DNA double-strand breaks (DSBs).
ATR monitors replication fork progression and responds to a variety of DNA damage that
disrupts replication. It activates many proteins to halt the progression of DNA replication
and promote DNA repair. DNA-PK is mainly involved in non-homologous end joining
(NHEJ) repair and activates a smaller subset of proteins compared to ATM and ATR [5].

The primary DNA repair pathways include homologous recombination (HR), nu-
cleotide excision repair (NER), NHEJ, base excision repair (BER), and mismatch repair
(MMR). When cells are defective in one of these pathways, DNA damage accumulates. If
the damage is tolerable, the cells will continue to divide, passing erroneous genome to
progeny cells. The generation and propagation of an unstable genome is one significant
factor contributing to the development of cancer [5]. However, cells that are deficient in one
DNA repair pathway are significantly more sensitive to treatment with DNA-damaging
agents, including cisplatin. Redundancy does exist among the DNA repair pathways,
where tumor cells deficient in one pathway will compensate using other functional path-
ways. However, cells with a DNA repair pathway defect are generally more sensitive
to agents that rely primarily on that pathway [31]. Not surprisingly, numerous proteins
involved in the repair pathways have also been implicated in cisplatin resistance. Therefore,
a comprehensive understanding of these pathways and their respective proteins is neces-
sary to develop more effective strategies to overcome the challenges of cisplatin resistance
and toxicity.

3.1. Homologous Recombination

Cisplatin-induced ROS and stalling of the DNA replication fork can produce DNA
DSBs that are primarily repaired through one of two mechanisms [32]. HR is the preferred
pathway as it is highly precise and preserves the entire DNA sequence. HR involves
resection at the broken ends, pairing of the broken DNA strand with a homologous
sequence, preferably a sister chromatid, and synthesis of new DNA using the homologous
molecule as a template. Activation of cyclin-dependent kinase (CDK), the major cell cycle
regulator, induces HR through downstream recruitment of Mre11-Rad50-NBS1 (MRN)
complex. MRN complex binds to DNA ends and recruits proteins integral to HR, such as the
HR nucleases. ATM is another protein activated by MRN binding to DNA, which activates
breast cancer type 1 protein’s (BRCA1) function in cell cycle checkpoint activation [33]
as well as cell cycle checkpoint kinase 1 (CHK1). BRCA1 is vital for the ATM-mediated
phosphorylation of CHK1 [34]. BRCA1 also indirectly interacts with Rad51, the HR effector
protein critical to finding homologous sequences on the sister chromatid [33] (Figure 2).

Many of the proteins within the HR pathway have been implicated in cisplatin sensi-
tivity and resistance. Tumors with somatic mutations in BRCA1 show significantly greater
sensitivity to cisplatin treatment [35]. Cells are unable to utilize HR when BRCA1 is absent,
resulting in accumulations of DSBs that are lethal to the cell [33]. However, BRCA1-mutated
cancers have been found to develop resistance to cisplatin treatment through a secondary
mutation that re-establishes BRCA1 function (Figure 2). In fact, tumors possessing this
reversion mutation have been shown to develop cisplatin resistance [36]. Besides BRCA1,
additional HR proteins have been implicated in resistance development. Overexpression
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of the MRN complex is associated with cisplatin resistance (Figure 2) while disruption
of the complex sensitizes tumors to cisplatin treatment [37–42]. Interestingly, a study
showed that PD-L1 directly interacts with NBS1 of the MRN complex in cisplatin-resistant
head and neck squamous cell carcinomas (HNSCC). Knockdown experiments of either
PD-L1 or NBS1 re-sensitized cells to cisplatin treatment, and mutations in both proteins act
synergistically to increase cisplatin sensitivity [43]. Moreover, ATM has been implicated in
enhanced epithelial-mesenchymal transition and metastatic potential in cisplatin-resistant
non-small cell lung cancer (NSCLC) [44], and downregulation of Rad51 has been shown to
reduce cisplatin resistance in breast cancer cells [45].
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to treatment.

3.2. Non-Homologous End Joining

In addition to HR, DSBs can be repaired through NHEJ, a highly efficient repair
pathway that is more error prone compared to HR repair. NHEJ has the advantage of
being operational throughout the cell cycle, whereas HR is only active during the S/G2
phases [46–48]. In fact, in G1, NHEJ is the dominate repair pathway due to p53-binding
protein 1 (53BP1) activity and resulting antagonization of BRCA1. When DNA damage
is detected, Ku70/KU80 bind to the exposed breakpoints to recruit nucleases. Detection
of DNA damage results in the autophosphorylation of DNA-PK, providing the initial
activation of the NHEJ pathway [49]. Phosphorylated DNA-PK is recruited to the DSB site
to expose the DNA ends for the nucleases. Because most DSBs do not result in blunt ends,
the overhanging single-stranded DNA (ssDNA) must be trimmed by nucleases before X
family DNA polymerases (POL) extend the strands. Finally, the ends are ligated using
ligase (LIG) 4 bound to XRCC4 [33] (Figure 2).

