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Abstract: CD209 is an immune receptor that plays an important role in the initiation of innate
immunity and activation of adaptive immunity in mammals. However, much less is known about the
immunological function of CD209 in lower vertebrates. In the present study, we examined the immune
effect of a CD209 homologue (CsCD209) from the teleost fish tongue sole Cynoglossus semilaevis.
CsCD209 possesses a lectin domain that shares high levels of similarity with the lectin domains of
human and mouse CD209. CsCD209 expression was most abundant in kidney and blood and was
significantly upregulated during bacterial infection. CsCD209 exhibited a subcellular localization
mainly on the cell surface of myelomonocytes. Recombinant CsCD209 displayed apparent binding
capacities to a broad range of bacteria and fungi, and significantly promoted the phagocytosis of
the bound bacteria by C. semilaevis leukocytes. Collectively, the results indicate that teleost CD209
serves as a pattern recognition receptor that exerts an influence on the phagocytosis process during
pathogen infections.
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1. Introduction

Innate immune sensing plays an essential role in the initiation of innate immunity and activation
of adaptive immunity in vertebrates [1,2]. The innate immune system utilizes a limited number of
pattern recognition receptors (PRRs) to sense pathogen-associated molecular patterns (PAMPs) present
exclusively in bacteria, fungi, and viruses [3,4]. Several types of PRRs, such as Toll-like receptors
(TLRs) and Nod-like receptors (NLRs), have been reported, which show different microbial recognition
activities during the invasion of pathogens [5].

CD209, also known as dendritic cell-specific intercellular adhesion molecule-3-grabbing
non-integrin (DC-SIGN), is a member of the C-type lectin family. It functions as an important PRR in
immune defense and microbial pathogenesis in mammals [6,7]. In humans, CD209 is mainly present
on the surface of macrophages and certain types of dendritic cells (DCs) [8]. In macrophages, CD209
can bind to mannosyl glycans on viruses, bacteria, and fungi, which in turn promote macrophage
phagocytosis [9,10]; CD209 expressed in DCs was mainly involved in the modulation of cellular
interactions as well as pattern recognition [11,12]. CD209 has been proven to play important roles in the
immune modulation during pathogen infection [13]. It was reported to bind Candida albicans and serve
as a phagocytic receptor in monocyte-derived DCs [11]. CD209 also exhibited high binding capacities
towards human immunodeficiency virus (HIV) and the hepatitis C virus [14,15]. Besides functioning as
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a PRR, CD209 is able to initiate innate immune response by cross talking with TLR-mediated signaling
pathway [16].

In fish, studies on CD209 and DCs are far from clear. A type of DC-like leukocytes with
antigen-presenting functions was reportedly identified in zebrafish Danio rerio, which expressed
DC function-associated genes [17], and a zebrafish CD209 homologue was found to be involve in
the modulation of adaptive immunity [18]. In rainbow trout Oncorhynchus mykiss, CD208/lysosomal
associated membrane protein 3 and CD209 were studied for the candidates of the biomarkers in DC
characterization [19,20]. In the present study, with an aim to elucidate the immune function of fish
CD209, we examined the expression and distribution of tongue sole (Cynoglossus semilaevis) CD209
(CsCD209) in tissues and cells, and investigated the immunological property of CsCD209 as a PRR.

2. Results

2.1. Sequence Analysis of CsCD209

CsCD209 is composed of 265 amino acids and has a theoretical molecular weight of 30306.55 Da
and a predicted isoelectric point of 4.72 (Figure 1A). CsCD209 contains a coiled-coil region (65–122 aa)
and a carbohydrate recognition domain (CRD, 122–259 aa) (Figure 1B). CsCD209 shares high levels
of similarity with human and mouse CD209 in the lectin domain, especially for the conserved
residues, such as Asp196, Glu220, Asn222, and Glu228, known to be involved in mannosylated
glycan binding (Figure 2A). CsCD209 also exhibited significant amino acid sequence similarity with
CD209 homologues from other teleost fishes (Figure 2B). Phylogenetic analysis showed that CsCD209
and a C-type lectin of Larimichthys crocea formed a cluster, which was branched off from the group
formed by CD209/C-type lectins from Xiphophorus maculates, Takifugu rubripes, Oreochromis niloticus
and Stegastes partitus (Figure 3).
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Figure 1. Sequence analysis of CsCD209. (A) The nucleotides and amino acids are numbered along the
left margin. The translation stop codon is labeled with asterisk. The amino acid sequence of coiled-coil
region and the lectin domain analyzed by SMART (http://smart.embl.de/) was boxed with green and
pink respectively; (B) The schematic of protein motifs of CsCD209. The coiled-coil region (65–122) is
indicated with green rectangle, and the lectin domain (122–259) is indicated with pink hexagon.
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Figure 2. Multiple alignment of CsCD209 with other CD209/lectin proteins. (A) Multiple alignment 
of the lectin domains of CsCD209 and CD209 from Homo sapiens (CD209-1, -3, -4, -5, -6, -7 and -8) and 
Mus musculus (CD209-A, -B, -C, -D and -E) that share 30–35% similarities with CsCD209 (right side of 
the alignment). The conserved amino acid residues involved in mannosylated glycan interaction are 
indicated with asterisks; (B) Multiple alignment of full-length CsCD209 homologues from teleost 
fishes. OnCD209: Oreochromis niloticus CD209, XmCD209: Xiphophorus maculates CD209, PrCD209: 
Poecilia reticulate CD209, OlCD209: Oryzias latipes CD209, LcCTL: Larimichthys crocea C-type lectin, 
SsAR: Salmo salar asialoglycoprotein receptor, LoCTL: Lepisosteus oculatus C-type lectin. In both (A) 
and (B), dots denote gaps introduced for maximum matching. The blue shadow color indicates a 
similarity between sequences, with darker shades meaning greater similarities. 

