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ABSTRACT: Here we first report the design of a series of bis-chelate Co(II) 5,7-
dihalo-8-quinolinol-phenanthroline derivative complexes, [Co(py)(QL1)2]
(Co1), [Co(py)(QL2)2] (Co2), [Co(Phen)(QL1)2] (Co3), [Co(Phen)(QL2)2]
(Co4), [Co(DPQ)(QL1)2]·(CH3OH)4 (Co5), [Co(DPQ)(QL2)2] (Co6),
[Co(DPPZ)(QL1)2]·CH3OH (Co7), [Co(MDP)(QL1)2]·3H2O (Co8), [Co-
(ODP)(QL1)2]·CH3OH (Co9), [Co(PPT)(QL1)2]·CH3OH (Co10), [Co-
(ClPT)(QL1)2] (Co11), [Co(dpy)(QL3)2] (Co12), [Co(mpy)(QL1)2]
(Co13), [Co(Phen)(QL4)2] (Co14), [Co(ODP)(QL4)2] (Co15), [Co(mpy)-
(QL4)2]I (Co16), [Co(ClPT)(QL4)2] (Co17), and [Co(ClPT)(QL5)2]
(Co18), with 5,7-dihalo-8-quinolinol and 2,2′-bipyridine mixed ligands. The
antitumor activity of Co1−Co18 has been evaluated against human HeLa
(cervical) cancer cells in vitro (IC50 values = 0.8 nM−11.88 μM), as well as in vivo
against HeLa xenograft tumor growth (TIR = 43.7%, p < 0.05). Importantly, Co7
exhibited high safety in vivo and was more effective in inhibiting HeLa tumor
xenograft growth (43.7%) than cisplatin (35.2%) under the same conditions (2.0 mg/kg). In contrast, the H-QL1 and DPPZ
ligands greatly enhanced the activity and selectivity of Co7 in comparison to Co1−Co6, Co8−Co18, and previously reported
cobalt(II) compounds. In addition, Co7 (0.8 nM) inhibited telomerase activity, caused G2/M phase arrest, and induced
mitochondrial dysfunction at a concentration 5662.5 times lower than Co1 (4.53 μM) in related assays. Taken together, Co7
showed low toxicity, and the combination could be a novel Co(II) antitumor compound candidate.
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Pt-based drugs were extensively used to treat a large number of
tumors in the clinic.1−10 However, cisplatin (cis-[PtCl2(NH3)2])
and its derivatives were limited by drug resistance and some
severe side effects,1114 and consequently, the Ru, Ti, Au, Co, Ir,
Os, Rh, Fe, Cu, etc., complexes have been designed and attracted
attention.16−38 In addition, cobalt has emerged as a key of
vitamin B12 (cobalamin) metabolism and its metal complexes
have been reported as DNA cleavage agents, antiviral, antifungal,
antitumor antiproliferative, antioxidant, and have shown
antimicrobial activity, such as oxoisoaporphine,15 shydroxamic
acids prodrugs,16,17 2-benzimidazole derivatives,18 acetylene-
hexacarbonyldicobalt,19 2-acetylpyridine and malonic acid
dihydrazide,20 antiulcer drug famotidine,21 sparfloxacin,23

valine-derived Schiff bases,24 N-benzoyl-N′-dialkylthiourea
derivatives,25 nonsteroidal anti-inflammatory drugs,28 non-
steroidal anti-inflammatory drug tolfenamic acid,30 2-acetoxy-
(2-propynyl)benzoate]hexacarbonyldicobalt,31 a fluorescent
coumarin,32 and tetradentate phenolate-based ligand35 cobalt-
(II/III) complexes.