Although NHEJ is error-prone, it plays a significant role in reestablishing a functional
genome following DNA damage. For example, cells lacking XRCC4 have an enhanced
sensitivity to DNA damaging chemotherapeutics, including cisplatin [50]. Studies have
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also shown that cells lacking NHEJ proteins are significantly more sensitive to IR-induced
DSBs [46,47,49,51]. Additionally, NHEJ is predominantly active in proliferating cells as
opposed to non-proliferating cells. Investigation between the differences in NHEJ func-
tionality in various tumors and healthy differentiated cells can provide useful therapeutic
methods that can limit toxicity to healthy tissues [33]. On the other hand, many of the
proteins involved in NHEJ are implicated in cisplatin resistance. One study has shown
that cisplatin treatment can result in acquired resistance through an AKT-dependent, pro-
survival, DNA damage response. This involves AKT translocating to the nucleus and
becoming phosphorylated by DNA-PK, resulting in the inhibition of cisplatin-mediated
apoptosis [52] (Figure 2). A study has shown that the upregulation of 53BP1 in SKO3
ovarian carcinoma cells resulted in increased resistance to cisplatin [53] (Figure 2). Finally,
higher Ku70 expression is associated with a better response to cisplatin treatment and
improved overall survival (OS) [54].

3.3. Nucleotide Excision Repair

NER is the most common DNA repair pathway involved in the resolution of cisplatin-
induced intrastrand DNA crosslinks. Inactivation of this pathway in tumors has shown
greater cisplatin sensitivity, OS, and progression-free survival (PFS) [5]. There are two
sub-pathways of NER that are intricately coordinated and differ based on the proteins that
detect DNA damage. Global-genome NER (GG-NER) utilizes Xeroderma pigmentosum
group C (XPC), most significantly XPC-RAD23B, and DNA damage binding complexes that
recognize helical distortions from DNA adducts. On the other hand, transcription-coupled
NER (TC-NER) is activated when DNA adducts cause RNA polymerase to stall. This
activates Cockayne syndrome A and B (CSA and CSB), which bind to and resolve DNA
lesions. Both GG-NER and TC-NER require Xeroderma pigmentosum group A (XPA) to
interact with ssDNA alterations and recruit TFIIH complex for damage verification [55].
The pathways converge once the TFIIH complex has been recruited to the damaged DNA.
The XPB and XPD components of the complex unwind the DNA, creating a 20–30 nucleotide
bubble. This is followed by the recruitment of XPA, replication protein A (RPA), and XPG.
XPA binds to the 5′ end of the bubble and interacts with other components of NER,
including ERCC1-XPF. RPA binds the ssDNA opposite of the lesion to protect it from
degradation and helps coordinate the excision and repair processes while XPG provides
structural support. Its endonuclease activity is activated only after ERCC1-XPF has been
recruited by XPA to the 5′ end. ERCC1-XPF and XPG make incisions at the 5′ and 3′ ends of
the damaged ssDNA respectively. POL δ/ε/κ-PCNA-RFC-RPA synthesizes new DNA in
replicating (POL ε) and non-replicating cells (POL δ and κ) [56]. The process is completed
through strand ligation by LIG1 in replicating cells and LIG3α-XRCC1 in non-replicating
cells (Figure 2).

One of the many toxicities involving cisplatin treatment includes chemotherapy-
induced peripheral neuropathy (CIPN). This potentially permanent complication is pri-
marily conferred through accumulation of DNA adducts and death of dorsal root ganglia
(DRG) neurons [57]. However, many proteins within the NER pathway are involved in the
modulation of CIPN, such as apurinic/apyrimidinic endonuclease 1 (APE1), DNA poly-
merase kappa, XPA, poly (ADP-ribose) polymerase 1 (PARP-1), and sirtuin 2 (SIRT2) [55].
SIRT2 was recently identified as a mediator of NER-dependent neuronal protection against
CIPN. Because NER is one of the primary mechanisms for intrastrand crosslink repair,
targeting mediators of this pathway could allow for treatment and prevention of cisplatin
toxicity [55].

