
RESEARCH PAPER

Long non-coding RNA-small nucleolar RNA host gene 7 regulates inflammatory 
responses following spinal cord injury by regulating the microRNA-449a/TNF-α- 
induced protein 3-interacting protein 2 axis
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ABSTRACT
The current study aimed to explore the anti-inflammatory effects of long non-coding RNA-small 
nucleolar RNA host gene 7 (lncRNA-SNHG7) and its mechanism in spinal cord injury (SCI) models. SCI 
models were established both in vivo and in vitro. Reverse transcription-quantitative PCR was performed 
to determine the expression levels of lncRNA-SNHG7 in SCI models. Bioinformatics analysis and dual- 
luciferase reporter assays were carried out to confirm the interaction between lncRNA-SNHG7 with 
microRNA (miR)-499a and TNF-α-induced protein 3-interacting protein 2 (TNIP2). In addition, cell 
viability, apoptosis, and the secretion of inflammatory cytokines were assessed by 3-(4,5-dimethyl- 
2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, flow cytometric analysis, and enzyme 
linked immunosorbent assay (ELISA), respectively. The results showed that lncRNA-SNHG7 was markedly 
downregulated in the SCI model group. LncRNA-SNHG7 directly bound to miR-499a, which in turn 
directly targeted TNIP2. In addition, TNIP2 was significantly decreased in SCI rats and lipopolysaccharide 
(LPS)-treated PC-12 cells. The in vitro results in PC-12 cells revealed that lncRNA-SNHG7 overexpression 
attenuated neuronal cell death and SCI-mediated inflammatory responses by regulating miR-449a 
expression. Furthermore, miR-499a knockdown inhibited LPS-induced PC-12 cell injury by targeting 
TNIP2. In conclusion, lncRNA-SNHG7 modulates the apoptosis and inflammation of PC-12 cells by 
regulating the miR-449a/TNIP2/NF-κB signaling pathway.
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Introduction

Spinal cord injury (SCI) is a serious neurological 
condition that may result in severe disorders of 
both sensory and motor neurons [1–4]. SCI is 

associated with the development of severe physical 
and psychological disorders in affected patients 
and poses a major socioeconomic burden [5]. 
The prevention, therapy, and recovery from SCI 
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have become important topics in the medical field. 
Although some progress has been made with 
respect to the pathogenesis of SCI, the exact 
mechanism remains unclear. Therefore, further 
research is urgently needed [6,7]. SCI may lead 
to complete and permanent loss of neurological 
function. Following injury, a series of pathophy
siological events may occur, including loss of 
blood supply, inflammation, and demyelination, 
thus promoting the development of an adverse 
microenvironment in the injured area, which 
affects nerve regeneration and recovery [8,9]. 
Therefore, regulating inflammation in the early 
stages of SCI is considered a key approach for 
treating SCI [9,10].

Long non-coding RNAs (lncRNAs) are a novel 
class of RNA transcripts more than 200 nucleo
tides in length and narrow protein-coding func
tions [11]. LncRNA-SNHG7, a newly identified 
oncogene [12], has been shown to participate in 
heart remodeling, liver fibrosis, osteoarthritis, and 
ischemic stroke [13–16]. However, its role in SCI 
remains largely unknown.

MicroRNAs (miRNAs/miRs) are endogenous 
non-coding RNAs with length ranging from 20– 
25 nucleotides, which regulate specific gene 
expression at the post-transcriptional level [17]. 
The expression profiles of several miRNAs are 
altered following SCI [18–21]. Studies have 
shown that miRNAs are related to the regulation 
of the expression of numerous genes in SCI. The 
expression of these genes is closely associated with 
SCI-mediated inflammatory reactions, neuronal 
necrosis, and other pathological processes [22– 
26]. Previous studies have suggested that miR- 
499a is overexpressed in multiple types of central 
nervous system injuries, including traumatic brain 
injury and pulmonary fibrosis [27,28]. However, 
the effects of miR-499a on SCI have not been fully 
investigated.