Recently, many novel hydroxyquinoline metal compounds,
such as Zn, Cu, Ni, Ir, Os, Rh, Au, Co, Fe, Sn, Ru, Pt, Pd, and Ln
metal complexes,39−60 have proved to be promising anticancer
drugs in vitro and in vivo. Among them, a small amount of
copper(II) complexes of hydroxyquinolines were designed and
preliminarily identified as anticancer drugs.50−60 However, to
date, Co(II) complexes bearing 5,7-dihalo-2-methyl-8-quinoli-
nol and o-phenanthroline derivativemixed ligands have not been
reported.
To gain the mixed chelating cobalt(II) complexes with high

anticancer activity in vitro and in vivo, we first designed 18 novel
Co(II) complexes Co1−Co18 with 2,2′-bipyridine (py), 1,10-
phenanthroline (Phen), 5,7-dichloro-2-methyl-8-quinolinol (H-
QL1), dipyridoquinoxaline (DPQ), 5,7-dibromo-2-methyl-8-
quinolinol (H-QL2), dipyridophenazine (DPPZ), 5,6-dimethyl-

Received: August 3, 2019
Accepted: October 30, 2019
Published: October 30, 2019

Featured Letter

pubs.acs.org/acsmedchemlettCite This: ACS Med. Chem. Lett. 2019, 10, 1603−1608

© 2019 American Chemical Society 1603 DOI: 10.1021/acsmedchemlett.9b00356
ACS Med. Chem. Lett. 2019, 10, 1603−1608

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

pubs.acs.org/acsmedchemlett
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acsmedchemlett.9b00356
http://dx.doi.org/10.1021/acsmedchemlett.9b00356
http://pubs.acs.org/page/policy/editorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


10-phenanthroline (MDP), 4,4′-dimethoxy-2,2′-bipyridyl
(ODP), 4,7-diphenyl-10-phenanthroline (PPT), 4,7-dichloro-
1,10-phenanthroline (ClPT), 5-chloro-7-iodo-8-hydroxy-qui-
noline (H-QL3), 5,5-dimethyl-2,2-dipyridine (dpy), 5,7-diio-
do-8-hydroxyquinoline (H-QL4), 4,4′-dimethyl-2′-bipyridine
(mpy), and 5,7-dibromo-8-quinolinol (H-QL5). Additionally,
the biological properties of Co1−Co18 have been evaluated.
First, the mononuclear complexes Co1−Co18 were prepared

by CH3CN−CH3OH (3.5 mL/1.5 mL) reflux of H-QL1 (or H-
QL2, H-QL3, H-QL4, H-QL5) and py, Phen, DPQ, DPPZ,
MDP, ODP, PPT, ClPT, dpy, and mpy with cobalt(II) acetate
(2:1:1) at 80 °C for 24 h, respectively (Scheme 1). These 18 new
Co(II) complexes were structurally fully characterized (Figures
1 and S1−S45).

The Co(II) atoms in Co1−Co18 were six-coordinated and
surrounded by two deprotonated QL ligands (N∧O-ligand) and
one second ligand molecule (N∧N-ligand) showing a distorted
octahedral geometry (Figures 1 and S1−S16). In addition, a
diagram of Co1−Co18 is shown in Figures 1 and S1−S16, and
selected bond distances (Å) and angles (deg) are listed in Tables
S1−S54, and the bond lengths (Å) of Co1−Co18 remained
normal.
MTT assay was carried out to gauge the in vitro anticancer

activity ofCo1−C o18, H-QL1, H-QL2, py, Phen, DPQ, DPPZ,
MDP, ODP, PPT, ClPT, H-QL3, dpy, H-QL4, CoCl2·6H2O,
mpy, and H-QL5 using BEL-7404 (hepatocellular), Hep-G2
(hepatocellular), HeLa (cervical), MCF-7 (breast) cancer cells,
and normal HL-7702 (hepatocyte) cells. As a general
observation (Table S55), Co7 was more active (IC50 values =
0.80 nM) than the Co1−Co6, Co8−Co18, cisplatin, H-QL1,
H-QL2, py, Phen, DPQ, DPPZ, MDP, ODP, PPT, ClPT, H-
QL3, dpy, H-QL4, CoCl2·6H2O, mpy, and H-QL5 in all tested
cells, and the cytotoxicity of Co1−Co18 against HeLa cells