Additionally, many of the proteins involved in NER are associated with cisplatin
resistance and sensitivity. These implicated proteins are within both GG-NER and TC-
NER. XPC is important in DNA damage recognition by associating with RAD23B to bind
cisplatin-induced intrastrand crosslinks and prevent proteasomal degradation. Binding of
XPC to DNA is necessary for the recruitment of TFIIH, making it the rate-limiting step of
GG-NER [58]. Studies have shown that enhanced expression of XPC increases resistance in
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many types of cancer [59–61]. Additionally, studies involving many different cancer cell
lines have shown that the overexpression of XPC leads to cisplatin resistance (Figure 2)
while knockout of the gene enhances sensitivity. However, the relationship between XPC
upregulation and resistance in cisplatin-treated tumors has not been thoroughly investi-
gated [58]. Within TFIIH are two helicases, XPB and XPD, which are vital for NER function.
XPD mutations are commonly found in many human cancers, such as bladder cancer,
which are sensitive to cisplatin treatment [58]. XPA is a scaffold protein involved in both
GG-NER and TC-NER that is essential to proper assembly of the pre-incision complex,
placing endonucleases in the right position for repair of damaged DNA. Metastatic testicu-
lar tumors with lower expression of XPA are especially sensitive to cisplatin treatment [62].
ERCC1 is an important protein for recognizing interactions between DNA and XPA and
recruiting XPF for heterodimerization. The overexpression of ERCC1 is associated with
poor response to cisplatin treatment while underexpression is associated with successful
cancer control [58] (Figure 1). Underexpression of ERCC1 has been observed in cells with
hypermethylation of the promoter sequence of the ERCC1 gene, but the prevalence of
this methylation pattern is unknown [58,63]. Knockdown studies have also shown that
depletion of both ERCC1 and XPF disrupts DNA repair from cisplatin treatment and
enhances cytotoxicity [64]. Finally, XPG is an endonuclease recruited by TFIIH. Ovarian
tumors expressing low levels of XPG have been found to be significantly more responsive
to cisplatin treatment. A significant fraction of these tumors displayed methylation within
the XPG gene promotor region, but its association with cisplatin response has not yet been
studied [58,65].

3.4. Base Excision Repair

BER repairs DNA damage not recognized through structural distortions in helical
structure. It is active during the G1 cell cycle phase and utilizes DNA glycosylases to
recognize and remove mutated bases from the DNA molecule. The glycosylases can be
monofunctional (specific for a specific nucleotide base) or bifunctional (consisting of glyco-
sylase and β-lyase activity). There are two forms of BER: the short-patch-repair pathway
involving monofunctional glycosylases and the long-patch-repair pathway involving bi-
functional glycosylases. In the short-patch-repair pathway, a monospecific glycosylase
creates an abasic site (site of DNA lacking a nucleotide base). This site is a substrate for the
endonuclease APE1, which cleaves directly 5′ and 3′ of the abasic site. POL β then fills the
gap with a single nucleotide, and LIG1 or LIG3-XCRR1 ligates the ends together. In the
long-patch-repair pathway, bifunctional glycosylases excise faulty nucleotide bases with
APE1 carrying out 3′ phosphodiesterase activity. POL 1 (in non-proliferating cells) or POL
δ/ε (in proliferating cells) synthesizes the corrected nucleotide sequence, displacing the
incorrect strand. The mutated sequence is then removed by the flap endonuclease, and the
corrected DNA molecule is ligated via LIG1 [66] (Figure 2).

The components of BER have significant implications on cisplatin treatment. Studies
have shown a relationship between cisplatin treatment and the development of idiopathic
pulmonary fibrosis (IPF), a condition characterized by accumulation of apoptosis-resistant
myofibroblasts. Investigation into this relationship showed that IPF cells treated with
cisplatin had heightened activity of XRCC1 through the hyperactivation of CK2. This
suggests that cisplatin can worsen pulmonary fibrosis in cancer patients [67]. In addition,
cytoplasmic APE1 has been shown to promote cisplatin resistance in osteosarcoma and
lung cancer cells [68,69] (Figure 2). Similarly, POLβ P242R germline mutation has been
associated with poor response to cisplatin treatment in patients with lung cancer [70]
(Figure 2). Taken together, the BER pathway plays a significant role in cisplatin resistance
and toxicity.

3.5. Mismatch Repair

MMR serves to correct erroneous base insertions from DNA replication and insertion-
deletion loops (IDLs) that occur during strand-slippage events, drastically improving the
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accuracy of DNA replication. MutSα heterodimer (MSH2/MSH6) recognizes mismatched
bases and smaller IDLs while MutSβ heterodimer (MSH2/MSH3) recognizes larger IDLs.
MutL homologs, particularly the MutLα heterodimer (MLH1/PMS2), are recruited upon
identification of a mutation. MutLα has 3’ endonuclease activity, allowing for exonuclease
1 (EXO1) to begin 3’ nick-directed degradation. EXO1 also performs 5’ excision to create a
gap in the DNA molecule. This gap is stabilized by RPA. POL δ, replication factor C (RFC),
and high mobility group box 1 protein (HMGB1), along with LIG1, synthesize and ligate
the corrected DNA strand [66] (Figure 2).