NF-κB signaling is related to the inflammatory 
process by regulating the transcription of pro- 
inflammatory genes [29]. It has been reported 
that following stimulation of cells with TNF-α 
and lipopolysaccharide (LPS), IκBα is degraded 
and NF-κB is released into the nucleus. 
Overactive NF-κB signaling has been shown to 
be associated with numerous inflammatory and 
autoimmune diseases [30]. TNF-α-induced 

protein 3-interacting protein 2 (TNIP2), also 
known as ABIN2, is a binding partner of A20 
and a negative regulator of NF-κB signaling. 
TNIP2 was shown to increase IKKα-mediated 
NF-κB activation and induce the transcription 
of NF-κB-related target genes by enhancing 
IKKα autophosphorylation and kinase activity 
[31]. Another study demonstrated that upregula
tion of TNIP2 suppressed the activation of the 
NF-κB signaling pathway, thus regulating the 
proliferation of PANC-1 cells [32].

In the present study, we hypothesized that 
lncRNA-SNHG7 affects SCI development via the 
regulation of miR-449a expression. Therefore, the 
present study was designed to examine the roles of 
lncRNA-SNHG7/miR-449a in an SCI rat model and 
an SCI cellular model, and to determine whether the 
lncRNA-SNHG7/miR-449a axis is associated with 
the occurrence and progression of SCI via regulation 
of inflammatory responses and neuronal apoptosis.

Materials and methods

Animals

Healthy adult male Sprague-Dawley (SD) rats (6– 
10 weeks old; 230–300 g; n = 40) were purchased 
from the Animal Center of the General Hospital of 
Jinan Military Area Command (Jinan, China) and 
were placed in a standard environment (24 ± 1°C, 
50–60% humidity, 12 h light/dark cycle). The rats 
were fed a standard laboratory diet and had free access 
to drinking water. This research protocol was 
approved by the Scientific Review Committee of The 
First Affiliated Hospital of Gannan Medical 
University.

Establishment of the SCI rat model

SD rats were anesthetized with 4% pentobarbital 
(30 mg/kg) via intraperitoneal injection. Following 
anesthesia, a longitudinal incision was made on 
the midline of the back to expose the paravertebral 
muscles, followed by opening and rinsing with 
normal saline. A laminectomy was performed on 
the tenth vertebra to expose the dura mater. The 
SCI model was established by striking the T10 
segment of the thoracic vertebrae with a 5 G rod 
from a height of 5.0 cm [33].
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Cell culture and LPS stimulation

PC-12 cells (cat. no. CRL-1573; ATCC) were 
grown in Dulbecco’s modified Eagle’s medium 
(DMEM; Gibco, Grand Island, NY, USA) contain
ing 10% fetal bovine serum (FBS; Gibco, Grand 
Island, NY, USA) in a humidified incubator with 
5% CO2 at 37°C. LPS induced PC-12 cell model 
has been widely used for in vitro investigation of 
SCI [34–36]. To generate the SCI in vitro model, 
PC-12 cells (106 cells/mL) were treated with 
100 ng/ml LPS for 4 h at 37°C, as previously 
described [34].

miRNA transfection

Cells were cultivated in a 6-well cell culture plate (106 

cells/well) and were then transfected with 1ng 
lncRNA-SNHG7 plasmid (GenePharma Co., Ltd., 
Shanghai, China), 1ng control plasmid, 100 nM 
miR-449a mimics (Guangzhou Ribobio Co., Ltd, 
Guangzhou, China), 100 nM mimics control 
(Guangzhou Ribobio Co., Ltd), 50 nM miR-449a 
inhibitor (Guangzhou Ribobio Co., Ltd), 50 nM con
trol inhibitor (Guangzhou Ribobio Co., Ltd), 0.2 µM 
control-small interfering RNA (control-siRNA; 
Santa Cruz Biotechnology, Dallas, TX, USA), or 
0.2 µM si-TNIP2 (Santa Cruz Biotechnology, 
Dallas, TX, USA) using Lipofectamine® 2000 (Life 
Technologies Corporation, Savant, MA, USA), 
according to the manufacturer’s instructions.

