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Abstract Histological characterization is used in clinical and research contexts as
a highly sensitive method for detecting the morphological features of disease and
abnormal gene function. Histology has recently been accepted as a phenotyping
method for the forthcoming Zebrafish Phenome Project, a large-scale community
effort to characterize the morphological, physiological, and behavioral phenotypes
resulting from the mutations in all known genes in the zebrafish genome. In support
of this project, we present a novel content-based image retrieval system for the auto-
mated annotation of images containing histological abnormalities in the developing
eye of the larval zebrafish.
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1 Introduction

The function of uncharacterized human genes can be elucidated by studying pheno-
types associated with deficiencies in homologous genes in model organisms such as
the mouse, fruit fly, and zebrafish. The zebrafish has proven to be an excellent model
organism for studying vertebrate development and human disease for a number
of reasons. Its transparent, readily accessible embryo develops ex vivo (outside
the mother’s body), and most organ systems are well differentiated by seven days
post-fertilization [27], which allows mutant phenotypes (i.e., observable traits) to be
readily identified in a relatively short amount of time compared with other vertebrate
model systems, such as the rat and mouse. In addition, its millimeter-length scale
allows whole-body phenotyping at cell resolutions, which is unique among well-
characterized vertebrate model systems (Cheng lab, unpublished).

The emerging field of phenomics, or more specifically, high-throughput phe-
nomics [23], addresses the problem of collecting, integrating, and mining phenotypic
data from genetic manipulation experiments across animal models. The Zebraf ish
Phenome Project [42], currently in the planning stages, has a goal of functionally
annotating the zebrafish genome, which presently is believed to encompass at least
20,000–25,000 genes [41], by systematically phenotyping mutants for each of these
genes. One of the key phenotyping areas proposed by researchers participating in the
Zebrafish Phenome Project is that of early development—that is, from 0 to 8 days
post-fertilization (dpf). Recognizing that conventional visual morphological defect
detection by gross observation using stereo-microscopy has limited sensitivity for
phenotype detection at the cellular level, Zebrafish Phenome Project researchers
have reached a consensus (through community meetings) that high-resolution his-
tological approaches should be used to characterize subtle cellular and tissue-level
defects that are only apparent at sub-micron resolution (see Figs. 1 and 2, respec-
tively, for examples of gross versus histological images of both normal and abnormal
zebrafish larvae).

 MUTANT

WILD-TYPE

Fig. 1 Example of gross images of wild-type (normal) and mutant zebrafish at age 5 dpf (days post
fertilization). Image source: http://web.mit.edu/hopkins/images/full/1532B-1.jpg

http://web.mit.edu/hopkins/images/full/1532B-1.jpg
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Fig. 2 Example of histological images of wild-type (normal) and mutant zebrafish at age 7 dpf.
Images taken from Penn State Zebrafish Atlas [28]; direct link to virtual slide comparison tool at
http://zfatlas.psu.edu/comparison.php?s[]=264,1,382,172&s[]=265,1,474,386

Compared to gross phenotypic characterization using stereomicroscopy, the mi-
croscopic analysis of histological samples is more expensive in terms of time and
effort. While recent technological advancements [32, 36] have enabled the largely
automatic collection of high-throughput histological data in the form of libraries
of high-resolution “virtual slides” of zebrafish larval histology [28], the annotation
and scoring of histological data has remained a manual, subjective, and relatively
low-throughput process. While useful clinically, the qualitative aspects of current
histological assessments can be associated with intra- and inter-observer variabil-
ity [5] due to variations in observer training, ability, timing, experience, and alertness.
Therefore, in order to maximize the effectiveness of histological studies as applied to
animal model systems, it is critical that some form of automatic, quantitative method
be developed for the analysis of histology images.

We have been actively researching methods in content-based image retrieval
(CBIR) and annotation with the goal of developing a fully automated system that
is not only capable of scoring defects in zebrafish histology, but is also compatible
with the high-throughput histology workflow that we have previously proposed [32]
(see Fig. 3). In 2007, we developed the first system [2] for automated segmentation,
feature extraction, and classification of zebrafish histological abnormalities, with a
pilot study focusing specifically on the larval-stage eye and gut organs, which were
chosen because of their inherent polarity and “directional” organization that, when
disrupted, results in mutant phenotypes that are relatively easy for human experts to

http://zfatlas.psu.edu/comparison.php?s[]=264,1,382,172&s[]=265,1,474,386
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Fig. 3 An overview of the high-throughput histology workflow (modified from Sabaliauskas
et al. [32])

detect (see Fig. 4 for examples of normal versus mutant eye histology). Our prototype
system proved to be a successful proof-of-concept, demonstrating that even conven-
tional approaches to image segmentation and classification had the potential not only
to distinguish normal (or “wild-type”) tissue from abnormal, but also to classify the
abnormality according to different levels of severity, yielding a “semi-quantitative”
result.

While this prototype system was comparatively slow and not necessarily designed
for high-throughput or high-resolution use, it nonetheless provided the foundation
upon which we have developed the present work, which we call SHIRAZ (System
of Histological Image Retrieval and Annotation for Zoomorphology). Presently,
SHIRAZ is designed to process high-resolution images of larval zebrafish arrays
directly at 20× magnification (presently corresponding to approximately 0.5 μm per
pixel). The current prototype system enables the automatic extraction of individual
specimens from the array (comprised of histological sections of up to 50 larval
specimens, all on a single slide), followed by extraction of the eyes, which are then
automatically annotated according to the presence of histological abnormalities.
SHIRAZ has the potential to discriminate between different types of abnormalities,
whether they be morphological phenotypes resulting from genetic mutations or
tissue artifacts that may have arisen during the high-throughput histology workflow.
The work described herein thus makes the following contributions to the biological
and multimedia retrieval research communities:

1. The first content-based image retrieval system designed to rapidly annotate both
histological phenotypes and potentially confounding artifacts;

WILD-TYPE MUTANT

Fig. 4 Example of histological images of wild-type (normal) and mutant zebrafish eyes at age 5 dpf
(days post fertilization)
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2. A novel similarity scheme for multi-label classification, based on a combination
of information-based and probabilistic approaches; and

3. A proof-of-principle demonstration of a prototype system enabling greater
phenotyping efficiency to benefit large-scale phenotyping projects, such as the
Zebrafish Phenome Project described above.

Before describing in detail the technical challenges and our proposed solutions,
however, it is prudent to briefly review here the CBIR field and its relevance to the
biological community.

2 Related work

Conventional image retrieval methods in use today, such as Yahoo! Image Search
[40], are often described as description- or text-based image retrieval systems [24].
In such systems, images in a database must be annotated manually with a series
of keywords (“metadata”) so that the images may be found in a text-based search
query. However, manual annotation is time-consuming and may ignore key fea-
tures depending on the annotator’s expertise and diligence. Context-based indexing
methods attempt to automatically assign keywords to images on the Web based
on the proximity of keywords or other textual metadata to an image filename in
the context of the document in which the image and text appear, but the success
of such an approach is limited by, in part, the accuracy (and disambiguity) of the
textual metadata themselves, which in many cases were entered manually anyway,
potentially introducing the same difficulties for retrieval precision as direct manual
annotation in a database. On the other hand, in CBIR systems, images are searched
and retrieved (and in some cases, automatically annotated) according to their visual
content [24] rather than on manually entered keywords or metadata. In general, there
are three main parts to any CBIR system: feature extraction, indexing, and retrieval.
When an image is processed, the visual features of an image—such as texture, color,
and shape—must first be extracted. These low-level features are represented by a
multidimensional index or “feature vector” and then stored in a database. Relevant
images in the database are returned as matches to a query based on some measure of
“distance” between the feature vectors of the query and database images.

The idea of using image or video content to query a database is nothing new. The
QBIC (Query By Image Content) method, introduced in 1993 by IBM [26], inspired
a number of related CBIR systems, including the SIMPLIcity system [38], which
made novel use of semantically-adaptive searching methods. When a query image
is submitted to SIMPLIcity, the image is segmented into similar regions and then
classified as either a photograph or an illustration, for example. This semantic classi-
fication thus dictates the choice of algorithm to be used for feature extraction.

In a related project, the Automatic Linguistic Indexing of Pictures (ALIP) system
[19] is used to train computers to automatically recognize and annotate images by
extracting their features and comparing them to categories of images that have previ-
ously been annotated. The demonstrated high accuracy of the ALIP system’s poten-
tial to index photographic images compelled the development of a computationally
much more efficient statistical modeling algorithm and a Web-based user interface,
ALIPR, to permit users to upload images and see the results of the annotation in real
time [20]. For details on these and other technical approaches and progress made
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in the CBIR field, the surveys by Smeulders et al. [34] (covering the pre-year 2000
period) and Datta et al. [7] (2000–2008) together provide a comprehensive review.