Several associations have been identified between MMR and carcinogenesis. Germline
mutations involving components of MMR are linked to the development of Lynch syn-
drome, also known as hereditary nonpolyposis colorectal cancer (HNPCC). This condition
significantly increases the risk of colorectal and endometrial cancers as well as multiple
other malignancies [71,72]. Furthermore, an association between MMR function and cis-
platin response has been established. A study assessing the relationship between MSH2
and PMS2 expression and cisplatin sensitivity showed that loss of either protein resulted
in the development of low-level resistance [73] (Figure 2). In addition, in vitro data has
shown MSH3 deficiency sensitizes human colon cancer cells to cisplatin treatment [74].
On the other hand, overexpression of MLH1 leads to enhanced cisplatin sensitivity while
the opposite effect is found with underexpression [75] (Figure 2). One study also found
that the oncogenic transcription factor FOXM1 is upregulated in cisplatin-resistant ovarian
cancer, resulting in direct transcriptional enhancement of the EXO1 gene [76] (Figure 2).

4. Predictive Markers of Cisplatin Resistance

Following completion of the International Human Genome Project, attempts to person-
alize medicine using genomic information have taken off with extraordinary enthusiasm.
The concept of precision oncology attempts to select cancer treatment for patients by utiliz-
ing diverse techniques to choose more targeted therapies. The use of biomarker testing
can help predict prognosis or even direct treatment selection based on variations in single
genes or proteins, or a genomic pattern [77]. As a result, the use of molecular predictive
markers and genomic profiling have improved the ability to predict whether patients will
benefit from various chemotherapies, including cisplatin [78].

4.1. ERCC1

ERCC1 is one of the key regulatory proteins within the NER pathway that plays a
significant role in the repair of DNA adducts and intrastrand crosslinks (ICLs) generated
by cisplatin [79]. ERCC1 overexpression is found in many different types of cisplatin-
resistant cancers, such as HNSCC, bladder, and lung cancers [19,80,81]. This makes ERCC1
an important predictive marker for cisplatin treatment. A small study found that half
of HNSCC patients with high-ERCC1 expression displayed a poor response to cisplatin
treatment leading to significantly lower OS (40%) [82]. A single-center study found that
patients with lung adenocarcinoma with high ERCC1 expression had higher tumor, nodes,
and metastases (TNM) staging and higher relative risk of death. The study not only showed
that low ERCC1 expression was associated with longer OS in all TNM stages, but it also
correlated to significantly better response to platinum-based treatment given definitively
or in an adjuvant setting [83].

4.2. MDR1, MRP1, and β-Catenin

Multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1
(MRP1), and β-catenin are proteins involved in drug efflux, a mechanism of resistance
that maintains cytosolic concentrations of chemotherapy agents below therapeutic levels.
MDR1 and MRP1 are ATP-binding cassette proteins that actively pump drug out of the
cell and are regulated by β-catenin [19]. A study found that patients with HNSCC with
high expression of MDR1 and MRP1 had significantly lower OS and worse response to
cisplatin treatment [84]. A knockdown study of β-catenin demonstrated enhanced cisplatin
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sensitivity, illustrating a relationship between drug transporters, their regulatory signaling
pathways, and cisplatin resistance and sensitivity [19,85].

4.3. c-IAP1, XIAP, Apollon, and Livin

Many proteins involved in the inhibition of apoptosis are predictive markers for
cisplatin-resistant tumors. Elevated expression of cellular inhibitor of apoptosis protein
1 (c-IAP1) is associated with lymph node metastasis, advanced disease stage, and poor
prognosis [86]. 21% of advanced stage HNSCC tissue showed high levels of X-linked
inhibitor of apoptosis (XIAP). This correlated to increased cisplatin resistance and poor
clinical outcome [87]. Elevated apollon protein and mRNA expression was also found in
HNSCC patients who had lower OS and cisplatin resistance [19,88]. It was also shown that
knockdown of livin enhances the apoptotic response in HNSCC cells following cisplatin
treatment [89]. Taken together, this evidence indicates apoptotic regulatory proteins play
a key role in resistance to cisplatin and might be able to predict whether treatment will
be successful.