Dual-luciferase reporter analysis

TargetScan software was used to identify the poten
tial target genes of miR-449a. The analysis predicted 
that TNIP2 could be directly targeted by miR-449a. 
The interaction between miR-499a and TNIP2 was 
verified using a dual-luciferase reporter assay [37]. 
The TNIP2 3’-untranslated region encompassing the 
wild-type (WT) or mutant (MUT) miR-449a- 
binding site was synthesized by genomic PCR and 
cloned into pMIR vectors (Ambion; Thermo Fisher 
Scientific Inc., Savant, MA, USA) to construct the 
TNIP2-WT or TNIP2-MUT reporter plasmids. 
Subsequently, TNIP2-WT or TNIP2-MUT and 
miR-449a mimics or mimics control were trans
fected into 293 T cells using Lipofectamine 2000® 
(Life Technologies Corporation, Savant, MA, USA), 

according to the manufacturer’s instructions. 
Following transfection for 48 h, the luciferase repor
ter assay system (Promega, Madison, MI, USA) was 
used to assess the luciferase activity according to the 
manufacturer’s instructions. The data are displayed 
as firefly luciferase activity normalized to Renilla 
luciferase activity.

Western blot analysis

Protein expressions were determined using wes
tern blot assay in this study [38]. PC-12 cells 
(2 × 106 cells/mL) were lyzed using RIPA lysis 
buffer (Beyotime, Shanghai, China) on ice, and 
the protein concentration was measured using 
a BCA assay (Beyotime, Shanghai, China). 
Protein samples (50 µg/lane) were mixed, boiled, 
centrifuged, and resolved by 10% sodium dodecyl 
sulfate polyacrylamide gel electrophoresis (SDS- 
PAGE) and transferred to polyvinylidene difluor
ide (PVDF) membrane (Millipore Sigma, St. Louis, 
MO, USA). After incubation with 5% nonfat milk 
in phosphate buffered saline (PBS)-Tween-20 for 
1 h, the membrane was incubated with the follow
ing primary antibodies: anti-TNIP2 (1:1000; cat. 
no. ab205925), anti-phosphorylated (p)-p65 
(1:1000; cat. no. ab76302), and anti-p65 (1:1000; 
cat. no. ab16502; all from Abcam, Cambridge, MA, 
UK). The membrane was then incubated with 
a secondary antibody (1:2000; cat. no. ab7090; 
Abcam) for 1 h at room temperature. The blots 
were assessed using ECL detection reagent 
(Beyotime, Shanghai, China) and analyzed using 
Image Lab software (version 4.0; Bio-Rad 
Laboratories Inc., Hercules, CA, USA).

RT-qPCR analysis

Total cellular RNA was isolated from PC-12 cells and 
spinal cord tissues using TRIzol® reagent (Invitrogen; 
Thermo Fisher Scientific, Inc.) and reverse tran
scribed into cDNA with the PrimeScript™ RT 
Reagent Kit (TaKaRa, Beijing, China) following the 
manufacturer’s instructions. An ABI 7000 Real-Time 
PCR system (Applied Biosystems, USA) with SYBR® 
Green PCR Master Mix Kit (Takara, Beijing, China) 
was used to examine gene expression levels. Gene 
expression was quantified using the 2−ΔΔCq method 
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[39]. Primer sequences for PCR were listed as 
following:

miR-449a forward, 5′-CGCGCGTGGCAGT 
GTATTGTTA-3′;

reverse, 5′-ATCCAGTGCAGGGTCCGAGG-3′;
lncRNA-SNHG7 forward, 5′-GTGACTTCG 

CCTGTGATGGA-3′;
reverse, 5′-GGCCTCTATCTGTACCTTT 

ATTCC-3′;
p65 forward, 5′-ATGTGGAGATCATTGAGC 

AGC-3′;
reverse, 5′-CCTGGTCCTGTGTAGCCATT-3′;
TNIP2, forward 5′-CTAAAGAGGCGG 

CAGGTCCCTC-3′;
reverse, 5′-CAAGATGACCTTCCAGTGAC-3′;
GAPDH forward, 5′-CATCATCCCTGCCT 

CTACTGG-3′;
reverse, 5′-GTGGGTGTCGCTGTTGAA 

GTC-3′;
U6 S, 5′-GGAACGATACAGAGAAG 

ATTAGC-3′;
Stem-loop-R, 5′-CTCAACTGGTGTCGTGGA 

GTC-3′.