followed the order Co7 > Co5 > Co8 > Co11 > Co3 > Co10>
Co9 > Co13 > Co1 > Co6 > Co4> Co2 > Co12 > Co18 >
cisplatin > Co15 > Co17 > Co14 > Co16. The higher in vitro
anticancer activity forCo7may be due to the H-QL1 and DPPZ
ligands. Such observed, different antitumor effects may be due to
the electronic effect of the methyl group and the halogenated
and more extended planar ligand of H-QL1 and DPPZ.
Interestingly, Co1−Co18 showed low toxicity (IC50 > 60.0
μM) to normal HL-7702 (hepatocyte) cells. Compared with
previously reported 8-hydroxyquinoline metal complexes (IC50
≥ 1.00 nM),39−60 Co7 exhibited higher cytotoxicity against
HeLa cells (IC50 = 0.80 ± 0.21 nM).
Thus, ICP-MS assay showed that the Co(II) concentrations

of Co7 ((22.96 ± 0.15 nmol of Co)/106 cells) and Co1 ((18.06
± 0.05 nmol of Co)/106 cells) were significantly above those of
control groups and cisplatin ((4.11 ± 0.59 nmol of Pt)/106

cells),15 with Co7 (0.80 nM) showing the highest cell
accumulation of Co ((22.96 ± 0.15 nmol of Co)/106 cells)
and a high extent in HeLa nuclear fraction (Table S56). Thus,
Co7 (0.80 nM) showed higher toxicity on the HeLa (cervical)
cancer cells possibly due to its better cellular uptake.
Thus, the induction of the level of c-myc, hTERT, and thus,

telomerase in HeLa cells byCo1 (4.53 μM) andCo7 (0.80 nM)
was investigated using a TRAP-silver staining assay andWestern
blot. As shown in Figure 2, Co7 (0.80 nM) showed a more

inhibitory effect on c-myc, hTERT, and telomerase activity than
that ofCo1 (4.53 μM), suggesting thatCo1 (4.53 μM) andCo7
(0.80 nM) inhibited c-myc and hTERT, and thus, telomerase
levels were related to a variety of malignant cancers.61−65

Importantly, inhibition of telomerase in Co7 (0.80 nM)-treated
cells was 44.10%, while that caused by Co1 (4.53 μM) only
reached 7.13%.
Furthermore, a G2/M population of 22.89% was observed in

Co7 (0.80 nM)-treated cells, while the other correspondingG2/
M populations of 20.27% and 12.35% were observed in the Co1
(4.53 μM) treated and control cells (Figure 3), suggesting that
Co1 (4.53 μM) and Co7 (0.80 nM) caused G2/M cycle arrest.
In addition, Co7 (0.80 nM) and Co1 (4.53 μM) could inhibit
the expression of cyclin B1 and CDK1 in HeLa (cervical) cells
(Figure S46), mainly due to the G2/M phase arrest (Figure 3)
that they cause and their ability to inhibit telomerase.66−68

Further, immunofluorescence (Figure S47) and Western blot
assays (Figure S46) were carried out. Clearly, Co7 (0.80 nM)
and Co1 (4.53 μM) could up-regulate the H2A.X and cleaved-