4.4. EGFR/FAK/NF-kB Activation

The epidermal growth factor receptor (EGFR)/focal adhesion kinase (FAK)/nuclear
factor (NF) -kB pathways are mechanisms by which tumor cells promote proliferation,
inhibit apoptosis, and induce drug efflux protein expression. BST2, also known as Tetherin,
is one protein that inhibits apoptosis through the NF-kB pathway [19]. It is a strong
indicator of cisplatin resistance and poor prognosis based on a study of 117 patients with
locally advanced nasopharyngeal carcinoma [90]. KRAS is another protein involved in the
EGFR pathway [19]. A study showed that recurrent and/or metastatic HNSCC patients
with a specific KRAS-variant (rs61764370, KRAS-variant: TG/GG) experienced poor PFS
and marked cisplatin resistance [91].

4.5. BRCA1

BRCA1 is a human tumor suppressor protein involved in chromatin remodeling,
transcription regulation, protein ubiquitination, cell cycle checkpoint control, apoptosis,
and maintenance of genome integrity during the cellular response to DNA damage. Due
to its involvement in these functions, defects in BRCA1 are associated with impaired DSB
repair and carcinogenesis, particularly breast and ovarian cancer [92,93]. The lifetime
risk of breast cancer development in BRCA1- and BRCA2-muation carriers is 45–80%.
BRCA1-carriers have a 45–60% chance of developing ovarian cancer. Therefore, BRCA1
genetic testing has significantly improved the ability to risk stratify patients with strong
family history and allow them to pursue risk reduction strategies [93]. Because DSB repair
pathways are impaired with BRCA1 mutation, BRCA1-mutant cancers are significantly
more sensitive to cisplatin treatment. This allows BRCA1 to be a marker for positive
response to cisplatin treatment. Unfortunately, it is well established that BRCA1-mutated
cancers can develop cisplatin resistance through a secondary mutation that restores BRCA1
function [36,93]. Therefore, simply identifying a patient with BRCA1-mutation does not
necessarily indicate positive response to cisplatin treatment, nor does it indicate that the
patient will not develop resistance during treatment.

4.6. Genomic Analysis

While mutations or alterations in a single gene can aid in prediction of prognosis and
treatment resistance, genomic information can provide enough information to guide treat-
ment choices. One of the best characterized clinical applications of genomic sequencing is
in early-stage invasive breast cancer, which utilizes a 21-gene panel to assess risk of distant
recurrence, chemotherapy benefit, and safety of pursuing only hormonal therapy [94–100].
A phase III clinical trial showed that a mid-range score on the assay can effectively identify
certain patients with early-stage breast cancer that receive no benefit from chemotherapy
in terms of disease-free survival when added to adjuvant hormone therapy [101]. Another
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study used a molecular-based approach to assess whether genomic signature can be used
to identify breast cancer patients that can safely be omitted from adjuvant radiation therapy
following breast-conserving surgery (BCS) [102].

Genomic profiling continues to show promise as an aid in diagnosis, prognosis, and
guidance for treatment in a variety of cancers. These practices can be further utilized
to enhance precision medicine and tailor treatments more specifically to the patient’s
needs [103–105]. One phase II clinical trial was conducted to assess whether a genomic
predictor for platinum sensitivity can guide treatment decisions in stage IIIB/IV NSCLC
patients. The cisplatin resistance predictive model was developed through analysis of
gene expression data in conjunction with treatment response data. Advanced NSCLC
patients in the study were assigned to chemotherapy based on the genomic predictor
for platinum sensitivity. Squamous cell NSCLCs predicted to be sensitive to cisplatin
were assigned to cisplatin/gemcitabine treatment while those identified as resistant were
assigned to docetaxel/gemcitabine treatment. Patients with non-squamous NSCLC with
predicted sensitivity were assigned to cisplatin/pemetrexed treatment while those found
resistant were assigned to pemetrexed/docetaxel treatment. To validate the genomic-
based prediction model, the trial evaluated one-year PFS of both cisplatin-sensitive and
-resistant groups. Overall time to progression, quality of life, and evaluation of drug
sensitivity patterns of cisplatin and pemetrexed were also measured (ClinicalTrials.gov
Identifier: NCT00509366). However, the genomics-based predictive model was found to be
irreproducible, creating accuracy issues regarding patient assignment to the two cisplatin
cohorts and resulting in the termination of the trial. Regardless, the concept of using
genomic analysis to guide treatment remains of interest and could have significant impacts
on cancer care if these challenges were overcome. It is reasonable to believe that the use
of genomic analysis will continue to expand and will eventually help direct treatment
decisions when considering cisplatin.