MTT assay

For the MTT assay [40], each well was supplemen
ted with 50 μL MTT reagent (cat. no. ab211091; 
Abcam, Cambridge, MA, UK). Following incuba
tion for 3 h at 37°C, the absorbance at 570 nm was 
determined using an Infinite M1000PRO Tecan 
spectrophotometer (Tecan Group Ltd.).

Flow cytometric (FCM) analysis

Following treatment, PC-12 cells were analyzed 
using a double staining apoptosis detection kit 
(Beyotime) [41]. Annexin V-fluorescein isothio
cyanate (FITC) and PI were added to the PC-12 
cell suspension and the cells were incubated for 
30 min at 37°C in the dark according to the man
ufacturer’s instructions. Finally, the apoptotic cells 
were detected using a flow cytometer (BD 
Biosciences, San Diego, CA, USA).

Detection of inflammatory factors

The secretion of IL-1β (cat. no. ab100704), and 
TNF-α (cat. no. ab100747), and IL-6 (cat. no. 

ab100712; all from Abcam, Cambridge, MA, UK) 
were measured using the corresponding ELISA 
kits according to the manufacturer’s instruc
tions [42].

Statistical analysis

Statistical analyses were conducted using SPSS 
20.0. All results are expressed as mean ± standard 
deviation from three independent experiments. 
Mean differences between groups were evaluated 
using analysis of variance and Student’s t-test. 
Statistical significance was set at P < 0.05.

Results

lncRNA-SNHG7 was downregulated, and 
miR-499a was significantly upregulated in the 
in vivo and in vitro models of SCI

First, RT-qPCR was performed to evaluate the role 
of SNHG7 in SCI. As shown in Figure 1(a, b), 
SNHG7 was significantly downregulated in the 
SCI rat model and in vitro model compared to 
the control. Previous studies revealed that miR- 
449a directly targets SNHG7, and SNHG7 nega
tively regulates miR-449a expression. Therefore, it 
was hypothesized that SNHG7 may play an impor
tant role in SCI by regulating miR-449a. We then 
determined the levels of miR-449a in the SCI rat 
and cell models and found that the levels of miR- 
499a in the in vivo and in vitro SCI models were 
higher than those in the control group (Figure 1 
(c, d)).

lncRNA-SNHG7 negatively regulates miR-499a 
expression in PC-12 cells

Next, to examine whether lncRNA-SNHG7 could 
negatively regulate miR-499a levels in PC-12 cells, 
lncRNA-SNHG7 plasmid, control plasmid, miR- 
449a mimics, mimic control, lncRNA-SNHG7 
plasmid + mimics control, or lncRNA-SNHG7 
plasmid + miR-449a mimics were transfected 
into PC-12 cells for 48 h, and gene expression 
was determined using RT-qPCR. We found that 
transfection of PC-12 cells with lncRNA-SNHG7 
plasmid significantly upregulated lncRNA-SNHG7 
expression, compared to cells transfected with the 
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control plasmid (Figure 2(a)). In addition, com
pared to the control group, the levels of miR-449a 
were notably increased in PC-12 cells following 
miR-449a mimic transfection (Figure 2(b)). As 
expected, lncRNA-SNHG7 overexpression mark
edly downregulated miR-449a in PC-12 cells, 
whereas this effect was reversed following miR- 
449a overexpression (Figure 2(c)).

miR-499a abolished the influence of 
lncRNA-SNHG7 in the in vitro SCI model

To further assess the functions of lncRNA-SNHG7 
in SCI in vitro, PC-12 cells were transfected with 
lncRNA-SNHG7 plasmid, control plasmid, 
lncRNA-SNHG7 plasmid + mimics control, or 
lncRNA-SNHG7 plasmid + miR-449a mimics for 
48 h and then treated with 100 ng/ml LPS for 4 h 

Figure 1. lncRNA-SNHG7 and miR-499a expression in rat and in vitro SCI models. Reverse transcription-quantitative PCR assay was 
carried out to determine the expression levels of (a and b) SNHG7 and (c and d) miR-449a in SCI rats and SCI in vitro cells models. 
**P < 0.01 vs. the NC group. lncRNA-SNHG7, long non-coding RNA-small nucleolar RNA host gene 7; miR-499a, microRNA-499a; SCI, 
spinal cord injury.

