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Abstract
Objective To evaluate whether the initial chest X-ray (CXR) severity assessed by an AI system may have prognostic utility in
patients with COVID-19.
Methods This retrospective single-center study included adult patients presenting to the emergency department (ED) between
February 25 and April 9, 2020, with SARS-CoV-2 infection confirmed on real-time reverse transcriptase polymerase chain
reaction (RT-PCR). Initial CXRs obtained on ED presentation were evaluated by a deep learning artificial intelligence (AI)
system and compared with the Radiographic Assessment of Lung Edema (RALE) score, calculated by two experienced radiol-
ogists. Death and critical COVID-19 (admission to intensive care unit (ICU) or deaths occurring before ICU admission) were
identified as clinical outcomes. Independent predictors of adverse outcomes were evaluated by multivariate analyses.
Results Six hundred ninety-seven 697 patients were included in the study: 465 males (66.7%), median age of 62 years (IQR 52–
75).Multivariate analyses adjusting for demographics and comorbidities showed that an AI system-based score ≥ 30 on the initial
CXR was an independent predictor both for mortality (HR 2.60 (95% CI 1.69 − 3.99; p < 0.001)) and critical COVID-19 (HR
3.40 (95% CI 2.35–4.94; p < 0.001)). Other independent predictors were RALE score, older age, male sex, coronary artery
disease, COPD, and neurodegenerative disease.
Conclusion AI- and radiologist-assessed disease severity scores on CXRs obtained on ED presentation were independent and
comparable predictors of adverse outcomes in patients with COVID-19.
Trial registration ClinicalTrials.gov NCT04318366 (https://clinicaltrials.gov/ct2/show/NCT04318366).
Key Points
• AI system–based score ≥ 30 and a RALE score ≥ 12 at CXRs performed at ED presentation are independent and comparable
predictors of death and/or ICU admission in COVID-19 patients.

• Other independent predictors are older age, male sex, coronary artery disease, COPD, and neurodegenerative disease.
• The comparable performance of the AI system in relation to a radiologist-assessed score in predicting adverse outcomes may
represent a game-changer in resource-constrained settings.
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Abbreviations
AI Artificial intelligence
AUC Area-under-the-curve
COVID-19 Coronavirus disease 2019
EC Ethics committee
ED Emergency department
HR Hazard ratio
RALE Radiographic Assessment of Lung Edema

score
ROC Receiver operating characteristic curve
RT-PCR Real-time reverse transcriptase polymerase

chain reaction
SARS-CoV-2 Severe acute respiratory syndrome corona-

virus 2

Introduction

A novel coronavirus, severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), that causes the coronavirus disease
2019 (COVID-19) was first identified in December 2019 in
Wuhan, China [1].

Severe complications of COVID-19 include severe pneu-
monia, acute respiratory distress syndrome, multiple organ fail-
ure, and death [2]. Since initial detection, the virus has rapidly
spread across the world, infecting more than 14 million people
and killing over 590,000 [3].

As the COVID-19 pandemic keeps overwhelming
healthcare systems worldwide, a prompt large public health
surveillance and response program is needed. Real-time re-
verse transcriptase polymerase chain reaction (RT-PCR) re-
mains the reference standard for diagnosis, but its high false-
negative rate, limited testing capacity, and long turnaround
times hinder its effectiveness most likely contributing to the
spread of the infection within communities [4].

In this scenario, the role of imaging with chest X-ray
(CXR) and chest computed tomography (CT) may become
fundamental in quickly providing results that can guide in
terms of triage and clinical management [5].

The few currently available reports on the use of CXR for
COVID-19 diagnosis seem to point towards the fact that this
imaging modality lacks sensitivity in identifying some of the
otherwise evident findings visible on CT [6–9]. However,
during the SARS coronavirus outbreak in 2003, CXR radio-
graphic findings were found to be associated with worse clin-
ical outcomes [10–12], similar to what has been recently re-
ported in COVID-19 infection in young and middle-aged
adults [13].