Computational symmetry for novel image retrieval and machine vision applications
A largely unexplored approach to image characterization and retrieval is based on
the recognition of symmetry patterns in certain images. Patterns that exhibit 1-D
symmetry and repetition are known as “frieze” patterns, and their 2-D counterparts
are known as “wallpaper” patterns. Studies involving the application of group theory
to pattern recognition show that there are only seven unique frieze symmetry
groups and only 17 unique wallpaper groups, enabling the possibility of systematic
methods for pattern characterization, even in noisy or distorted images [13]. Each
frieze pattern corresponds to particular rotational symmetry group, whether cyclic or
dihedral, as demonstrated by Lee et al. [18], who recently proposed a new algorithm
for rotational symmetry detection using a “frieze-expansion” approach, in which 2-D
images consisting of potential centers of rotational symmetry are transformed from
polar to rectangular coordinates with respect to each potential symmetry center.
The local regions of rotational symmetry are then characterized based on the frieze
groups detected in the rectangular patterns that result from frieze-expansion. Most
real-world images, however, do not immediately exhibit the type of regularity that
is easily characterized by frieze or wallpaper symmetry groups. Consequently, near-
regular texture (NRT) has been defined [22] as minor geometric, photometric, and
topological deformations from an otherwise translationally symmetric 2D wallpaper
pattern. Much progress has been made in the automated detection of NRT patterns,
whether static [17, 22] or in motion [21]. In addition, the application of computational
symmetry methods to the detection and characterization of patterns in histology
images was explored in some of our earlier work, with results promising enough to
warrant further investigation and more advanced algorithm development, including
[3, 4], and the current work.

Recent ef forts in automated histological image analysis and retrieval As noted
above, histopathological assessments may suffer from intra- and inter-observer
variability [5, 31], which has inspired the development of automated cancer diagnosis
systems that make use of advances in machine vision. Several reviews cover the
literature related to CBIR systems as applied to biomedical applications, including
a general survey by Müller et al. [25] as well as a more recent perspective by Zhou
et al. [44] on the role of semantics in medical CBIR systems. In addition, Demir and
Yener [9] offer a specialized review of cancer diagnosis systems using automated
histopathology.

In one early example of such a system, Hamilton et al. [15] used texture feature
extraction and a linear classifier to identify possible locations of dysplastic mucosa in
colorectal histology images. In another study, Zhao et al. [43] noted that classification
performance might be improved by using a “hierarchy” of classifiers. For instance,
one scheme might be used to classify a feature as gland or not-gland, and then
depending on the result, a different method would be used to further analyze
the image and extract the appropriate features. This paradigm is not unlike the
semantically-adaptive searching methods used in the SIMPLIcity method mentioned
above [38].
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The idea of retrieving histological images based on semantic content analysis was
also explored by Tang et al. [35] who used a hierarchy of “coarse” and “fine” analyz-
ers for detection of visual features and semantic labeling of the histological structures
and substructures, demonstrating the concept of associating “high-level” semantic
content and reasoning with “low-level” visual features and properties, thus laying the
groundwork for the development of histological image retrieval systems that not only
recognize features of such images, but can also produce meaningful annotations. The
concept of a hierarchical, “coarse-to-fine” multiresolution analysis was also investi-
gated by Doyle et al. [10] and by Gurcan et al. [14], who noted that such a framework
more closely emulates the histology image process used by human pathologists,
and that execution times using this approach can be reduced by an order of mag-
nitude versus single-resolution image retrieval systems.

CBIR systems for the biological community Beyond the more clinically-oriented
CBIR systems mentioned above, the scientific community has begun to em-
brace CBIR as means for the navigation and high-throughput population of biologi-
cal databases. A prime example of this effort comes from the laboratory of Eric Xing,
who developed a system [12] for querying databases of Drosophila melanogaster
(fruit fly) embryo gene expression images using multiple modes, allowing users to
query not only by gene name or keyword (as with most biological databases) but also
by directly uploading images of gene expression. The system automatically annotates
the uploaded image using a list of ranked gene expression terms and returns both
a set of similar images as well as a list of relevant genes that produce similar
expression patterns. This vastly reduces the complexity of user queries required to
find genes that match a given expression pattern (which often involves inputting a
complicated series of filtering conditions), making this is an important contribution
to bioinformatics. The fact that a gene is expressed in a given tissue, however,
does not necessarily mean that the morphology of the tissue will be affected if
the underlying gene expression is disrupted. This motivates the need to develop
CBIR systems that can be used to annotate images with histological phenotypes. The
present work, SHIRAZ, is intended to be the first such system that can do so at high-
resolution and with the potential for high-throughput. This scalability would serve
the needs of large-scale phenotyping efforts such as the Zebrafish Phenome Project.

3 Methods

3.1 Slide preparation and image preprocessing

Wild-type (i.e., free of genetic manipulation) and mutant zebrafish larvae, at ages
ranging from 2 to 5 dpf (dpf = days post-fertilization) were collected, fixed, and
embedded as described in [32, 36]. Individual slides containing up to 50 hematoxylin
and eosin (H&E)-stained larval zebrafish sections were digitally captured at 20×
magnification using an Aperio ScanScope™ slide scanner in the Penn State Zebrafish
Functional Genomics Core Imaging Facility. The resulting images are stored in the
proprietary SVS (ScanScope Virtual Slide) format. The SVS format is similar to
BigTiff or Zoomify formats in that the image files consist of several image layers, with
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each layer corresponding to a specific resolution or magnification. Generally speak-
ing, the 20× layer alone has a size of approximately 90,000 × 45,000 pixels, roughly
corresponding to a ∼150–200 MB uncompressed TIFF file, although many virtual
slides in our laboratory have also been digitized at 40× magnification, resulting in
even larger (up to ∼50 GB) file sizes (Cheng lab, unpublished).

For our proof-of-principle prototype system, we elected to train SHIRAZ to per-
form automatic phenotypic annotation of 5 dpf specimens of larval eye histology. For
training and testing purposes, a total of 176 pre-selected eye images were manually
extracted at full 20× magnification (yielding 768 × 768 single-layer RGB images in
TIFF format) using Aperio ImageScope™ software. To enable compatibility with
the Web-based SHIRAZ demo site, these images were then converted from TIFF
to 24-bit PNG (Portable Network Graphics) format using the ImageMagick mogrify
utility.

3.2 Preparation of eye images for texture feature extraction

3.2.1 Extraction of individual histological specimen images

The original 20X SVS file must be split into separate TIFF images. Here, this is
accomplished using the tif fsplit command line utility, which itself is part of the
libtif f library included with most Linux distributions. Splitting the SVS file up into
separate images allows us to perform automated extraction of individual specimens
at the lowest possible resolution, with much faster results than would be achieved by
processing the original 20X image directly.

The specimens are extracted at low resolution using a fully automated, fiduciary
marker-free lattice detection algorithm that we developed previously [3] (see Fig. 5
for a typical “before-and-after” result example). The coordinates of the lattice are
scaled up to 20X to enable extraction of individual specimen images at their original
resolution. The lattice detection algorithm proceeds in three stages; in stage 1 (Fig. 6a
and b), the rotation offset of the array image, if any, is corrected so that all specimens
are oriented horizontally. In stage 2 (Fig. 6c and d), we use the detected number of
cells in the array to divide the bounding box circumscribing the specimens into an
initial lattice, taking advantage of the upper bounds of five columns and ten rows
imposed by the histology array apparatus design. In practice, we have observed that

Fig. 5 Typical example of a histological section of a larval zebrafish array (left) and its computation-
ally detected underlying lattice structure (right)
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Fig. 6 Illustration of the array image lattice detection procedure

is it sufficient to assume that the lattice will contain ten rows, even if some rows are
partially or totally unoccupied. The number of columns in the field of view, however,
varied from 1 to 5, depending on the particular experimental question. Finally, in
stage 3 (Fig. 6e), we optimize the initial lattice by varying its height until we maximize
the symmetry of each lattice cell image about its horizontal reflection axis. The algo-
rithm pseudocode is provided as follows:

Stage 1: Global orientation correction
1 Aconvhull ← area of convex hull
2 Abox ← area of bounding box around convex hull
3 �corrected ← argmax( Aconvhull

Abox
)

Stage 2: Rigid lattice placement
4 Perform morphological closing (⊕) in vertical direction
5 ncolumns ← number of connected components after ⊕
6 nrows ← 10 (assumed)
7 Linitial ← result of dividing bounding box around foreground pixels into lattice

containing (nrowsncolumns) equally sized cells

Stage 3: Deformable lattice optimization
8 foreach grayscale cell image C in lattice L
9 Scorr ← corr

(
C, mirrorimage(C)

)

10 Lfinal ← argmax(S) for all C

The final lattice (Lfinal) is scaled up from the low resolution image to the full 20X
image to enable the full-resolution extraction of specimens; however, any rotation
correction applied to the low-resolution image must also be applied to the 20X
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image as well before the lattice can be applied. We used the VIPS image processing
libraries [37] for handling the requisite rotation transformations (using package
im_af f inei_all) and extractions of those image areas corresponding to individual
specimens (using package im_extract_area).

3.2.2 Eye extraction

After the whole-larva specimens are cropped from the source array image, the organs
of interest (here, the left and right eyes) are automatically extracted from each
specimen image. Relative to the major axis and mouth of the zebrafish larva, the
positions of the eyes are highly consistent from one fish to the next. Figure 7 indicates
the distribution of overlapping areas of zebrafish left and right eyes (at age 5 dpf) for
approximately 45 manually-labeled histological specimens. Because the positions of
the eyes are highly consistent for informative specimens, we can use the position of
the overlapping areas to crop a 768 × 768 region from each 20X larval specimen im-
age in which the eye histology is contained (assuming that the eye tissue is present in
the histological section of interest).