Figure 2. lncRNA-SNHG7 negatively regulates miR-499a expression in PC-12 cells. SNHG7 plasmid, control plasmid, miR-449a mimics, 
mimics control, lncRNA-SNHG7 plasmid + mimics control or lncRNA-SNHG7 plasmid + miR-449a mimics were transfected into PC-12 
cells for 48 h. (a-c) lncRNA-SNHG7 and miR-449a levels in different groups were determined by qRT-PCR. * P < 0.05, **P < 0.01 vs. 
control.
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at 37°C. Subsequently, MTT assay, FCM, and 
ELISA were performed to determine cell viability, 
cell apoptosis, and the secretion of IL-1β, TNF-α, 
and IL-6, respectively. As shown in Figure 3, cell 
viability was significantly attenuated (Figure 3(a)), 
cell apoptosis was elevated (Figure 3(b, c)), and the 
secretion of inflammatory factors (Figure 3(d–f)) 
was notably enhanced in the LPS treatment group 
compared to that in the control group. 
Furthermore, in comparison with the model + 
control plasmid group, lncRNA-SNHG7 overex
pression significantly enhanced cell viability, 
decreased cell apoptosis, and reduced inflamma
tory factor release. However, these effects were 
markedly abrogated following miR-449a overex
pression, suggesting that miR-499a may abolish 
the functions of lncRNA-SNHG7 in LPS-treated 
PC-12 cells.

TNIP2 directly interacts with miR-449a

To investigate the regulatory mechanism of miR- 
499a in SCI, the TargetScan bioinformatics predic
tion tool was used to predict the latent targets of 
miR-499a. Figure 4(a) illustrates the relationship 
between miR-499a and TNIP2. A dual-luciferase 
reporter assay confirmed the specific regulatory 

association between miR-449a and TNIP2. We 
found that miR-449a overexpression attenuated 
TNIP2-WT luciferase activity compared to the 
mimic control group (Figure 4(b)), revealing that 
TNIP2 directly interacts with miR-449a. Following 
confirmation of the interaction between TNIP2 
and miR-499a, we sought to examine whether the 
expression of TNIP2 was altered during SCI. 
Western blot analysis and RT-qPCR indicated 
that TNIP2 was markedly downregulated in SCI, 
compared to the control (Figure 4(c, d)). In sum
mary, our findings suggest that miR-499a is 
involved in the development of SCI by regulating 
TNIP2 expression.

miR-449a negatively regulates TNIP2 expression 
in PC-12 cells

To explore the effect of miR-499a on TNIP2 
expression in PC-12 cells, miR-449a inhibitor, 
inhibitor control, control-siRNA, si-TNIP2, miR- 
449a inhibitor + control-siRNA, or miR-449a inhi
bitor + si-TNIP2 were transfected into PC-12 cells 
for 48 h. Levels of miR-449a and TNIP2 were then 
assessed by RT-qPCR. As shown in Figure 5(a), 
miR-449a was downregulated in miR-449a inhibi
tor-transfected PC-12 cells. In addition, TNIP2 

Figure 3. miR-499a abolishes the influences of lncRNA-SNHG7 in a cell model of SCI. PC-12 cells were transfected with lncRNA- 
SNHG7 plasmid, control plasmid, lncRNA-SNHG7 plasmid + mimics control or lncRNA-SNHG7 plasmid + miR-449a mimics for 48 h 
and were then treated with 100 ng/ml lipopolysaccharide for 4 h. Cell viability, apoptosis, and the secretion of inflammatory cytokine 
were determined using MTT (a), flow cytometry analysis (b and c), and ELISA assay (d-f), respectively. * P < 0.05, **P < 0.01 vs. 
control.
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silencing notably decreased TNIP2 mRNA levels 
in PC-12 cells, compared to the control-siRNA 
transfected cells (Figure 5(b)). Furthermore, trans
fection with miR-449a inhibitor significantly 
enhanced TNIP2 mRNA expression and protein 
level in PC-12 cells, whereas this effect was 
reversed following TNIP2 knockdown (Figure 5 
(c, d)).