In resource-constrained settings with large throughputs to
handle, such as with the COVID-19 pandemic, artificial intel-
ligence (AI) may help expedite reading times, thus becoming
an important asset in the clinical management of these pa-
tients. An AI system for the detection of COVID-19 was

recently shown to be able to identify COVID-19 pneumonia
on CXR with performance comparable to six independent
radiologists [14]. However, the role of AI on CXR as a prog-
nostic tool has not yet been evaluated in COVID-19 patients.

Taken together, the high immediate and widespread avail-
ability of CXR, the reduced risk of cross-infection and low-
cost compared with CT imaging, and the potential to become a
first-line triage tool are worth further investigation to increase
our understanding of the predictive role of radiographic fea-
tures in COVID-19 [5].

In this context, our study aims to identify and quantify
COVID-19 CXR findings, assess the relationship between
initial CXR severity and clinical outcomes, and evaluate the
use of an AI system as an initial prognostic tool in COVID-19.

Methods

Patients

This series is part of the COVID-19 Institutional clinical-
biological cohort assessing patients with COVID-19
(COVID-BioB, ClinicalTrials.gov NCT04318366) at a
1350-bed tertiary care academic hospital in Milan, Italy. The
study was approved by the ethics committee (EC) (protocol
number 34/INT/2020). All procedures were conducted in
agreement with the 1964 Helsinki declaration and its later
amendments; informed consent was collected from all patients
according to the EC guidelines.

All consecutive patients aged ≥ 18 years, admitted to the
Institution’s Emergency Department (ED) with a positive RT-
PCR nasopharyngeal swab between February 25 and April 9,
2020, were initially considered. Patients with a CXR obtained
on presentation were included in the study. Exclusion criteria
were patients who acquired infection during hospitalization,
those transferred to the institution from other hospitals or later
transferred to other hospitals, and those with positive RT-PCR
as outpatients. A complete exclusion flow diagram is provided
in Fig. 1.

Clinical data collection

All prospectively collected clinical data were retrospectively
extracted from the study’s dedicated electronic database.

The time-to-event for clinical outcomes, i.e., death, admis-
sion to intensive care unit (ICU), and discharge, was calculat-
ed from the date of hospital admission to the date of the event;
follow-up was right-censored on May 5, 2020.

Clinical outcomes categories were defined as (i) death
(primary) and (ii) critical COVID-19, which included patients
admitted to ICU and deaths occurring before ICU admission.
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Imaging data collection and evaluation

Conventional chest X-ray (CXR) images were acquired in the
posteroanterior (PA) or in the anteroposterior (AP) projection
for patients not able to stand. All AP projection images were
acquired with portable X-ray machines with patients in a su-
pine position or sitting up.

Radiographs obtained on ED presentation were reviewed
by two radiologists (F.D.C. and C.M.A.M., respectively, with
30 years and 24 years of experience in thoracic imaging);
agreement was obtained by consensus. To minimize bias, re-
viewers had no knowledge of clinical data other than COVID-
19 positivity.

The following radiographic findings were evaluated: hazy
opacities, consolidation, hilar enlargement, and pleural effu-
sion [15]. Lung opacities’ distribution was assessed and cate-
gorized as follows: peripheral/peri-hilar predominance, upper/
lower quadrant predominance, or no predominance and bilat-
eral or unilateral involvement.

The severity of lung involvement, on all baseline CXRs,
was quantified by a deep learning artificial intelligence (AI)
system (qXR v2.1 c2, Qure.ai Technologies) and compared
with a radiologist-assessed score.

qXR is a CE-certified deep learning AI system based on a
set of convolutional neural networks (CNNs) trained to detect
a number of specific abnormalities on frontal CXRs (blunting
of costophrenic angle, cardiomegaly, cavitation, consolida-
tion, fibrosis, hilar enlargement, nodules, opacities and pleural
effusion). The specific architectures that form the basic blocks
in the systems and detect individual abnormalities are versions
of residual neural networks (ResNets) with squeeze-excitation

modules with abnormality-specific modifications. The AI sys-
tem identifies normal CXRs and detects and localizes suspect
abnormalities providing results in terms of percentage of in-
volvement and, if necessary, reports the pre-defined tags.