5. Current Treatment Strategies and Future Perspectives

Components within each DNA repair pathway show a strong relationship with the
resolution of cisplatin-related DNA damage and could serve as targets for overcoming the
barriers to cisplatin treatment. One particularly promising approach is the use of small
molecule inhibitors to manipulate the DDR and overcome cisplatin resistance [58].

Rapidly dividing cancer cells greatly depend on DSB repair for survival. Resistance to
cisplatin and radiation often develops due to augmentation of the DSB repair pathways
while defects in these pathways confer susceptibility to treatment [106].

Ring finger protein 8 (RNF8) is a RING finger E3 ligase involved in NHEJ repair. RNF8
regulates the level of Ku80 at DSB sites, making it an essential protein in the efficiency
of NHEJ repair [107]. In fact, this protein has been shown to promote metastasis in
breast cancer and its overexpression in lung cancer enhances the epithelial-mesenchymal
transition, correlating with an increased risk of metastasis [108]. RNF8 overexpression
has also been found in cisplatin-resistant endometrial cancer (EC). A recent study showed
that RNF8 knockout significantly reduces NHEJ efficiency in chemoresistant EC. These
results were supported in a cisplatin-resistant EC mouse model demonstrating promotion
of cisplatin response by RNF8 deficiency [107]. Although in vitro and in vivo evidence
highlight RNF8 as a potential treatment target in reducing resistance, an RNF8 inhibitor
has yet to be developed and will require further investigation [107].

Targeting components of HR provides another mechanism through which cisplatin
treatment can be improved. A leiomyosarcoma genomic and transcriptomic study found
that leiomyosarcoma cells enriched with mutational signatures for defective HR demon-
strated sensitivity not only to cisplatin, but also to a class of drug call poly (ADP-ribose)
polymerase (PARP) inhibitor [109]. PARP is a key enzyme in the repair of single stranded
breaks (SSBs) and promotion of HR when DSBs are present. The role of PARP inhibitors
(PARPi) in cisplatin treatment is to inhibit PARP-dependent repair mechanisms, leading
to the accumulation of cisplatin-related DNA damage and apoptosis. PARP inhibition is
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cytotoxic to tumor cells that are deficient in HR function [110]. Olaparib is one PARPi that is
approved for the maintenance of HR-deficient high-grade serous ovarian cancer (HGSOC).
However, PARPi treatment fails to control HGSOC proficient in HR. About 20% of HR-
proficient HGSOC has overexpression of coactivator-associated arginine methyltransferase
1 (CARM1), an arginine methyltransferase oncogene involved in epigenetic regulation
and gene transcription [111,112]. CARM1 silences the expression of MAD2L2, a subunit
of the shieldin complex that is critical in determination between HR and NHEJ repair. A
study found that the use of enhancer of zeste homolog 2 (EZH2) inhibitors will increase
the expression of MAD2L2 in high-CARM1 HR-proficient HGSOC, sensitizing tumor cells
to PARPi treatment [113]. Similarly, another study showed that small molecule inhibition
of bromodomain containing 4 (BRD4), a protein involved in the facilitation of oncogene
expression, in many HR-proficient tumor cell lines sensitizes cells to PARPi treatment [114].
Moreover, PARPi have been shown to act synergistically with cisplatin and significantly
reduce the concentration needed to induce cytotoxic effects in various cancer cell lines [115].
Potential cisplatin sensitization by PARPi is supported by clinical data as well. Niraparib is
one PARPi used alongside cisplatin that improved PFS in patients with advanced ovarian
cancer. Approximately 25% of HGSOCs are defective in HR repair mechanisms, often
due to BRCA1/2 germline and somatic mutations that make treatment with PARPi and
DNA-damaging agents a suitable option [116,117]. Olaparib, niraparib, and veliparib are
involved clinical trials to assess their enhancement of cisplatin treatment [118] (Table 1).

Table 1. Clinical trials studying combination chemotherapy of inhibitors with cisplatin.

Target Inhibitor CT Identifier Other Regimen Phase Enrollment Recruitment Status

CHK1 Prexasertib NCT02555644 Cetuximab, Radiation I 70 Completed

NCT02124148
Cetuximab, G-CSF,

Pemetrexed, Fluorouracil,
LY3023414, Leucovorin

I 167 Completed

CDK4/6 Palbociclib NCT02897375 Carboplatin I 90 Recruiting
NCT03389477 Cetuximab, radiation II 29 Recruiting

PARP Olaparib NCT02308072 Radiation I 70 Active, not recruiting
NCT02882308 Durvalumab II 41 Completed
NCT01562210 Radiation I 28 Completed
NCT01296763 Irinotecan, Mitomycin-C I 18 Completed
NCT00782574 - I 56 Active, not recruiting
NCT00678132 Gemcitabine I 23 Completed
NCT02533765 - II 18 Active, not recruiting