Subset of zebrafish images each rotated to align to
a common horizontal axis (green dashed line) with
eye regions hand-labeled (translucent yellow areas)

The intensity of the top and bottom grey regions
indicates the extent of common overlap across, re-
spectively, the right and left eye regions previously

extracted from about 45 hand-labeled images

Fig. 7 When each 5-dpf larval zebrafish image is rotated to align to a common origin point (here, the
mouth, located at the leftmost position on the midline in the above images) and also along a common
horizontal axis, we find that the positions of the eyes across all images are largely overlapping, which
allows us to use a relatively simple location-based method for extracting a 768 × 768 square region
around each eye for input to the SHIRAZ system
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Fig. 8 Labeled layers of the 5-dpf zebrafish eye. In addition, the arrow indicates the direction of
the implicit “rotational symmetry” in certain histology images such as this, where we typically find a
constant and repeating pattern of cellular layers that revolve about the lens

3.2.3 “Frieze-like” expansion of eye histology images

Upon inspection of any typical zebrafish histology image, one can observe that
certain tissue structures exhibit a certain degree of repetition or symmetry (at least in
the normal or wild-type state). One can see that the zebrafish larval retina possesses
partial rotational symmetry about the lens, as indicated in Fig. 8. The repeating
pattern implied within the retina might become more obvious (and more easily
detected computationally) if the image could be transformed from its rotationally
symmetric appearance to a more regular, linear shape, thereby reducing the pattern
complexity to only one dimension. This would facilitate the generation of methods
for detecting and characterizing the implicit symmetry patterns as well as defects and
local deviations that disrupt the pattern continuity. We refer to the transformation
of the original eye image into a rectangular shape as frieze-like expansion after the
previously mentioned algorithm (see Section 2) by Lee et al. [18] that was designed to
locate and characterize the underlying frieze (1-D) symmetry group patterns within
real-world images exhibiting local rotational symmetries.

The zebrafish eye consists of several distinct layers, including the lens, the ganglion
cell layer, the inner plexiform later, the inner nuclear layer (which itself consists of
the amacrine and bipolar cell layers), the outer plexiform layer, the photoreceptor
layer, and finally the retinal pigmented epithelium (RPE) and choroidal melanocytes
(which at this developmental stage appear together and have no clear boundary
between them) [27] (see Fig. 8). For the purposes of expanding the retina into a 1-D
frieze-like pattern, we only need to provide an outer perimeter, which will corre-
spond the top edge of the frieze-like expansion pattern, and an inner perimeter, cor-
responding to the bottom edge (see Fig. 9). Thus we need only extract the RPE and
the lens, and fortunately, they are relatively easy to identify. The RPE, by virtue of its
melanin pigmentation, is generally the darkest continuous segment of the retina, and
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a. Original eye image

b. Subset of identified line segments prior to
extraction, re-scaling to a common

length, followed by reassembly
into frieze-expanded image

c. Frieze-expanded result image

Fig. 9 Overview of frieze-like expansion of zebrafish retina. Note that because of the distortion
resulting from re-scaling the shorter line segments (generally found near the marginal zones of the
retina, on either side of the lens), we extract only the middle 50% of pixels (dashed line) from the
frieze-expanded eye image

the lens is generally the largest object near the center of the eye image whose shape
most closely approximates that of a circle. The image processing operations required
for segmentation of the lens and RPE are thus relatively straightforward, consisting
primarily of gray-level thresholding, edge detection, and shape identification based
on the ratio of the shape’s area to its perimeter (i.e., one possible measure of shape
“compactness”).

The perimeter points are used as a basis for extracting line segments of pixels
from the original eye histology image (Fig. 9a and b). Ideally, each line segment
would start at the outer perimeter and be oriented more or less perpendicular to the
tangent line at the starting point. The intersecting point on the inner perimeter would
thus be the endpoint of the line segment. However, owing to the irregular shape of
both perimeters, the line segment may not necessarily end at the desired point on the
inner perimeter; in fact, in some cases the line perpendicular to the tangent line at the
starting point may not even intersect with the inner perimeter at all. To remedy this,
the algorithm identifies a set of initial “control points” evenly spaced around the
outer perimeter (in practice, 12 control points usually provides good results). Line
segments are extracted starting from these control points and ending at the nearest
point on the inner perimeter as measured by Euclidean distance. The remaining line
segments are then extracted by interpolation between the control points. Following
extraction of all line segments, we normalize their lengths to a pre-specified number
of pixels. The normalized line segments are then rearranged as columns of the
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transformed image (Fig. 9c). Since the layers of the larval retina exhibit only partial
rotational symmetry around the lens, the resulting image will be distorted at either
end of the frieze expansion. Generally speaking, the central part of the transformed
image is most highly representative of the retina’s partial rotational symmetry around
the lens, so we perform our subsequent analysis only on this central region (we
chose the middle 50% of pixels), and ignore the more highly distorted sections at
either end of the original transformed image.

3.3 Extraction of texture features from image blocks

3.3.1 Blockwise processing

Our feature extraction process follows a block-based scheme, in which we divide the
frieze-expanded eye image into a series of 64 × 64 blocks (see Fig. 10). Although
the height of each frieze-expanded image is set at a fixed 128 pixels, the width of
the image will vary from image to image depending on the number of line segments
extracted during the frieze-like expansion process. In practice, the width typically
ranges from about 400–700 pixels.

Dividing the “parent” frieze-expanded image into smaller “child” blocks offers
several benefits over extracting features from the parent image as a whole. First,
because the local image texture properties will vary throughout the image, extracting
features from smaller blocks permits us to more precisely identify where the local tex-
ture aberrations occur. If we were to extract features from the image as a whole, it is
likely that local variations would be “masked” by the properties of the whole image,
thus making it difficult to discriminate or differentially classify two images that are
largely identical save for local texture variations.

The blockwise operation also allows us to identify local features in a regional
context. The blocks are not necessarily image patches with discrete boundaries—

Initial result of frieze expansion
(This example: 394 x 128 pixels)

Subdivision of ''parent''  image
(Green indicates block boundaries)

Exploded view following subdivision into 64 x 64  ''child''  block images

Fig. 10 Illustration of subdivision of frieze-expanded eye “parent” image into 64 × 64 “child” block
images (Selected image blocks from the subdivision of the parent image have been marked with
dotted borders to show their corresponding positions in the “exploded” view)



414 Multimed Tools Appl (2011) 51:401–440

A sample 128x128 image region
containing a texture irregularity
(here, the presence of the optic

nerve / hyaloid artery, as indicated
by the dashed circle above)

Division into non-overlapping blocks breaks up the irregularity, resulting in a
discontinuity in the representation of how texture varies across the image

Including a set of overlapping child blocks (indicated by yellow block boundaries) creates a more continuous view
of how image texture varies throughout the parent image, meaning that the additional sets of extracted texture features

will better represent irregularities (such as the optic nerve / hyaloid artery) in the context of the whole image

Fig. 11 An example to illustrate the rationale for using overlapping child block images

rather, we intend for these blocks to overlap, so that we can approximately capture
the “continuum” of local texture variation from one image region to the next, which
is particularly important when there are local texture irregularities in the parent
image (see Fig. 11). In the vertical direction, where the parent image is 128 pixels
high, we extract three 64 × 64 blocks. The top and bottom blocks do have a discrete
boundary, but the middle block now overlaps one-half of each of the top and bottom
blocks. Because the texture features extracted from the middle block will capture
the local variation about the interface between the top and bottom blocks, the
three-dimensional “vector” of features representing the three 64 × 64 blocks will be
more representative of continuous local variation in the vertical direction than one
would obtain by only extracting features from non-overlapping blocks. Conceptually,
the idea is similar to taking a “moving average” of variation along the vertical
direction, but here we are using a 64 × 64 “window” in which the “moving average”
is computed.

In the horizontal direction, a similar approach is taken, but because the width
varies from one image to the next, the number and location of the individual 64 × 64
blocks or “windows” will also vary. In other words, the image width is usually not a
multiple of 64, and so dividing up the image into non-overlapping patches will result
in a “remainder” set of pixels that is less than 64 pixels wide. Allowing for overlap
as was done in the vertical direction, where the overlapping blocks cover one-half of
each of their neighbors, would only work if the parent image width were a multiple of
32. To ensure account for all pixels in the parent image, we still allow for overlap from
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one block to the next, but the extent of overlap—in terms of the number of pixels
along the horizontal—is now a function of the total width of the parent image. To
compute both the degree of overlap and the number of “child” blocks to be extracted
in the horizontal direction while ensuring that the extent of pixel overlap is identical
for all blocks and that no pixels are left unaccounted for, we devised the following
procedure:

width ← width of frieze-expanded parent image

height ← height of frieze-expanded parent image

blocksize = f loor
(

height
2

)

β = ceil
( width

blocksize

)

α = blocksize − (blocksize×β)−width
β−1

In the above algorithm, β represents the number of blocks to be extracted, while
α represents the degree of horizontal overlap between blocks, expressed in number
of pixels. (The degree of overlap in the vertical direction is always 32, assuming that
the parent image height is always 128.) For each 64 × 64 image block, we extract a
total of 54 features, comprised of a combination of the following:

• Gray-level co-occurrence features
• Lacunarity
• Gray-level morphology features
• Markov Random Field model parameters
• Daubechies wavelet packet features

We describe each of the above five types of features in more detail below.