The algorithm was trained on a set of 2.3 million CXRs
collected from different centers in different geographical loca-
tions [16]. Two different datasets (respectively consisting of
more than 89,000 and 2000 distinct CXRs) were used for
validation and another set of images for algorithm develop-
ment. A validated natural language processing algorithm iden-
tified the defined abnormalities in the original radiology re-
ports, in the largest dataset, which were considered the gold
standard. The developers report that the algorithm, using the
radiologists’ assessment as the gold standard, achieved an
area-under-the-curve (AUC) for the detection of the specific
abnormalities varying from 0.89 to 0.98; notably, AUCs of
0.95 (95% CI 0.92–0.98) for consolidation and 0.94 (95% CI
0.93–0.96) for opacities [16]. The algorithm was additionally
tuned with recent images from COVID-19-positive and
COVID-19-negative patients [17].

For the purpose of our study, the software output was per-
sonalized to only report the extent of consolidation and lung
opacities. The severity of the lung involvement was calculated
by the AI system as the percentage of pixels involved by
opacity or consolidation for each lung (cutoff 3%). The aver-
age of the two values ((percentage of right lung involvement +
percentage of left lung involvement)/2), Qure AI “score,” was
then obtained to reflect total lung involvement (minimum
score 0 = no lung involvement; maximum score 100 = com-
plete opacification/consolidation of both lungs) as described
in Fig. 2.

Fig. 1 Flow diagram of our
retrospective single-center cohort
study
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The same CXRs were then evaluated by the radiologists
using the Radiographic Assessment of Lung Edema (RALE)
score to quantify the severity of lung abnormalities [18]. Each
CXR was divided into quadrants and each quadrant was
assigned a score by a radiologist which described the (i)
extent of opacities (0–4; absence, < 25%, 25–50%, 50–
75%, and > 75% involvement) and (ii) density of opacity
(1–3; hazy, moderate, or dense). The final score (maximum
48) was obtained by summing the product of the consoli-
dation and density scores for each of the four quadrants.

Statistical analysis

Patients’ characteristics were assessed with standard descrip-
tive statistics. Frequencies presented as percentages were used
to express categorical values; median values with respective
interquartile ranges (IQR) were used for continuous variables.
Imputation for missing data was not performed.

To evaluate the sensitivity of the initial CXR, radiological
scores of > 0 were interpreted as positive.

The correlation between the two radiological scores was
assessed by Kendall’s rank correlation test.

Baseline CXR lung opacity characteristics and radiological
scores of patients with symptoms suggestive for COVID-19
for < 7 days or ≥ 7 days at ED presentation were compared
using the chi-square test and Mann-Whitney U test, respec-
tively; the cutoff at 7 days was selected as the median value.

The ability of the AI calculated total lung involvement and
the radiologist-assessed RALE score to predict mortality and
critical COVID-19 was determined by the area-under-the-
curve (AUC) of receiver operating characteristics (ROC)
curves. The optimal cutoff values were determined on the
highest Youden index value for the primary outcome
(mortality) and were used to estimate Kaplan-Meier curves

for survival and ICU-free survival, which were compared by
the log-rank test.

A Cox proportional hazard model including sex and age
(model 1) was used to evaluate the association between radio-
logical scores and clinical outcomes. A second more compre-
hensive Cox proportional hazard model (model 2) which in
addition to model 1 variables included important comorbidi-
ties, or known risk factors, was also used. Effect estimates
were reported as hazard ratios (HRs) with 95% confidence
intervals (CIs).

The correlation between the RALE or Qure AI score and
clinical signs (considered temperature and PaO2/FiO2 ratio)
were evaluated using two-tailed Pearson’s correlation or
Kendall’s tau based on the distribution of the variables.

Two-tailed tests were performed, and a p value of < 0.05
was considered statistically significant.

Statistical analyses were performed using SPSS 26 (SPSS
Inc./IBM) and SAS version 9.4.

Results

Clinical data

Six hundred and ninety-seven (697) patients were included in
the study (Table 1): 465 males (66.7%), with a median age of
62 years (IQR 52–75). The most frequent comorbidity ob-
served was hypertension (295 patients; 42.3%) followed by
diabetes (117 patients; 16.8%), coronary artery disease (86;
12.3%), chronic kidney disease (55; 7.9%), active neoplasms
(38; 5.5%), chronic obstructive pulmonary disease (COPD)
(34; 4.9%), and neurodegenerative disease (33; 4.7%).
Comorbidity data was missing for 15 patients (2.1%).