Niraparib NCT03983226

Cisplatin/gemcitabine,
Carboplatin/taxane,

Carboplatin/gemcitabine,
Liposome

doxorubicin/carboplatin

II 96 Recruiting

Veliparib NCT01711541
Carboplatin, Fluorouracil,
Hydroxyurea, Paclitaxel,

Radiation
I, II 24 Active, not recruiting

NCT02723864 VX-970 I 53 Active, not recruiting
NCT02595905 - II 333 Active, not recruiting
NCT01104259 Vinorelbine tartrate I 50 Completed

NCT01585805 Gemcitabine, Gemcitabine
hydrochloride I 107 Active, not recruiting

NCT01281852 Paclitaxel I 37 Completed
NCT01642251 Etoposide I, II 156 Completed

NCT01711541
Carboplatin, Fluorouracil,
Hydroxyurea, Paclitaxel,

Radiation
I, II 24 Active, not recruiting

APE1 Gossypol NCT01977209 - III 204 Unknown

ATM, a protein involved in the enhancement of HR following DSB damage, is another
potential target of therapeutics [119]. Studies have shown that low expression of ATM en-
hances sensitivity to not only ATM inhibitors, but also PARPi treatment [120–123]. Several
molecules have been identified as ATM inhibitors. Two of these, AZD0156 and AZD1390
(ClinicalTrials.gov Identifier: NCT02588105, ClinicalTrials.gov Identifier: NCT03423628),
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are involved in clinical trials to assess their effectiveness in monotherapy and combination
therapy with radiation and other chemotherapeutics. While none of these trials investigate
ATM inhibitor use in cisplatin-treated cancers, the results might support future expansion
to cisplatin.

Spironolactone (SP), a mineralocorticoid and androgen receptor antagonist commonly
used in the treatment of hormonal acne, heart failure, and hypertension, is a small molecule
inhibitor that enhances the degradation of XPB [124–127]. In vitro studies demonstrated
SP inhibited NER and sensitized human ovarian and colon cancer cells to cisplatin and
oxaliplatin [124]. On the other hand, SP has been shown to decrease the removal of UV
photoproducts in skin cancers, raising concern that it could increase the risk of mutagenesis
and carcinogenesis even at low concentrations [127]. Therefore, further investigation is
needed to determine whether SP can be used to target chemoresistant cancer cells without
increasing the risk of developing additional cancers.

Other NER targets of interest include XPA and XPF. XPA is a scaffold protein necessary
for the assembly of the pre-incision complex on damaged DNA [55]. Low expression of XPA
in metastatic testicular cancer is associated with better prognosis and superior OS compared
to those with higher XPA expression [58]. Using computer-aided screening of XPA protein
structure and a library of small molecule inhibitors, 63 molecules were identified to target
the XPA DNA-binding domain [128]. Among these, X80 inhibits the binding of XPA to
single-stranded and double-stranded DNA cisplatin lesions [128]. XPA also plays an
important role in the association between ERCC1 and XPF by interacting with ERCC1 and
recruiting XPF. UCN-01 is a cell cycle checkpoint inhibitor that inhibits the interaction of
XPA with ERCC1 [129]. Two molecules have also been found to inhibit the XPF repair
endonuclease. These two molecules do not inhibit other endonucleases or the ability of
ERCC1-XPF to bind to DNA, indicating high specificity for XPF endonuclease activity [130].
A study using a lung cancer xenograft mouse model showed that combination treatment
of cisplatin and XPF inhibitor NSC16168 significantly inhibited tumor growth compared to
monotherapy with cisplatin or inhibitor [130]. While these small molecule inhibitors show
promising results in multiple studies, they have not been studied clinically. Therefore,
further investigation into NER inhibitors is necessary to truly understand their potential in
improving cisplatin treatment.