3.3.2 Gray-level co-occurrence features

A common method for characterizing texture in images involves descriptors derived
from an image’s gray level co-occurrence matrix, or GLCM, which is a representation
of the second-order (joint) probability of pairs of pixels having certain gray level
values. For a given pixel (i, j) which has a gray-level value m, the GLCM provides
a method of representing the frequency of pixels at some distance d from (i, j) that
have a gray-level value n. Formally, a rotationally-invariant GLCM (that is, one that
only depends on the distance (�x,�y) between pixels in a pair, and not on the angle
of the line segment connecting them) may be defined as

C(m, n,�x, �y) =
∑

i

∑

j

I
(
m − g(i, j)

)
I
(
n − g(i + �x, j + �y)

)
(1)

where C is the GLCM, g(i, j) represents the gray level value at position (i, j), �x
and �y are respectively the offset distances in the x and y directions, and the binary
indicator function I(a − b) equals 1 if a = b , but equals zero if a �= b .

The GLCM is a rich representation of the texture contained in an image, but by
itself it is large and often sparse, and thus cumbersome to work with. In practice,
one can compute a series of second-order statistics from the GLCM that provide a
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more compact representation of image texture. The five most common descriptors
computed from the GLCM and which we use in our analysis are listed below, shown
here as defined in [29] but originally derived by Haralick et al. in [16]:

• Energy:

L−1∑

m=0

L−1∑

n=0

p(m, n)2 (2)

• Entropy:

L−1∑

m=0

L−1∑

n=0

p(m, n) log p(m, n) (3)

• Contrast:

1

(L − 1)2

L−1∑

m=0

L−1∑

n=0

(m − n)2 p(m, n) (4)

• Correlation:
∑L−1

m=0

∑L−1
n=0 mnp(m, n) − μxμy

σxσy
(5)

where

μx =
L−1∑

m=0

m
L−1∑

n=0

p(m, n) μy =
L−1∑

n=0

n
L−1∑

m=0

p(m, n)

σx =
L−1∑

m=0

(m − μx)
2

L−1∑

n=0

p(m, n) σy =
L−1∑

n=0

(n − μy)
2

L−1∑

m=0

p(m, n)

• Homogeneity:

L−1∑

m=0

L−1∑

n=0

p(m, n)

1 + |m − n| (6)

In each of the above formulae, L refers to the total number of gray levels (256
for an 8-bit image), and p(m, n) is the joint probability density function derived by
normalizing the co-occurrence matrix C via division by the number of all paired pixel
occurrences, i.e.:

p(m, n) = C(m, n)

total number of paired occurrences
(7)

3.3.3 Lacunarity

To enhance the description of an image’s texture beyond the Haralick texture
features described above, we also employ a measure known as lacunarity, which is
perhaps more commonly used in geometry as a measure of fractal texture [30], but
we use it here as a means of representing the heterogeneity of image data. Mathemat-
ically, it is similar to the so-called “dispersion index” in that it depends on the ratio
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of the variance of a function divided by its mean. Lacunarity can be described by
any of the following expressions (as defined in [29]):

Ls ≡
1

NM

∑N
i=1

∑M
j=1 g(i, j)2

(
1

NM

∑N
k=1

∑M
l=1 g(k, l)

)2 − 1 (8)

La ≡ 1

NM

N∑

i=1

M∑

j=1

∣∣
∣∣

g(i, j)
(

1
NM

∑N
k=1

∑M
l=1 g(k, l)

) − 1

∣∣
∣∣ (9)

Lp ≡
(

1

NM

N∑

i=1

M∑

j=1

(
g(i, j)

(
1

NM

∑N
k=1

∑M
l=1 g(k, l)

) − 1

)p) 1
p

(10)

Respectively, Ls, La, and Lp refer to the squared, absolute, and power-mean
representations of lacunarity, while g(i, j) refers to the gray-level value of the pixel
located at (i, j). In our analysis, we extract lacunarity features for Ls, La, as well as
Lp at three arbitrarily chosen levels: p = 2, p = 4, and p = 6.

3.3.4 Gray-level morphology

In image processing, morphological operations such as dilation, erosion, opening, and
closing are often used to generate representations of the shapes of image regions,
which may then be used in the segmentation of images into regions of similar
color and/or texture. Typically, morphological operations are performed on black-
and-white or “binarized” images—that is, images that have been thresholded at a
particular gray level value such that image pixels at or above the threshold value
are re-mapped as “foreground” pixels (with a value of 1), and all other pixels are
re-mapped as “background” pixels (with a value of 0). Morphological operations are
applied to each pixel in the image in order to add or remove pixels inscribed within
in a “moving neighborhood” (known as a structuring element) centered on each pixel
in the source image. In dilation, for example, the source image is modified by placing
the structuring element over each foreground pixel and then setting all pixels within
the contained area to a value of 1. The effect is that all objects in the foreground are
expanded or “dilated,” as the name suggests. By contrast, in erosion, the foreground
objects are modified by placing the structuring element over each object pixel and
then removing or “eroding” object pixels that do not allow the structuring element to
fit within the object. For example, if we place a 3 × 3 square structuring element over
a given foreground object pixel, the resulting output image will only keep that object
pixel if all of its eight-connected neighbors are foreground pixels. If even one of its
eight-connected neighbors are background pixels (i.e., having a value of zero), then
the central object pixel is removed, or “eroded,” and will not appear in the resulting
output image.

Dilation and erosion are typically used in combination when the goal is to remove
object details that are smaller than a given size while leaving larger details alone [29].
For example, to remove spurious, “hair-like” projections from an object, we would
first erode the image to remove the spurious details, and then perform dilation on the
eroded image to restore the more “solid” portions of the image objects to their
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original sizes. The process of erosion followed by dilation is more commonly known
as opening. In contrast, we may choose to perform closing on an image if there
are spurious or otherwise undesired “gaps” within an image object. To “close” an
image, we first perform dilation on the foreground pixels to “cover up” the gaps,
and then we perform erosion on the result to restore the gap-filled objects back to
their original sizes. The success or failure of opening and closing in accomplishing the
user’s objective depends, of course, on the type and size of structuring element used.
If there are wide gaps within an object, the user would want to employ a structuring
element whose radius was wide enough to ensure gap closure, but not so wide as to
merge two or more distant objects that are unrelated (i.e., not intended to be part of
the same closed region).

Morphological operations may also be applied to the gray-level images them-
selves, without the need for thresholding or “binarization,” with the main difference
being that when placing the structuring element over the central pixel, only the cen-
tral pixel will be modified. In the output image, the central pixel takes on the value
of the maximum (if dilation) or minimum (if erosion) gray level of the pixels within
the neighborhood covered by the structuring element, while the remaining pixels
under the structuring element are ignored. This difference in the operation ensures
that the same output image is obtained regardless of how the structuring element
“moves” around the source image. In other words, if all pixels under the structuring
element were set to the value of the maximum- (or minimum-) gray value pixel,
then every time the structuring element moved to a new position, the output values
of non-central pixels covered by the structuring element in the previous position
may change. A structuring element that moves, for instance, from left-to-right will
produce a different output image than one that moves from right-to-left. By allowing
only the central pixel to be modified, the same output image will be produced
regardless of the path followed by the structuring element.

The results of applying morphological operations on a gray-level image may be
useful in characterizing the texture of the image by granulometry, using the following
method as described in [29]:

• SD = result of dilating gray level source image S using a structuring element of
radius m

• SE = result of eroding gray level source image S using a structuring element of
radius m

• N1 = sum of the pixel values of the difference image produced by subtracting SE

from SD
• N2 = sum of the pixel values of the original image S, excluding the values at

pixels that were “ignored” by the dilation and erosion operations (i.e., the pixels
around the image perimeter)

• N1/N2 = granulometry of image S

3.3.5 Markov random f ields

Markov random fields (MRFs) have been used to model image textures; some of
the earliest work in the area comes from Cross and Jain [6]. A random field, in its
most general sense, may be represented by a series of random values (such as the
outcomes of a coin tossing or other random number generation experiment) mapped
onto some n-dimensional space. In the case of two-dimensional images, n = 2, and
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the random field might consist of a set of randomly selected gray levels placed on the
two-dimensional grid.

A Markov random f ield is similar, but instead of each pixel’s gray level value
being determined by an unbiased random experiment, the gray-level value of each
pixel possesses a so-called “Markovian” property in that the gray level value is
directly dependent on or influenced by the pixels in its immediate neighborhood
(but not directly dependent on pixels outside of that neighborhood). By implicit
determination of Markov random field parameters, we may be able to model the gray
levels that constitute a particular image’s texture.