At ED presentation, the median body temperature was 37.9
°C (IQR 37.0–38.5) and median PaO2/FiO2 was 290 (IQR

Fig. 2 Examples of the AI system (qXR v2.1 c2, Qure.ai Technologies)
analysis overlay on initial CXRs of two patients in our cohort showing the
percentage of pixels involved by opacity or consolidation for each lung. a
Posteroanterior CXR of an 18-year-old male (34% right lung; 9% left

lung; Qure AI score [(34 + 9)/2] = 21.5). b Anteroposterior CXR of an
81-year-old male (70% right lung; 34% left lung; Qure AI score [(70 +
34)/2] = 52)
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214–337). Temperature and PaO2/FiO2 values were missing
for 53 patients (7.6%) and 90 patients (12.9%), respectively.
Themedian time from symptom onset was 7 days (IQR 4–10).
Symptom onset data was missing for 38 patients (5.5%).
Forty-five (45) patients (45/697, 6.5%) were negative at their
first RT-PCR swab.

At the last observation cutoff date, 492 patients (70.6%)
had been discharged (of which 104 immediately at the ED),
80 patients (11.5%) had been admitted to ICU, 72 patients
(10.3%) were still hospitalized, and a total of 133 died (overall
19.1%; 34 in ICU and 99 inward). Details are available in
Table 2.

CXR image analysis

Five hundred and ninety-four (594, 85.2%) CXRs were ac-
quired in the AP projection (supine position (n = 493) or
sitting up (n = 101); the remaining 103 (14.8%) radiographs
were acquired in the standard PA projection. With respect to
opacity types and distribution, consolidation was present in
458 patients (65.7%); 144 patients (20.7%) had hazy opacities
only; bilateral involvement was seen in 517 patients (74.2%);
and 89 patients (12.8%) had only unilateral involvement.

Opacity predominance was peripheral in 325 patients
(46.6%) and peri-hilar in 70 patients (10.0%); lower quadrant
predominance was observed in 176 patients (25.3%) while
only 46 (6.6%) had an upper quadrant predominance; 189
patients (27.1%) did not show any predominance. Hilar en-
largement was found in 150 patients (21.5%), while only 45
(6.5%) showed pleural effusion.

Median Qure AI and RALE scores for pulmonary involve-
ment were respectively 29 (IQR 11–44.5) and 6 (IQR 3–13).
Kendall’s rank test showed a linear correlation between the
two radiological scores (r = 0.630, p < 0.0001). Qure AI score
was missing for 11 patients (1.6%) due to image-transfer tech-
nical issues.

The AI system reported no involvement in 140 patients
(20.4%) while the RALE score reported negative CXRs
(RALE score = 0) in 91 patients (13.1%); therefore, the sen-
sitivities were respectively 79.6% and 86.9%. There were no
patients with a Qure AI score in the lower quartile (Q1, score <
11) and a RALE score in the upper quartile (Q4, score > 13).
There were, although, only two cases with a RALE score in
the lower quartile (0 and 3) but a Qure AI score in the upper
quartile (> 44; respectively 46 and 44.5). The first case was
due to the presence of dense breast tissue which was
interpreted by the AI system as an increased density of the
underlying lung. The second case was a patient with a large
unilateral pleural effusion that was interpreted by the AI sys-
tem as an extensive parenchymal consolidation.

Of the 45 patients with a negative first RT-PCR at ED
presentation, 8 were reported as no involvement by the AI
system and 5 were scored negative by radiologists’ assess-
ment (RALE score = 0).

TheMann-WhitneyU test showed that the two radiological
scores were significantly higher in patients with symptoms for
≥ 7 days at ED presentation comparedwith those symptomatic
for less than 7 days (p = 0.031 for Qure AI score and p = 0.014
for RALE score). Peripheral predominance was the only ra-
diographic finding significantly different between the two
groups (p = 0.001) (Table 3).