Proteins within the BER pathway have also been implicated in cisplatin resistance.
APE1 is a protein commonly elevated in NSCLC and is associated with poor PFS following
platinum-agent chemotherapy. Preclinical data identifies an APE1 inhibitor, no. 0449-
0145, which induces DNA damage and apoptosis in two NSCLC cell lines. Moreover, the
inhibitor overcame cisplatin resistance in the cell lines. In vivo studies demonstrated inhi-
bition of NSCLC progression in mice. These promising results following APE1 inhibition
prompted further investigations into various small molecule inhibitors of the protein [131].
Gossypol is an inhibitor of APE1 involved in a phase III trial (ClinicalTrials.gov Identifier:
NCT01977209) to assess its ability to improve the sensitivity of cisplatin-based chemother-
apy in NSCLC patients with high APE1 expression (Table 1). The molecule is a Bcl-2
homology 3 (BH3)-mimetic agent shown to directly interact with the Bcl-2 homology (BH)
domains of APE1, inhibiting the endonuclease’s repair activity [132]. A study consist-
ing of sixty-two advanced NSCLC patients with no previous history of platinum-based
chemotherapy showed that patients treated with gossypol along with the assigned doc-
etaxel and cisplatin treatment experienced greater PFS and OS than those in the control
group receiving placebo along with the same docetaxel and cisplatin regimen. Though
there were no significant differences in PFS, OS, and adverse events between treatment
and control groups, the addition of gossypol was well tolerated, and the results encourage
larger studies to investigate the drug’s therapeutic potential [133].

Flap endonuclease 1 (FEN1), a member of the XPG/RAD2 endonuclease family, is
another protein involved in BER whose overexpression in cancer is associated with an
aggressive phenotype and platinum-agent resistance. A pre-clinical study showed that
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the depletion of FEN1 sensitizes previously resistant epithelial ovarian cancer cells and
identified several small molecules that could be developed as FEN1 inhibitors [134].

With the growing recognition that DDR manipulation provides a successful route
for overcoming cisplatin resistance, many agents have been developed as adjuvants for
cisplatin. Cell cycle checkpoint signaling is vital for the coordination of DDR and cell
cycle. CHK1 has proven to be a clinically useful target that works in concert with ATR to
ensure G2/M cell cycle arrest during DNA repair [135]. It also stabilizes replication forks
and participates in nuclear translocation and interaction with HR proteins BRCA2 and
RAD51 [135]. Prexasertib is a CHK1 inhibitor that can be used to abrogate DNA damage
and has shown promise in the treatment of cisplatin-resistant cancers. However, tumors
can develop resistance to this drug, and investigation of the underlying mechanism is
underway [136]. Prexasertib is currently involved in a phase I clinical trial (ClinicalTrials.
gov Identifier: NCT02555644) to assess its effectiveness in combination with cisplatin to
treat locally advanced head and neck cancer (Table 1).

Inhibition of CDK4/6 has also been indicated in the treatment of cisplatin-resistant
cancers. The CDK4/6 pathway enhances cell cycle progression in a variety of cancers, such
as liposarcoma, rhabdomyosarcoma, NSCLC, glioblastoma, esophageal cancer, melanoma,
and breast cancer [137]. CDK4/6 inhibition results in the repression of HR proteins, which
might serve as a mechanism in cisplatin sensitization [138]. Palbociclib and ribociclib are
CDK4/6 inhibitors that have been evaluated in clinical trials [139]. Currently, two trials
are investigating the use of palbociclib in combination with cisplatin (Table 1). The first
is a phase I study (ClinicalTrials.gov Identifier: NCT02897375) investigating toxicity and
optimal dosing of palbociclib with cisplatin or carboplatin in patients with metastatic
solid tumors (Table 1). The second studies (ClinicalTrials.gov Identifier: NCT03389477)
patients with HPV-negative HNSCC treated with neoadjuvant palbociclib, followed by
chemoradiation and then adjuvant palbociclib (Table 1). While it is not currently being
investigated in combination with cisplatin, a phase I trial (ClinicalTrials.gov Identifier:
NCT03056833) is investigating the combination of ribociclib with carboplatin in platinum-
sensitive ovarian cancers. One study evaluated the use of palbociclib and ribociclib in
the treatment of cisplatin resistant- and sensitive-germ cell tumors (GCTs). Both agents
decreased tumor viability and promoted cell cycle arrest and apoptosis [140]. The high
sensitivity of these tumors to CDK4/6 inhibitors indicates their potential in increasing the
therapeutic index of cisplatin.

6. Conclusions

Despite remarkable advancements in cancer treatment, the challenges of chemother-
apy resistance and toxicity remain significant and continue to hinder patient survival and
quality of life. Improved understanding of the DNA repair pathways involved in cisplatin
sensitivity, resistance, and toxicity could help maximize the therapeutic index of cisplatin
and allow for better cancer control with decreased toxicity. Incorporation of preclinical
data and patient-focused predictive markers could allow for the expansion of “precision
oncology” and help guide treatment decisions based on a genomic pattern as opposed
to single markers. The development of drugs that disrupt DNA repair pathways has
significantly improved the efficacy of cisplatin in resistant cases, and further investigation
of new small molecule inhibitors might expand on this progress. Combining better patient
selection with more effective treatments could overcome some of the challenges faced by
cancer patients today and impact future outcomes.
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