The miR-449a inhibitor suppressed 
LPS-stimulated PC-12 cell damage by targeting 
TNIP2

To identify the regulatory role of miR-449a in SCI, 
PC-12 cells were transfected with miR-449a inhi
bitor, inhibitor control, miR-449a inhibitor + con
trol-siRNA or miR-449a inhibitor + si-TNIP2 for 
48 h and then induced with 100 ng/ml LPS for an 
additional 4 h. Then, MTT and FCM assays were 
carried out to evaluate cell viability and apoptosis, 
respectively. The results revealed that the miR- 
449a inhibitor significantly enhanced cell growth 
(Figure 6(a)) and notably attenuated cell apoptosis 
(Figure 6(b, c)), compared to the model + inhibi
tor control group. Additionally, transfection with 
miR-449a inhibitor significantly reduced the 

secretion of inflammatory cytokines in LPS- 
induced PC-12 cells (Figure 6(d–f)). However, 
the aforementioned miR-449a inhibitor-mediated 
effects on LPS-induced PC-12 cells were reversed 
following TNIP2 knockdown.

The NF-κB pathway is related to the regulatory 
mechanism of miR-449a in SCI in vitro

Previous investigations have revealed that the NF- 
κB pathway is activated during SCI. We finally 
explored whether NF-κB pathway is involved in 
the mechanism of lncRNA-SNHG7 in SCI. In the 
present study, compared to the control, the levels 
of p-p65 (Figure 7(a)) and p-p65/p65 ratios 
(Figure 7(b)) were significantly increased in the 
model group, indicating activation of the NF-κB 
pathway. However, the mRNA expression levels of 
p65 in the control and model groups were not 
significantly different (Figure 7(c)). Further analy
sis demonstrated that the increased levels of p-p65 
(Figure 7(d)) and p-p65/p65 ratio (Figure 7(e)) 
were significantly reduced by the miR-449a inhi
bitor, whereas these changes were abolished by 
TNIP2 knockdown. No obvious changes were 
observed in the mRNA levels of p65 (Figure 7(f)).

Figure 4. TNIP2 expression in rat and in vitro SCI models. (a) A schematic of TNIP2 binding site in miR-499a 3’-UTR. (b) The 
interaction between miR-449a and TNIP2 were verified using dual-luciferase reporter assay. (c and d) qRT-PCR analysis of TNIP2 in rat 
and in vitro SCI models. * P < 0.05, **P < 0.01 vs. control.
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Discussion

SCI is widely encountered worldwide, accounting 
for > 2 million cases globally [43]. SCI poses 
a major burden on patients, their families, and 
society. Although the pathological mechanism of 
SCI has been studied extensively, the clinical appli
cation of neuroprotective and regenerative thera
pies remains limited [44]. In recent years, 
lncRNAs have become a new target as they regu
late several physiological functions and mediate 
numerous neurological diseases [45]. Emerging 
studies have confirmed that lncRNAs are involved 
in the occurrence and development of SCI [45– 
47]. In our study, the levels of lncRNA-SNHG7 

were determined in in vivo and in vitro models of 
SCI, and their function was evaluated in vitro.

LncRNA-SNHG7 was significantly downregu
lated in SCI rats and in vitro SCI models, thus 
supporting its potential role in the development 
of SCI. Previous studies demonstrated that 
lncRNA-SNHG7 directly binds to miR-449a to 
negatively regulate its expression [48,49]. The 
complex regulatory network of miRNAs can reg
ulate the expression of multiple genes by a single 
miRNA, and the function of each miRNA varies 
among different cells and even among different 
cell states [18]. The effects of several miRNAs in 
SCI have been previously reported. For instance, 
Wang et al. [50] confirmed that miR-223-3p 

Figure 5. miR-449a negatively regulates TNIP2 expression in PC-12 cells. miR-449a inhibitor, inhibitor control, control-siRNA or si- 
TNIP2 were transfected into PC-12 cells for 48 h. (a) miR-449a expression in different groups was determined using RT-qPCR. (b and 
c) TNIP2 mRNA expression in different groups was determined using RT-qPCR. (d) Western blot analysis of TNIP2 protein expression. 
* P < 0.05, **P < 0.01 vs. control.
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negatively regulates the receptor-interacting pro
tein kinase 3 necroptotic signaling cascades and 
secretion of inflammatory factors to significantly 
alleviate SCI. Additionally, Ji et al. [51] suggested 
that LPS downregulates miR-132, which in turn 
attenuates LPS-stimulated inflammatory cell 
damage by regulating TRAF6 and inhibiting the 
activation of the NF-κB and MEK/ERK signaling 
pathways. Therefore, we hypothesized that 
lncRNA-SNHG7 plays a significant role in SCI 
by regulating miR-449a. The results verified that 
miR-449a was upregulated in SCI both in vivo and 
in vitro.