Clinical outcomes

Regarding the ability of the two scores to predict out-
comes, the optimal cutoffs identified in the ROC curves

Table 1 Characteristics at enrolment in 697 Italian patients with
COVID-19 at emergency department (ED) presentation between
February 25 and April 9, 2020

Characteristic

N 697

Age, median (IQR) 62 (52–75)

Sex, n (%)

M – 465 (66.7)

F 232 (33.3)

Days since symptoms onset, median (IQR) 7 (4–10)

Temperature °C, median (IQR) 37.9 (37.0–38.5)

PaO2/FiO2, median (IQR) 290 (214–337)

Negative RT-PCR at admission, n (%) 45 (6.5)

Comorbidities, n (%)

Hypertension 295 (42.3)

Diabetes 117 (16.8)

Coronary artery disease 86 (12.3)

Chronic kidney disease 55 (7.9)

Neoplastic disease 38 (5.5)

Chronic obstructive pulmonary disease 34 (4.9)

Neurodegenerative disease 33 (4.7)

IQR, interquartile range; RT-PCR, real-time reverse transcriptase poly-
merase chain reaction

Table 2 Clinical outcomes of 697 Italian patients with COVID-19 en-
rolled between February 25 and April 9, 2020; follow-up was right-
censored on May 5, 2020

Outcome ICU admission Total

No Yes

Discharged 474 18 492

Death 99 34 133

Still hospitalized 44 28 72

Total 617 80 697

ICU, intensive care unit
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analysis were 30 for Qure AI score (sensitivity 76.9% and
specificity 58.8%) and 12 for RALE score (sensitivity
57.9% and specificity 77.0%). For mortality, the AUCs
were 0.66 (Qure AI) and 0.67 (RALE); for critical
COVID-19, the AUCs were 0.77 (Qure AI) and 0.75
(RALE).

Kaplan-Meier curves for survival and ICU-free survival
estimated for the identified cutoffs for the two radiological
scores were significantly different (log-rank test: p < 0.0001)
(Figs. 3, 4, 5, and 6).

A Qure AI score of ≥ 30 was found to be an independent
predictor in both models used for mortality (HR 2.45 (95% CI
1.61–3.74; p < 0.001) for model 1 and HR 2.60 (95%CI 1.69–
3.99; p < 0.001) for model 2) and critical COVID-19 (HR 3.39
(95%CI 2.34–4.91; p < 0.001) for model 1 and HR 3.40 (95%

CI 2.35–4.94; p < 0.001) for model 2). A RALE score ≥ 12
was also an independent predictor in both models used for
mortality (HR 2.34 (95% CI 1.64–3.33; p < 0.001) for model
1 and HR 2.35 (95% CI 1.63–3.39; p < 0.001) for model 2)
and critical COVID-19 (HR 2.86 (95% CI 2.11–3.88;
p < 0.001) for model 1 and HR 2.87 (95% CI 2.10–3.91;
p < 0.001) for model 2).

Temperature at ED presentation was not correlated to
RALE or Qure AI score. At ED presentation, COVID-19 pa-
tients had a significant correlation between higher baseline
scores and lower PaO2/FiO2 (RALE score − 0.353;
p < 0.001 (Kendall’s tau) and Qure AI score − 0.476;
p < 0.001 (Pearson’s test)).

Full results for other independent predictors are reported in
Table 4.

Table 3 Radiological scores and
radiographic findings of CXRs at
emergency department (ED) pre-
sentation in relation to time from
symptoms onset (n = 659)

Characteristic Time from symptoms onset p value

< 7 days (n = 294) ≥ 7 days (n = 365)

Radiological score, median (IQR)

Qure AI score 25 (0–44) 31 (15–44.5) 0.031

RALE score 5 (2–12) 6 (3–13) 0.014

Type of opacity, n (%)

Consolidation 182 (61.9) 249 (68.2) 0.090

Hazy opacities 64 (21.8) 75 (20.5) 0.703

Opacities’ distribution predominance, n (%)

Peripheral 117 (39.8) 193 (52.9) 0.001

Peri-hilar 33 (11.2) 30 (8.2) 0.192

Upper quadrants 17 (5.8) 24 (6.6) 0.675

Lower quadrants 70 (23.8) 95 (26.0) 0.514

Hilar enlargement, n (%) 61 (20.7) 77 (21.1) 0.913

Pleural effusion, n (%) 24 (8.2) 19 (5.2) 0.126

IQR, interquartile range; RALE, Radiographic Assessment of Lung Edema

Fig. 3 Kaplan-Meier estimates of survival according to Qure AI score
optimal cutoff