In our analysis, we use the parameters of a Gaussian MRF model as texture
features. A Gaussian MRF has the following properties:

• The value of each pixel is determined by a random sample from a Gaussian
distribution

• For a given pixel value, the parameters of the Gaussian distribution are functions
of the values of the neighboring pixels

For simplicity, the standard deviation of the Gaussian may be assumed to be
independent of the gray values of the neighbors about the central pixel (but which is
still characteristic of the Markov process), and so a general model for the Gaussian
MRF can be represented by the following probability density function:

p
(
gij|gi′ j′ , (i′, j′) ∈ Nij

) = 1√
2πσ

exp

(
−(

gij − ∑L
l=1 algi′ j′;l

)2

2σ 2

)

(11)

in which p
(
gij|gi′ j′ , (i′, j′) ∈ Nij

)
represents the probability of pixel (i, j) having gray-

level value gij given the corresponding gray-level values of the neighboring pixels,
L is the number of pixels in the neighborhood defined by Nij that influence the
pixel (i, j) in the context of the MRF, al is a MRF parameter indicating the level
of influence that a neighbor pixel has on the pixel at (i, j), and gi′ j′;l is the value
of the neighbor pixel at the position (i′, j′). Finally, the standard deviation σ is an
expression of the degree of uncertainty in the Gaussian MRF model and is also used
to characterize the random experiment performed in each location that the model
uses to assign a value to pixel (i, j) [29].

One method of inferring the parameters of a Gaussian MRF is by least-squared-
error (LSE) estimation. We follow the LSE estimation procedure outlined in [29].
If, for example, we assume a second-order Markov neighborhood in which the
neighboring pixels are immediately adjacent to the central pixel (i.e., an eight-
connected neighborhood), then the above equation becomes

p
(
gij|gi′ j′ , (i′, j′) ∈ Nij

) = 1√
2πσ

exp

(
−(

gij − ∑4
l=1 alsij;l

)2

2σ 2

)

(12)

where:

sij;1 ≡ gi−1, j + gi+1, j

sij;2 ≡ gi, j−1 + gi, j+1

sij;3 ≡ gi−1, j−1 + gi+1, j+1

sij;4 ≡ gi−1, j+1 + gi+1, j−1 (13)
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and thus five parameters must be determined implicitly: a1, a2, a3, a4, and σ . These
five parameters can thus be used as properties of the image texture modeled by
the Gaussian MRF. However, a proper solution of the model can only take place
simultaneously for those pixels that have non-overlapping neighborhoods of pixels
that influence the central value according to the model. In the case of the second-
order (eight-connected) neighborhood used here, it can be shown that an image can
be divided up into four possible sets of pixels whose influencing neighbors do not
overlap [29]. Thus, we can compute the five parameters a1, a2, a3, a4, and σ for each of
these four sets of pixels, and also take their respective means, and then use all of these
results as texture features. For the LSE-MRF texture modeling approach alone, this
yields a fairly robust 25-feature set for each 64 × 64 image block.

3.3.6 Wavelet packet features for texture characterization

More recently, wavelets have become a popular form of multiresolution representa-
tion of image texture. In the context of signal and image processing, wavelets are used
to break down a function or signal into components at multiple scales, yielding insight
not only into an image’s frequency characteristics, but its spatial characteristics as
well [11].

In practice, the multiresolution analysis is performed by applying low- and high-
pass filters along the vertical and horizontal axes of a full-resolution image (a
low-pass filter passes lower-frequency signals and reduces higher-frequency signal
amplitudes, while a high-pass filter does the opposite). This results in a “splitting” or
“expansion” of the original signal into four component subbands: Low-Low (LL),
Low-High (LH), High-Low (HL), and High-High (HH). The LH, HL, and HH
subbands provide information about texture variation in the vertical, horizontal, and
diagonal directions, respectively [38]. Each of the four subbands can then be filtered
again at additional levels of resolution; the expansions from one scale to the next
can be visualized as a tree-like structure (see Fig. 12). For the purposes of texture
analysis, we wish to have as much redundant information as is computationally
feasible to provide a robust representation of image texture, and so it makes sense to
expand all signals into their LL, LH, HL, and HH subband components. This “full”
expansion is typically referred to as packet wavelet analysis, which stands in contrast
to tree wavelet analysis, which focuses only on the lowest frequency subbands and
thus is useful for compressing an image into a form where it can be reconstructed
from the minimum number of bits [29]. Because we are interested here in the
characterization of image texture and not on the compression of image file size, we
use the packet wavelet approach in our analysis. Further, rather than always choosing
the lowest-frequency channels for signal expansion at each scale, we preferentially
choose the subband with the highest “energy,” which is computed by taking the
summation of the squares of the gray level values of the pixels making up each sub-
band image. The “energies” at each level are thus used as features for describing the
texture of the original image.

A number of filters have been developed for wavelet analysis, each having
different properties that result in a trade-off between computation time and the
ability to capture local texture variation at longer resolutions. The Daubechies-4
filter [8] is a common filter that yields a good combination of localization properties
and speed of computation [38], and we thus use it here. In our tests, we found
that using the Daubechies-4 filter to expand a 64 × 64 block into four scale levels
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E = 258x104 E = 34x104 E = 7x104 E = 3x104

E = 48x104 E = 30x104 E = 2x104 E = 2x104

E = 71x103 E = 82x103 E = 7x103 E = 16x103

E = 3x103 E = 24x103 E = 6x103 E = 10x103

LL LH HL HH

LL LH HL HH

LL LH HL HH

LL LH HL HH

Frieze-expanded Parent Image

Child Block Image

Fig. 12 Example of wavelet packet expansion for a 64 × 64 “child” image block taken from a
frieze-expanded “parent” image. The expansion proceeds through four steps, and following the
initial expansion, the image corresponding to the highest-energy band is chosen for the next level
of expansion. A total of 16 energy values are thus used as texture features for each child image block

(preferentially choosing the highest-energy subband at each level) produced accept-
able results for generating a large number of texture features (i.e., the “energy” levels
of each channel at each level of expansion) in a relatively short period of time.

3.3.7 Summary of feature extraction procedure

To summarize, we extract a total of 54 texture features for each child image
block, including five GLCM-derived or “Haralick” features, five lacunarity features,
three gray-level morphology features (N1, N2, and granulometry), twenty-five LSE-
estimated MRF properties, and sixteen energy features computed by packet wavelet
analysis. In our tests, using feature extraction implementation binaries (compiled
for Linux) as provided in [29], a typical frieze-expanded “parent” image yields a
full set of texture features (54 features per 64 × 64 child block image, computed
for approximately 50–60 blocks depending, for a total of about 3,000 features per
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Frieze-expanded Parent Image

Energy     : 0.000193
Entropy    : -9.111584
Contrast   : 0.027566
Correlation: 0.000246
Homogeneity: 0.142139

Energy     : 0.000901
Entropy    : -8.156363
Contrast   : 0.010624
Correlation: 0.000633
Homogeneity: 0.207752

Ls  = 0.5615098041
La  = 0.5707129530
Lp2 = 0.7494601299
Lp4 = 1.1336537801
Lp6 = 1.4380727643

Ls  = 0.2272106847
La  = 0.4170535136
Lp2 = 0.4767532306
Lp4 = 0.5653897950
Lp6 = 0.6387818851

N1 = 287843
N2 = 128704
Granulometry =
  N1/N2 = 2.236473

N1 = 437286
N2 = 302947
Granulometry =
  N1/N2 = 1.443441

a1 = 0.541  
a2 = 0.500  
a3 = -0.269  
a4 = -0.273  
sigma = 5.556

a1 = 0.377  
a2 = 0.494  
a3 = -0.151 
a4 = -0.219  
sigma = 4.606

Energy of channel LL: 
 1002440.139385
Energy of channel LH: 
 153788.414575
Energy of channel HL: 
 37934.154173
Energy of channel HH: 
 18068.939488

Energy of channel LL: 
 2577076.417659
Energy of channel LH: 
 336179.447271
Energy of channel HL: 
 67872.096728
Energy of channel HH: 
 29334.350742

Test Block  Image #1

Haralick (GLCM-derived)
texture features

Lacunarity

Granulometry

Markov Random Field (MRF) parameters,
determined by least-squares estimation (LSE)

(for compactness, only the mean values of
each parameter are listed)

Wavelet packet energy features
(for compactness, only the first wavelet 

expansion level is shown)

Test Block  Image #2

Fig. 13 Examples of actual values of texture features extracted from two different image blocks
taken from the same frieze-expanded parent image

parent image) in about 15–20 s. Figure 13 shows an example of the values of features
extracted from two images representative of obviously different textures.

Once the 54 features are extracted across all 3 × 3 neighborhoods centered on
each of the “central blocks,” we re-shape the resulting feature matrix into a set of
nine-element vectors, with each vector corresponding to the same texture descriptor
extracted across the nine blocks making up each 3 × 3 neighborhood (see Fig. 14).
The values in each nine-element vector are sorted in ascending order, somewhat re-
sembling a “cumulative distribution” or other sigmoidal curve, though such a descrip-
tion is given for illustration purposes only. The reason for the sorting of the 9-element
vectors is to facilitate the calculation of the degree of betweenness of a “query vector”
with respect to two “boundary vectors” that are determined in the training phase,
described below in Section 3.4.2.
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For each 3 x 3
neighborhood,

extract 54 texture
features

Repeat for each

3 x 3 neighborhood

Feature 1
Feature 2
Feature 3

.