Scheme 1. General Synthetic Pathway for Co1−Co18

Figure 1. Crystal structures of Co1 and Co7. Figure 2. Level of telomerase (A) and related factors (B,C) in HeLa
cells induced by Co1 (4.53 μM) and Co7 (0.80 nM) at 24 h.
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PARP levels, indicating thatCo7 (0.80 nM) andCo1 (4.53 μM)
remarkably induced DNA damage (Figures S46 and S47) and
caused G2/M phase arrest following the order of Co7 > Co1.
In addition, Co7 (0.80 nM) mainly accumulated in a nuclear

fraction (Table S56) but also was distributed in the
mitochondria. Thus, Co7 (0.80 nM) and Co1 (4.53 μM)
caused obviously up-regulated reactive oxygen species (ROS,
Figure S48), intracellular [Ca2+] (Figure 4), and caspase-3/9

levels (Figure S49 and S50), and down-regulated mitochondrial
membrane potential (ΔΨm) (Figure S51) in HeLa cells,
illustrating that the ΔΨm, ROS generation, intracellular [Ca2+],
and caspase-3/9 played a key role in cancer mitochondrial
function damage and apoptosis.15,69−72

Therefore, to clarify the antimigration effects of Co7 (0.80
nM) andCo1 (4.53 μM) inHeLa cells (Figure 5a−d), the trans-
well migration assay was carried out. It was found thatCo7 (0.80
nM) could significantly induce cell migration at 0.80 nM than
that of Co1 (4.53 μM).
For this, to further investigate the ability of Co7 (0.80 nM)

and Co1 (4.53 μM) to induce HeLa cell apoptotic by flow
cytometry (FCM). As shown in Figure 5e−g, the percentages of
apoptotic cells treated with Co7 (0.80 nM) and Co1 (4.53 μM)
were 95.68% and 34.42%, respectively, suggesting that Co
complexes could cause cell death at higher rates than other 8-
quinolinate metal complexes.39−60

Furthermore, treatment of HeLa xenografts by Co7 (2.0 mg/
kg/q2d) was related to significant reduction (TIR = 43.7%, p <
0.05) in tumor growth (Figure 6 and Tables S57−S59), which
represents approximately 1.3-fold reduction compared with
cisplatin-treated groups (IR = 35.2 ± 5.8%, p <
0.05).51,55,56,72−74 In addition, Co7 (2.0 mg/kg/q2d)-treated
mice displayed no obvious signs of toxicity (Figure 6 and Tables
S57−S59) as indicated by a relatively stable mouse body weight
(mend= 20.5± 1.3 g) compared to solvent control (mend= 20.7±
1.4 g).
In conclusion, we have shown Co1−Co18 complexes

containing mixed 5,7-dihalo-8-quinolinol (H-QL1−H-QL5)
and 2,2′-bipyridine derivative-based ligands as potential Co(II)
complexes with superior cytotoxicity compared with previously
reported Co compounds. MTT studies have demonstrated that
Co7 was ca. 300.6 times more cytotoxic than cisplatin (15.03 ±

1.05 μM), with IC50 values of 0.80± 0.21 nMwhile maintaining
a high extent in HeLa nuclear fraction and targeting telomerase;
thus, it was considerably less cytotoxic to normal HL-7702
(hepatocyte) cells. In addition, the antitumor activity ofCo7 has
been evaluated in vivo against HeLa xenograft growth (TIR =
43.7%, p < 0.05). It also inhibited telomerase activity, caused
G2/M phase arrest, and induced mitochondrial dysfunction at a
104.6-fold lower concentration than Co1 (4.53 μM) in related
assays. Thus, the superior cytotoxicity (IC50 = 0.80 ± 0.21 nM)
and selectivity index of Co7 in comparison to cisplatin could
make it a novel antitumor cobalt(II)-based drug.
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Detailed experiments of Co1−Co18 (PDF)

Figure 3. Co7 (0.80 nM) and Co1 (4.53 μM) caused G2/M phase
arrest for 24 h.

Figure 4. Effects of Co7 (0.80 nM) and Co1 (4.53 μM) on the [Ca2+]
level in HeLa cells at 24 h.

Figure 5.Antimigration (a−d) and apoptosis (e−g) effect ofCo7 (0.80
nM) and Co1 (4.53 μM) on HeLa cells for 24 h.

Figure 6. Tumor volume (A, mm3 ± SD) and images (B) of the HeLa
tumors of Co7 (n = 6) for 21.0 days.
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