Fig. 4 Kaplan-Meier estimates of survival according to the Radiographic
Assessment of Lung Edema (RALE) score optimal cutoff
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Discussion

Current COVID-19 radiological literature is dominated by CT
and a limited number of reports describe the role of CXRs
[6–9]. CT was proposed as a first-line investigation at the start
of this pandemic; however, this approach has some limitations
[19]. In fact, not only it increases the risk of transmission to
healthcare workers and other patients, but also the necessary
decontamination procedures required after scanning COVID-
19 patients could obviously disrupt radiological service avail-
ability in a setting where a dedicated COVID-19 CT scanner is
not available. Thus, the Fleischner Society Consensus and the
American College of Radiology caution towards this ap-
proach and the latter suggests the use of CXR to minimize
the risk of cross-infection [5, 20–22]. Keeping all this in con-
sideration, and the fact that CXR is widely available and al-
ready routinely obtained in the ED, improving our under-
standing of the role of COVID-19 CXR radiographic features
is mandatory.

In our cohort, radiographic features were consistent with
those of other reports; the distribution of lung opacities

(consolidation and hazy opacities) was typically bilateral, pe-
ripheral, and basilar with limited cases of pleural effusion [6,
8, 13].

To evaluate the ability of a deep learning AI-based system
(qXR v2.1 c2, Qure.ai Technologies) to predict adverse out-
comes in COVID-19 patients, we compared its performance
with the RALE score, a radiographic score with an excellent
inter-observer agreement that has been validated to assess the
severity and predict outcomes in ARDS patients [18].

The two scores, assessed on the initial CXRs executed at
ED presentation, were found to be independent outcome pre-
dictors in multivariate regression models including age, sex,
and comorbidities; patients with higher Qure AI (cutoff 30)
and RALE scores (cutoff 12) were more likely to become
critical and have a fatal outcome. Other independent predic-
tors of an adverse outcome were older age, male sex, coronary
artery disease, COPD, and neurodegenerative disease. A cor-
relation between higher baseline CXR scores and lower PaO2/
FiO2 was also observed. Hazard ratios of the two radiological
scores were similar and mostly higher than those of the clin-
ical risk factors. Our results confirm those of Toussie et al,
who have previously validated the use of initial CXR severity
scores as independent outcome predictors, but on a larger
population which included older patients and a longer
follow-up (at least 25 days) with a significant number of neg-
ative outcome events [13]. Lung disease severity, assessed on
the CXR at ED presentation, represents a valuable prognostic
factor, which should be taken into consideration by medical
teams in triage decisions.

In addition to this, we evaluated the use of an AI system to
predict outcomes in patients with COVID-19. The comparable
performance of the AI system with respect to a radiologist-
assessed score in predicting adverse outcomes could represent
a game-changer for resource-constrained settings as the
COVID-19 pandemic keeps spreading, especially for those
countries with a shortage of radiological expertise. The possi-
bility of having the lung disease severity rapidly assessed by
an AI system, together with patients’ clinical data, may help
medical teams identify patients at a higher risk of an adverse
outcome straight at the ED presentation and thus allocate the
limited resources more efficiently.

The main limitation of this study is the retrospective de-
sign, which can lead to observer bias. Another limitation is
that this single-center study was conducted in one of the hos-
pitals in the frontline dealing with the COVID-19 outbreak in
the Lombardy region (Italy) which put the local health system
under severe strain forcing indications for hospital access.
Presentation to EDs was instructed only for those with
moderate-severe clinical conditions while patients with mild
symptoms were instructed to remain at home. This could ex-
plain the high CXR’s sensitivity in our cohort (79.6% and
86.9% respectively for the AI system and radiologists’ assess-
ment). Furthermore, the decision to group patients in the

Fig. 5 Kaplan-Meier estimates of ICU-free survival according to the
Qure AI score optimal cutoff