.

.
Feature 54

Bloc
k 1

Bloc
k 2

Bloc
k 3

Bloc
k 9

For each feature, sort its

unsorted sorted

.  .  .

order of increasing
element values

'

Fig. 14 Illustration describing how the feature matrix extracted from each frieze-expanded image
is reshaped into a series of sorted nine-element feature vectors, one for each feature-neighborhood
correspondence

3.4 Feature subset selection and classifier training

3.4.1 Overview of phenotype and artifact annotation concepts

One of the goals of the SHIRAZ system is that it will be able to automatically anno-
tate the phenotype observed in a larval zebrafish histology image based on its similar-
ity to classes of images that have previously been characterized. In practice, however,
most larval histology images will contain some sort of artifact that arises during the
slide preparation or digitization processes. Typical artifacts may include separation
or tearing of cell layers that result from sectioning errors, or the tissue appearance
being grossly distorted as a result of poor fixation, or that sectioning may have
occurred at a skewed angle (producing a so-called “eccentric” section) because the
larval specimen was not properly oriented during the embedding process. A trained
observer may be able to account for these artifacts when scoring a histological pheno-
type, but in certain cases, the artifact may in fact obfuscate the underlying phenotype,
and the affected section should not be used. We have, therefore, elected to allow
the annotation of larval histology images based not only on a detected phenotype,
but also on the detection of artifacts that indicate errors in histological preparation.
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For the purposes of our demonstration, we have chosen a total of ten possible labels
or “concepts” for annotation of images of the larval zebrafish retina:

1. Phenotype—absent (i.e., normal or “wild-type”)
2. Phenotype—necrosis—minimal to mild
3. Phenotype—necrosis—moderate to severe
4. Phenotype—disorganization—minimal to mild
5. Phenotype—disorganization—moderate to severe
6. Phenotype—possible hypotrophy
7. Artifact—lens detachment or similar tissue “shrinkage” artifact
8. Artifact—lens is abnormal in appearance (dark, small, “chattered,” or unde-

tectable, but can possibly indicate a malformation phenotype)
9. Artifact—specimen appears to have fixation problems

10. Optic nerve or hyaloid artery appears to be present (neither a phenotype nor an
artifact)

Examples of potential phenotype and artifact annotation labels are given in
Fig. 15. For feature selection and classification, we wanted to allow for an image to be
annotated with multiple labels when appropriate and possible. For example, a retinal
image may exhibit a normal phenotype, but the lens may happen to be detached due
to a so-called “shrinkage” artifact resulting from improper preparation of the tissue
sample.

artifact associated with poor fixation

Optic nerve/hyaloid artery present,
lens abnormal (artifact)

moderate retinal disorganization,
cellular necrosis

hypotrophy, severe
retinal disorganization

Eye is phenotypically normal;
artifacts include shrinkage (detached lens)

and possible lens ''chattering''  (artifact)

Phenotypically normal or wild-type,
no obvious artifacts

Fig. 15 Typical example images spanning the range of histological phenotypes and artifacts that
SHIRAZ is trained to recognize
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For training, we do not assign labels to the parent images as a whole, but rather to
the “child” block images—or more specifically, to each of the “central” child blocks
and their eight-connected neighbor blocks. For example, let us say that a parent
image has been “divided” into three rows of 19 blocks each (for a total of 57 blocks);
the “central” child blocks would consist of the set of 17 blocks that are not located
along the perimeter (or, put another way, the set of blocks in the middle row, with
exception of the two end blocks). Each of the 17 central blocks has eight neighbor
blocks, and these neighborhoods will overlap from one central block to the next.
Just as we allow the blocks themselves to overlap with each other to provide a more
continuous representation of image texture (as in Fig. 11), the overlapping of the
3 × 3 neighborhoods also contributes to a model of such a “texture continuum,” as
described above and illustrated in Fig. 14.

An additional benefit to extracting features nine blocks at a time in a 3 × 3 fashion
is that we can preserve, to a certain extent, the location-specific context of the image
texture information. From a biological point of view, this enables us to discriminate
between different degrees of abnormality that may only manifest themselves in local
texture aberrations. For example, an image depicting “minimal to mild necrosis”
might exhibit a texture anomaly in only one or two blocks in a nine-block neighbor-
hood, while an image of “moderate to severe necrosis” might exhibit similar texture
anomalies across a greater number of blocks.

3.4.2 Determination of “feature signatures” for each class

During the training phase, a set of classification “rules” are identified for each an-
notation concept. We refer to a given concept’s collective set of “rules” as its feature
signature, which consists of the subset of 54 features (along with the upper and lower
boundaries of the values of such features in the subset) which have been determined
to be, statistically speaking, more enriched within that concept than in the other
concepts.

For each feature � we compute the pairwise information agreement score S
between any two image neighborhoods i and j as follows:

S(i, j,�) ≡ log2
N

N∑

k=1

[ 9⋂

v=1

[
min(s�iv, s�jv) ≤ s�kv ≤ max(s�iv, s�jv)

]
i �= j

] (14)

where s refers to a single element of the sorted (in ascending order) nine-element
vector extracted for a given 3 × 3 neighborhood. The expression min(s�iv, s�jv) (or,
respectively, max(s�iv, s�jv)) means that we are taking the lesser (greater) of the two
values contributed by the feature vector for the neighborhood pair (i, j) at element
position v. Strictly speaking, the use of the intersection notation (

⋂
) would require

that all nine elements of the feature vector s�kv must lie between the min and max
“boundary vectors” defined by neighborhoods i and j, but in practice we allow for
up to two of the elements of the feature vector for neighborhood k to fall outside of
these limits (similar to the example shown in Fig. 16). N refers to the total number
of neighborhoods in the entire database.

The above formula is derived from the so-called “loss-of-function agreement
score” previously been proposed by Weirauch et al. [39] for characterizing the
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Fig. 16 Illustration of agreement test for a nine-element “query vector” (that is, corresponding to
a given 3 × 3 child block neighborhood, as in Fig. 12) and its degree of match to the statistically
determined feature signature corresponding to that texture feature (see Sections 3.4.2 and 3.4.3). In
practice, we allow for up to two elements to be outside the boundaries before the query vector fails
the “betweenness test ” for that texture feature

frequency of phenotypic presence (and/or absence) among a set of genetic mutants.
Our variant allows for the possibility of quantitative feature values to be used in the
pairwise comparisons of feature vectors, unlike the original metric, which requires
that the phenotypic presence be expressed as a logical (that is, the phenotype is
simply “present” or “absent”). Mathematically, however, both the above equation
and the original metric by Weirauch et al. are based on the concept of the inverse
document frequency used in information retrieval [33].

The probability computed from the cumulative hypergeometric distribution func-
tion may be used to determine the extent to which a given feature � is enriched in
the so-called “feature signature” for a class (i.e., the subset of features that tends to
belong to a particular class, but not to others). Generally speaking, for each feature
�, we want to see if the “random sampling” (without replacement) of N elements
contains at least x elements that meet some pre-specified criterion for “success.”
M refers to the total number of elements in the whole population, while K refers
to the number of elements in the whole population that also meet the criterion for
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“success.” The probability of the event X ≥ x (i.e., that at least x samples drawn meet
the “success” criterion) is computed as

P(X ≥ x) = 1 − P
(
X ≤ (x − 1)

) = 1 −
x−1∑

i=0

(
K
i

)(
M − K
N − i

)

(
M
N

) (15)

The resulting P-value tells us the probability that the x successes are due to
random chance. If we compute this P-value for every feature � and for a given class,
then those features with a significant P-value (typically ≤ 0.05, but can be adjusted
for stringency) would be considered part of the subset or signature of features
that are enriched in that class (and which are less likely to be observed in other
classes).

3.4.3 Training procedure

Here we summarize the steps involved in training the SHIRAZ annotation system:

1. Divide each frieze-expanded parent image into 64 × 64 child block images, then
capture vector of 54 texture features for the 3 × 3 neighborhood about each of
the central child blocks.

2. Sort each neighborhood’s feature vector as described in Section 3.3.6, then merge
all feature vectors into a “feature matrix” M , which will have a total of (54×
9 =) 486 features for each row (corresponding to the neighborhood about each
of the central child block images). Each neighborhood i of M is then labeled
with a relevant histological phenotype/artifact annotation concept κ .

3. Determine the feature signature 
κ associated with a given labeled concept κ , as
follows:

(a) Compute the pairwise information agreement score (using (14)) for neigh-
borhoods i and j and store as S(i, j,�). The total size of S is N × N × F ,
where F is the total number of features = 54.