Pathological changes after SCI mainly include 
primary and secondary injuries [52]. Primary 
injury is irreversible, whereas secondary injury 
mainly causes aggravation of neurological dys
function [53]. Secondary injury is reversible and 
can be adjusted, and is characterized by inflamma
tion and cell apoptosis [54]. In this study, to 
determine the functions of lncRNA-SNHG7 in 
SCI, 100 ng/ml LPS was applied for 4 h to induce 
PC-12 cells prior to use as SCI cell models. Next, 
the effect of lncRNA-SNHG7 on LPS-stimulated 

PC-12 cell damage was investigated. Our results 
showed that miR-499a abolished the protective 
role of lncRNA-SNHG7 in LPS-induced PC-12 
cells. To further explore the regulatory mechanism 
of miR-449a in SCI in vitro, the targets of miR- 
449a were identified. The results revealed that 
TNIP2 was a direct target and was negatively 
regulated by miR-449a. Furthermore, it was con
firmed that cell transfection using si-TNIP2 
reversed the functions of the miR-449a inhibitor 
in the SCI in vitro model.

TNIP2, a binding partner of A20, is a negative 
mediator of NF-κB signaling [32]. Previous reports 
have revealed that the NF-κB signaling pathway is 
activated during SCI [55]. Therefore, in the present 
study we investigated whether the NF-κB pathway is 
involved in the regulatory mechanism of miR-449a 
in an SCI model. We observed that NF-κB signaling 
was activated in LPS-stimulated PC-12 cells, 
whereas miR-449a silencing significantly blocked 
the activation of the NF-κB pathway. However, 
TNIP2 knockdown reversed these effects.

Taken together, the present study indicated that 
lncRNA-SNHG7 is involved in SCI by regulating 

Figure 6. TNIP2 silencing abolishes the effects of miR-449a inhibitor in SCI. PC-12 cells were transfected with miR-449a inhibitor, 
inhibitor control, control-siRNA or si-TNIP2 for 48 h, and treated with 100 ng/ml lipopolysaccharide for an additional 4 h. 
Subsequently, cell viability, apoptosis, and secretion of inflammatory cytokines were determined using MTT assay (a), flow cytometric 
analysis (b and c), and ELISA assay (d-f), respectively. * P < 0.05, **P < 0.01 vs. control.
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the miR-449a/TNIP2/NF-κB signaling pathway. 
However, this study did not investigate the role 
and mechanism of lncRNA-SNHG7 in primary 
neuronal inflammatory injury. This was 
a limitation of current study, and we will further 
perform this investigation in the future.

Conclusion

The results of this study suggest that lncRNA- 
SNHG7 inhibits apoptosis and inflammatory 
responses in an SCI in vitro model by regulating 
the miR-449a/TNIP2/NF-κB signaling pathway. 
Therefore, SNHG7/miR-449a may be a latent, 
effective therapeutic candidate for SCI.
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Research highlights

lncRNA-SNHG7 was downregulated, and miR-499a was sig
nificantly upregulated in the in vivo and in vitro models of 
SCI;

TNIP2 directly interacts with miR-449a;
The miR-449a inhibitor suppressed LPS-stimulated PC-12 

cell damage by targeting TNIP2.

Figure 7. NF-κB pathway activation in SCI model in vitro. PC-12 cells were transfected with miR-449a inhibitor, inhibitor control, 
control-siRNA or si-TNIP2 for 48 h, and stimulated with 100 ng/ml lipopolysaccharide for 4 h. (a) Determination of p-p65 and p65 
protein expression using western blot assay. (b) p-p65/p65 ratio. (c) RT-qPCR analysis of p65 mRNA levels. (d) Determination of 
p-p65 and p65 protein expression using western blot assay. (e) p-p65/p65 ratio. (f) p65 mRNA expression was measured using RT- 
qPCR. * P < 0.05, **P < 0.01 vs. control.
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