Fig. 6 Kaplan-Meier estimates of ICU-free survival according to the
Radiographic Assessment of Lung Edema (RALE) score optimal cutoff
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combined outcome critical COVID-19, which included all
patients admitted in ICU (n = 80) and those who died prior
to being transferred to ICU (n = 99), may have led to an
overlap between the outcomes. Nevertheless, the scores ob-
tained on CXRs at admission were able to predict mortality of
SARS-CoV2-positive patients and can be used as repeatable,
accurate, and defined tools to stratify patients and predict out-
comes upon presentation. In addition, the results of this retro-
spective analysis have to be proven and verified prospectively
in a larger population which should include patients with mild
disease. Lastly, this study considered only the initial CXR
analysis; further studies with sequential CXRs analysis are
required to understand the disease progression in relation to
therapeutic response.

Conclusions

Our study has shown that initial CXR’s severity assessed by a
deep learning AI system may have prognostic value in
COVID-19 patients, with a performance comparable to a
radiologist-assessed score. A Qure AI score ≥ 30 or a RALE
score ≥ 12 on the CXR at ED presentation were independent
and comparable predictors of adverse outcomes. We suggest
that lung disease severity at ED presentation, as seen as
opacification on the initial CXR, should be considered in the
risk-stratification of COVID-19 patients, especially in
resource-constrained settings.
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Methodology
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• diagnostic or prognostic study
• performed at one institution

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Helmy YA, Fawzy M, Elaswad A, Sobieh A, Kenney SP, Shehata
AA (2020) The COVID-19 pandemic: a comprehensive review of
taxonomy, genetics, epidemiology, diagnosis, treatment, and con-
trol. J Clin Med 9(4):1225. https://doi.org/10.3390/jcm9041225

2. Weiss P, Murdoch DR (2020) Clinical course and mortality risk of
severe COVID-19. Lancet 395(10229):1014–1015

3. Center for Systems Science and Engineering. Coronavirus COVID-
19 global cases (2019) Available via https://gisanddata.maps.
a r c g i s . c o m / a p p s / o p s d a s h b o a r d / i n d e x . h t m l # /
bda7594740fd40299423467b48e9ecf6. Accessed 18 Jul 2020

4. Ai T, Yang Z, Hou H et al (2020) Correlation of Chest CT and RT-
PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: a
report of 1014 cases. Radiology. https://doi.org/10.1148/radiol.
2020200642

5. Rubin GD, Ryerson CJ, Haramati LB et al (2020) The role of chest
imaging in patient management during the COVID-19 pandemic: a
multinational consensus statement from the Fleischner Society.
Chest 158(1):106–116

6. Wong HYF, Lam HYS, Fong AH et al (2019) Frequency and
distribution of chest radiographic findings in COVID-19 positive
patients. Radiology. https://doi.org/10.1148/radiol.2020201160

7. Yoon SH, Lee KH, Kim JY et al (2020) Chest radiographic and CT
findings of the 2019 novel coronavirus disease (COVID-19): anal-
ysis of nine patients treated in Korea. Korean J Radiol 21(4):494–
500

8. Ng M-Y, Lee EY, Yang J et al (2020) Imaging profile of the
COVID-19 infection: radiologic findings and literature review.
Radiology Cardiothoracic Imaging. https://doi.org/10.1148/ryct.
2020200034

9. Choi H, Xialong Q, Yoon SH et al (2020) Extension of coronavirus
disease 2019 (COVID-19) on chest CT and implications for chest
radiograph interpretation. Radiology Cardiothoracic Imaging.
https://doi.org/10.1148/ryct.2020200107

10. Chau TN, Lee PO, Choi KW et al (2004) Value of initial chest
radiographs for predicting clinical outcomes in patients with severe
acute respiratory syndrome. Am J Med 117(4):249–254

1778 Eur Radiol  (2021) 31:1770–1779

https://doi.org/10.1016/j.clim.2020.108509
https://doi.org/10.1016/j.clim.2020.108509
http://clinicaltrials.gov
https://doi.org/10.1016/j.clim.2020.108509
https://doi.org/10.3390/jcm9041225
https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://doi.org/10.1148/radiol.2020200642
https://doi.org/10.1148/radiol.2020200642
https://doi.org/10.1148/radiol.2020201160
https://doi.org/10.1148/ryct.2020200034
https://doi.org/10.1148/ryct.2020200034
https://doi.org/10.1148/ryct.2020200107