(b) In each symmetric matrix S� (that is, the square N × N matrix corre-
sponding to each feature �), each column Si,� corresponds to all pairs of
neighborhoods containing neighborhood i, each of which has been assigned
a specific annotation concept. Thus, we repeat the following steps for
each feature � and for each concept κ , while ignoring all pairwise self-
comparisons (i, i):

i. Determine a minimum agreement score value Smin (e.g., 80th or 90th
percentile of all values in S�) required for any two neighborhoods i
and j to be considered “similar.”

ii. Let x = the number of neighborhood pairs in Si,� that belong to
annotation concept κ but for which the criterion S(i, j,�) ≥ Smin has
been met

iii. Let K = the number of neighborhood pairs in Si,� where S(i, j, �) ≥
Smin

iv. Let N = the number of neighborhood pairs in Si,� that belong to
annotation concept κ , regardless of the value of S(i, j, �)
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v. Let M = the total number of neighborhood pairs in Si,�

vi. Use x, K, N, and M as inputs to the cumulative hypergeometric distri-
bution function (15) to determine the probability that the number of
samples in the class that meet the criteria of interest is due only to ran-
dom chance (i.e., the P-value). Note that the “random sample” (that
is, the set of N elements selected from Si,� above) is not actually ran-
dom, but corresponds to those samples that have been labeled with
the current annotation concept κ whose feature signature 
κ we are
trying to determine.

vii. If a minimum fraction (we used 80%) of all P-values computed for
each class sample are significant (e.g., P ≤ 0.05), then assign the
current feature to the feature signature 
κ for the concept κ .

viii. Determine the betweenness rules that must be met for a new test
sample neighborhood to be assigned with the current concept (see
below). In other words, if the current feature � belongs to the current
annotation concept’s feature signature 
κ , then we let 
κ(�)max and

κ(�)min equal, respectively, vectors containing the maximum and
minimum values with respect to the set of the original nine-element
vectors corresponding to the neighborhoods belonging to the current
annotation concept κ .

3.4.4 Automated image annotation

A previously uncharacterized eye image I will be annotated as follows:

1. Extract the image features for each 3 × 3 child block image neighborhood i in the
parent image I. Let Xi,� = the nine-element vector (sorted in ascending order)
for each feature.

2. Initialize 
κ,matches = 0
3. For each child image neighborhood in I, for each annotation concept κ , and for

each feature/phenotype �:

(a) If seven out of nine elements in Xi,� fall within the betweenness limit
vectors 
κ(�)max and 
κ(�)min of the current annotation concept’s feature
signature 
κ , then increment 
κ,matches by 1

(b) Let nκ = the total number of features in the feature signature for concept κ

(c) Let φκ = the normalized fraction of matches computed over all features
in the feature signature 
κ for the current neighborhood = 
κ,matches

n2
κ

(Note:
the denominator term is squared in order to account for the variability in
the number of features included in each concept’s feature signature and to
mitigate the effect of any annotation bias towards concepts that have signa-
tures with a greater number of features than other concepts)

4. For each neighborhood, we take the list of matching concepts and sort from
highest to lowest φκ score.

5. Let � = a matrix in which each row (corresponding to each neighborhood
in I) contains a list of concept numbers (from 1 to κ), sorted according to
the corresponding φκ values for each concept. (In other words, the concept
number in column 1 will be that which has the highest φκ score for the current
neighborhood.)
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6. For each concept κ , count the number of times in which the number of the
concept appears in each column � and multiply times a pre-specified “voting
factor” for that column. (In our case, any “vote” for a concept in column 1 gets
multiplied by 10, any “vote” in column 2 gets multiplied by 9, column 3 by 8, and
so on.)

7. Report the results as a ranked list of annotation concepts for each image I,
where the the first reported annotation is that which has the highest number of
“votes” as totaled across all neighborhoods. (For compactness and for evaluation
purposes, only the three highest-ranking annotations are reported in our online
demo.)

4 Results

Dataset A total of 176 images of larval zebrafish eyes were manually extracted from
20X virtual slides generated by the Zebrafish Functional Imaging Core facility at the
Penn State College of Medicine. 100 images were used for training the ten concepts
described earlier in this paper, with the remaining 76 to be reserved for testing.

Online demo A Web-based demonstration site for SHIRAZ is available through
our project Website, http://shiraz.ist.psu.edu. Figure 17 provides a screenshot of the
SHIRAZ online demo homepage. The system has two modes of interactivity. In the
first mode (which we will refer to as “Pre-extracted Eye Mode”), the user chooses
to have the system process and annotate one of the pre-extracted eye images. In
the second mode (“Array Mode”), SHIRAZ will directly process an original 20X
virtual slide consisting of an array of specimen images. Because the eye images to
be annotated have not been previously extracted, the Array Mode requires several
additional processing steps. For the purposes of the online demo, many of these steps
have been preprocessed offline due to their duration (e.g., using the VIPS image
processing suite for rotation and area extraction of the high-resolution images at 20×
magnification can take several minutes, if not longer).

Performance evaluation of the SHIRAZ “Pre-extracted Eye Mode” We report the
quality of a given annotation as one of three possibilities: Correct, Acceptable, or
Incorrect. A correct annotation means that the predicted annotation matches at least
one of the ground truth we had previously assigned for that image. An acceptable
annotation means that the predicted annotation is at least partially correct; for
example, if SHIRAZ assigns “necrosis - minimal to mild” to an image, but the
ground truth annotation is actually “necrosis - moderate to severe,” we consider this
an acceptable annotation in the sense that it correctly identified the phenotype as
“necrosis,” although it did not correctly identify the degree of the phenotype severity.
Finally, an incorrect annotation means that the predicted annotation had no overlap
with any of the ground truth annotations assigned to the given image.

Out of the 76 images tested, 73 images produced at least one correct annotation
(among the three highest-ranking annotations reported), for an accuracy of 96%,
with the figure improving to 99% (75 images) if we base the accuracy on whether
the system predicted at least one acceptable annotation. However, if we only look at
the top-ranking annotation for each image, then the accuracy is lower, with 34 out
of 76 images (45%) producing a correct annotation, although the figure improves

http://shiraz.ist.psu.edu
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Fig. 17 Screenshot of entry point to SHIRAZ Web-based demo site

to 47 out of 76 images (62%) if the predicted annotation for each image is at least
acceptable. A selection of several example input test images and their three highest-
ranking predicted annotations are shown in Fig. 18.

It should be noted that the ground truth phenotypes were originally assigned
based on the original microscope slides at magnifications that may have been much
higher than the 20X digital images used in training. Although SHIRAZ was trained
to associate its annotation terms with the relatively low detail inherent in these
images, a human expert may not necessarily be able to reproduce or otherwise
validate the SHIRAZ system’s predicted annotation results without viewing finer
details visible only in higher-magnification digital images or the original glass slides
themselves. A potential representative example is the upper-right image of Fig. 18,
where necrosis—moderate to severe was the top-ranking annotation. This result was
evaluated as correct because it matched the ground truth, but one must keep in mind
that the visibility of the necrotic tissue may be compromised by the lower resolution
of the 20X digital image as compared to the original glass slide (or perhaps a higher-
magnification image, say 40×).

Performance evaluation of the SHIRAZ “Array Mode” There are two aspects
involved in judging the performance of the “Array Mode”—first, we must examine
how well the system can reliably extract the correct positions of the eye images from
the original array image (here shown in Fig. 19a). We can see from the results of the
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1. necrosis - moderate to severe (Correct)
2. retinal disorganization - moderate to severe (Correct)
3. necrosis - minimal to mild (Acceptable)

1. hypotrophy - present (Correct)
2. necrosis - moderate to severe (Acceptable)
3. lens abnormal - present (Correct)

1. hypotrophy - present (Correct)
2. artifact - shrinkage - present (Correct)
3. phenotype - absent (Incorrect)

1. lens abnormal - present (Incorrect)
2. optic nerve or hyaloid artery - present (Correct)
3. phenotype - absent (Incorrect)

1. necrosis - moderate to severe (Acceptable)
2. necrosis - minimal to mild (Correct)
3. hypotrophy - present (Correct)

1. phenotype - absent (Correct)
2. hypotrophy - present (Incorrect)
3. artifact - shrinkage (Correct)

Fig. 18 Selected images and their three highest-ranking annotations as predicted by SHIRAZ, with
degree of correctness of the annotation given in parentheses. Correct annotations are shown in
boldface, with incorrect annotations shown in italics
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automated lattice detection (Fig. 19b) that the positions of the whole-larva specimens
have been fully identified. The screenshot shown in Fig. 19c shows the corresponding
left- and right-eye images automatically cropped out from the whole-larva specimens
shown in the previous figure. Each image is marked with the row-and-column
position as determined in the lattice detection step and which enables us to match
each specimen to its corresponding entry in our laboratory’s embedding record.
When possible to distinguish mutants from wild-type by dissecting microscopy, we
embed larvae such that each column contains either all wild-type (normal) or all
mutant specimens, and to arrange the columns such that a column of wild-type
specimens is directly adjacent to a column of mutant specimens. For the larval array
shown here, the first and third columns contain wild-types, and the second and fourth
columns contain mutants. Note here that many of the extracted eye images do not
contain any intact eye tissue (such as in positions R2C3 or R7C4 in Fig. 19); this is
due to the fact that when zebrafish larvae are embedded in a tissue block, they do
not always embed at the same depth or axial rotation angle (or there may be no
specimen embedded at all, such as in position R7C2 and below). When this occurs,
it is best to phenotype larvae using the best available histological specimen, which
may be found in an adjacent section on a different slide. For the current array, we
see several instances of apparently missing eyes because SHIRAZ locates eyes based
on position only (that is, position relative to an “origin point,” here chosen to be the
leftmost pixel along the midline of the bounding box containing the whole larval
specimen). Nonetheless, even when only using position-based training, the system
does locate and extract all available eyes that are evident in the current array image.