11. Hui DS, Wong KT, Antonio GE et al (2004) Severe acute respira-
tory syndrome: correlation between clinical outcome and radiologic
features. Radiology 233(2):579–585

12. Antonio GE, Wong KT, Tsui EL et al (2005) Chest radiograph
scores as potential prognostic indicators in severe acute respiratory
syndrome (SARS). AJR Am J Roentgenol 184(3):734–741

13. Toussie D, Voutsinas N, Finkelstein M et al (2020) Clinical and
chest radiography features determine patient outcomes in young
and middle age adults with COVID-19. Radiology. https://doi.
org/10.1148/radiol.2020201754

14. Murphy K, Smits H, Knoops AJG et al (2020) COVID-19 on the
chest radiograph: a multi-reader evaluation of an AI system.
Radiology. https://doi.org/10.1148/radiol.2020201874

15. Hansell DM, Bankier AA, MacMahon H,McLoud TC,Muller NL,
Remy J (2008) Fleischner Society: glossary of terms for thoracic
imaging. Radiology 246(3):697–722

16. Putha P, Tadepalli M, Reddy B et al (2019) Can artificial intelli-
gence reliably report chest x-rays?: Radiologist validation of an
algorithm trained on 2.3 million x-rays. Available via arXiv:
1807.07455v2 . Accessed 18 Jul 2020

17. Re-purposing qXR for COVID-19 (2020) Qure AI notes. Available
via. https://blog.qure.ai/notes/chest-xray-AI-qxr-for-covid-19.
Accessed 20 Jul 2020

18. Warren MA, Zhao Z, Koyama T et al (2018) Severity scoring of
lung oedema on the chest radiograph is associated with clinical
outcomes in ARDS. Thorax. 73(9):840–846

19. Zu ZY, Jiang MD, Xu PP et al (2020) Coronavirus Disease 2019
(COVID-19): A Perspective from China. Radiology. https://doi.
org/10.1148/radiol.2020200490

20. (2020) ACR recommendations for the use of chest radiography and
computed tomography (CT) for suspected COVID-19 infection.
American College of Radiology Position Statements. Available
via https://www.acr.org/Advocacy-and-Economics/ACR-Position-
Statements/Recommendations-for-Chest-Radiography-and-CT-
for-Suspected-COVID19-Infection. Accessed 18 Jul 2020

21. Hope MD, Raptis CA, Shah A, Hammer MM, Henry TS (2020) A
role for CT in COVID-19? What data really tell us so far. Lancet.
https://doi.org/10.1016/S0140-6736(20)30728-5

22. Orsi MA, Oliva G, Toluian T, Valenti Pittino C, Gibelli D, Cellina
M (2020) Comment on "COVID-19 infection control protocol in-
side computed tomography suites". Jpn J Radiol 38(7):693–694

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

1779Eur Radiol  (2021) 31:1770–1779

https://doi.org/10.1148/radiol.2020201754
https://doi.org/10.1148/radiol.2020201754
https://doi.org/10.1148/radiol.2020201874
https://blog.qure.ai/notes/chest-xray-AI-qxr-for-covid-19
https://doi.org/10.1148/radiol.2020200490
https://doi.org/10.1148/radiol.2020200490
https://www.acr.org/Advocacynd-conomics/ACR-osition-tatements/Recommendationsor-hest-adiographynd-Tor-uspected-OVID19-nfection
https://www.acr.org/Advocacynd-conomics/ACR-osition-tatements/Recommendationsor-hest-adiographynd-Tor-uspected-OVID19-nfection
https://www.acr.org/Advocacynd-conomics/ACR-osition-tatements/Recommendationsor-hest-adiographynd-Tor-uspected-OVID19-nfection
https://doi.org/10.1016/S0140-6736(20)30728-5

	Initial...
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Methods
	Patients
	Clinical data collection
	Imaging data collection and evaluation
	Statistical analysis

	Results
	Clinical data
	CXR image analysis
	Clinical outcomes


	This link is https://blog.qure.ai/notes/chestray-I-xrorovid-,",
	Discussion
	Conclusions
	References