The second aspect of performance evaluation involves how precisely SHIRAZ
was able to annotate the available eye images that were extracted from the original
array. As shown in Fig. 19, the demo is presently designed to annotate one user-
selected image at a time, accomplished by selecting the eye image’s corresponding
radio button and then clicking on the button marked “Process Selected Specimen.”
From this point on, the demo functions the same way as in the “Pre-extracted Eye
Mode.”) For selected eye images depicting “ideal” histological sections (where the
tissue is mostly intact and contains either a lens or at least a space from which a lens
was obviously detached during sectioning), the system performs well and annotates
images with meaningful and accurate tags. In our tests of 17 such images, all yielded
at least one correct annotation, although only six of these images yielded a correct or
at least acceptable result for the top-ranking prediction. Many phenotypically normal
images were mistakenly assigned a top-ranking annotation of “hypotrophy–present.”
Upon inspection of the incorrectly annotated images, we attribute such errors in
most cases to the lack of appropriate training examples that properly distinguish
mild hypotrophy from the more severe examples of hypotrophy (for which we had
several training examples). It is also possible that, because the eye images here were
extracted automatically and not chosen on the basis of being ideal sections (as in the
“Pre-extracted Eye Mode”), what appears to be hypotrophy here could simply be
attributed to the section being from an incorrect angle or tissue block depth. In any
case, SHIRAZ is not yet trained to recognize whether a given section is “ideal” (i.e.,

�Fig. 19 An example walkthrough of the SHIRAZ “Array mode.” Following the eye image extrac-
tion step, the user can choose one of the eye images for phenotypic annotation and retrieval of similar
images
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a. SHIRAZ Array Mode Example Input b. Automated Lattice Detection Result

c. Screenshot of result following automated eye image extraction
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sectioned at an appropriate angle and depth with the tissue integrity preserved) but
we expect to build this crucial functionality into a future version.

5 Discussion and future work

Because of its potential to save thousands of person-hours of work that would be
otherwise spent on manual image processing and subjective annotation and scoring,
we believe that SHIRAZ can have a major impact on the long-term success of
the Zebrafish Phenome Project. As a proof-of-principle, SHIRAZ performs at a
high enough level to be immediately useful as a “triage system”—that is, a tool for
automatically screening out obvious phenotypes as well as flagging slides containing
artifacts that could potentially obfuscate the underlying phenotypes. However, its
use in the phenome project would require much greater speed of scanning and
computational power. If SHIRAZ is set to be sensitive enough, a human reviewer
could use the annotation results as a “first pass” before delving into a detailed manual
evaluation of all slides, or if too many artifacts are present to permit the scoring of
phenotypes, then the slides could be marked as such and thus should be replaced with
slides with a higher fraction of specimens bearing informative histological features.

Because of the pairwise calculations required, the training phase is computation-
ally complex, with the speed of training being proportional to (n2), where n is the
number of all 3 × 3 neighborhoods for which an annotation concept was manually
assigned. For training on a relatively small number of concepts and neighborhoods,
this is not a significant problem, though the process is slow enough that validation
methods requiring repeated training (such as leave-one-out cross validation) were
not feasible at this time. Because the slowest step in the training process proceeds
by one feature at a time (in our tests, each feature required about 4–5 min for
training), this step could potentially be parallelized so that each feature is processed
simultaneously on its own individual cluster node.

SHIRAZ is a region-based image retrieval method, meaning that if different
regions within the same query image correspond to prototype images representing
semantic concepts or other forms of scoring and annotation, then the query image
may be annotated with more than one such concept. However, it should be noted that
the annotation results shown herein are evaluated based on their applicability to the
whole “parent” image. To a highly-trained expert, an image that is “locally necrotic”
in one area of the image may also potentially appear “locally normal” in other areas
of the image, but for the purposes of demonstration and for compactness in represen-
tation, the annotations are ranked according to their global relevance, and for eval-
uation purposes, if an image bears a ground truth annotation of any abnormal phe-
notype, then the entire image is assumed to be “globally abnormal,” and so any pre-
dictions of “phenotype - normal” are assumed incorrect. We may, in a future version
of the system, report the annotations on a local (i.e., 3 × 3 neighborhood-specific)
basis as well, so that histological features that only occupy a small region of the
whole image—such as single-cell necrosis or the presence of the optic nerve and/or
hyaloid artery—are not “eclipsed” by histological features (whether they be pheno-
typic, or artificial, or both) that may otherwise predominate the image as a whole.

Advantages of the SHIRAZ system The feature extraction methods are invariant to
the orientation of the eye image, mainly because the features are not extracted from
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the eye image itself, but on its frieze-expanded counterpart image. In addition, the
similarity metric used here is unique in that the extent of agreement is not merely
based on the “distance” between images, but rather on the infrequency or rarity of
the information that the images, based on the probability that the information being
shared is either due to random chance or is based on a meaningful and statistically-
significant association. For example, because the system here was trained and tested
only on images of the 5dpf zebrafish eye, most of the images will share a large
number of features (and values) regardless of the degree of phenotype abnormality
or the presence of an artifact. For example, the feature signature for the phenotype–
normal concept contains only three features; this is because the values of the features
extracted for the images in that class were too dispersed and thus “overlapped” with
the distributions of values belonging to images outside of that class. However, the
range of feature values that do belong to the phenotype–normal class have been
determined, using the statistical methods described herein, to be at least reasonably
discriminative.

5.1 Future work

To be useful as a completely automated, closed-loop system for high-throughput
phenotyping, however, SHIRAZ will require improvements in accuracy, precision,
and speed.

Improvements in ground truth annotation accuracy and precision The SHIRAZ
system’s ability to correctly annotate images depends on a number of factors, such as
the accuracy of segmentation of the retina from the surrounding tissues and the selec-
tion of certain model parameters (such as the cumulative hypergeometric function’s
P-value threshold, currently set at 0.05). The most important factor, however, is the
correctness of the ground truth annotations assigned to each 3 × 3 neighborhood of
child blocks. Since this is an original, highly specialized, and relatively small data set
(as opposed to massive benchmark databases of general photographic images such as
the Caltech-101 image set [1]), the number of annotation terms is also relatively small
and could be improved after review by an independent domain expert. As part of
ongoing work on this project, we have enlisted the help of a comparative pathologist
who will help us prepare a more comprehensive list of annotation terms that are both
more relevant and more precise than the relatively nonspecific terms we have used in
this proof-of-principle demonstration.

Imprecise results may also have resulted from choosing prototype images for a
given annotation concept that are too dissimilar for SHIRAZ to identify a signature
of features that is specific to that class. Certainly, one of the cumulative effects of
having a limited set of prototype images for certain annotation concepts in addition
to a relatively small set of terms available for phenotypic annotation is that images
may yield high-ranking “correct” annotations, but just because they are “correct”
does not mean they are the most relevant. As we see in Fig. 18e, we have correctly
annotated the image in the sense that the hyaloid artery is indeed present, but an
annotation such as “retinal disorganization” would have been more relevant. In
addition to making improvements in the quantity and quality of both the annotation
terms and their associated prototype images, we are planning a customized relevance
feedback system that will allow domain experts (such as comparative/veterinary
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pathologists as well as organ specialists such as ophthalmologists) to grade the
SHIRAZ system’s predicted terms according to both correctness and relevance.
Such user feedback will be invaluable for periodic re-training of the system while
continually adding to the bed of phenotypic knowledge required for the success of
the Zebrafish Phenome Project.

Improvements in computational ef f iciency Additional work is also planned for
improving the computational performance of SHIRAZ, particularly with respect to
increasing overall throughput. For example, rather than process and annotate images
in series, one at a time, we can parallelize the code to enable processing of multiple
array specimens simultaneously. Parallelization will undoubtedly be necessary when
we eventually train SHIRAZ to reliably detect and annotate much finer histological
details using higher-magnification (≥ 40×) virtual slides, which are generally too
large for current single-processor architectures to process in a reasonably short
period of time—something that is essential for a web-based demonstration system.
For now, however, even without the benefit of a cluster computing facility (whether
shared or owned), the fact that a single image at 20× magnification can be automati-
cally annotated in a matter of seconds on a single processor provides a significant step
forward in phenotyping efficiency as compared to manual scoring and annotation.

5.2 Concluding remarks

Our prototype system is presently designed to recognize a mere fraction of the his-
tological phenotypes that are required for complete phenotypic characterization of a
given zebrafish genetic mutant. Future versions of SHIRAZ and related automated
phenotyping systems must be trained to score a multitude of phenotypes at various
levels of detail and in both local and global contexts. While here we have focused
on morphological phenotypes (and only in the context of the developing eye, and
then only at a “global” detail level), the Zebrafish Phenome Project will also require
the study of physiological and behavioral phenotypes. We will continue to develop
and refine SHIRAZ, but in the meantime, we hope that the successful proof-of-
concept demonstration provided herein will provide an impetus for others within
the biological community to pioneer other high-throughput phenotyping methods.
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