 
Figure 3. Phylogenetic analysis of CsCD209 and other CD209 proteins. The phylogenetic tree was 
constructed with MEGA 6.0 software (http://www.megasoftware.net/) using the neighbor-joining 
method. CsCD209 was marked by triangle. Numbers beside the internal branches indicate bootstrap 
values based on 1000 replications. The 5 scale indicates the genetic distance. 

Figure 2. Multiple alignment of CsCD209 with other CD209/lectin proteins. (A) Multiple alignment of
the lectin domains of CsCD209 and CD209 from Homo sapiens (CD209-1, -3, -4, -5, -6, -7 and -8) and
Mus musculus (CD209-A, -B, -C, -D and -E) that share 30–35% similarities with CsCD209 (right side
of the alignment). The conserved amino acid residues involved in mannosylated glycan interaction
are indicated with asterisks; (B) Multiple alignment of full-length CsCD209 homologues from teleost
fishes. OnCD209: Oreochromis niloticus CD209, XmCD209: Xiphophorus maculates CD209, PrCD209:
Poecilia reticulate CD209, OlCD209: Oryzias latipes CD209, LcCTL: Larimichthys crocea C-type lectin,
SsAR: Salmo salar asialoglycoprotein receptor, LoCTL: Lepisosteus oculatus C-type lectin. In both (A) and
(B), dots denote gaps introduced for maximum matching. The blue shadow color indicates a similarity
between sequences, with darker shades meaning greater similarities.
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2.2. Three-Dimensional Structure Characteristics of CsCD209

The potential three-dimensional structure of CsCD209 was predicted by the automated
SWISS-MODEL homology modeling pipeline based on the template protein langerin (PDB: 3KQG),
which is a human C-type lectin (Figure 4A). CsCD209 contained a N-terminal coiled-coil region and a
C-terminal CRD region. The coiled-coil region of CsCD209 was predicted to adopt α-helices and two
β-sheets, while the corresponding region of langerin formed only α-helices without β-sheet. In the
lectin domain, CsCD209, like langerin, exhibited two α-helices and six β-sheets, which formed similar
three-dimensional structures (Figure 4B).
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2.3. Expression of CsCD209 in Fish Tissues

qRT-PCR analysis showed that CsCD209 expression was most abundant in kidney and blood
and least abundant in muscle under normal physiological conditions. Compared with the CsCD209
expression level in muscle, the CsCD209 expression levels in the intestine, heart, brain, spleen, gill,
liver, blood and kidney were 3.7-, 6.1-, 6.9-, 8.3-, 19.6-, 24.1-, 63.3- and 72.5-fold higher, respectively
(Figure 5A). When tongue sole fish were infected with the bacterial pathogen Edwardsiella tarda, the
expression levels in kidney were significantly up-regulated, with the highest level occurring at 6 hour
post infection (hpi), and gradually decreased at 12, 24 and 48 hpi (Figure 5B1). CsCD209 expression
in spleen induced by E. tarda infection significantly increased at 6 hpi and peaked at 12 hpi, and fell
back to the normal level at 24 and 48 hpi (Figure 5B2). The expression level in blood was significantly
up-regulated at 6 hpi, with the highest expression level occurring at 12 hpi, and was decreased at 24
and 48 hpi (Figure 5B3).

http://www.expasy.org/swissmod/SWISS- MODEL.html
http://www.pymol.org/
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spleen (B2) and blood (B3) during Edwardsiella tarda infection was determined by qRT-PCR at various 
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Figure 5. CsCD209 expression in fish tissues under physiological and pathological conditions.
(A) CsCD209 expression in the muscle, intestine, heart, brain, spleen, gill, liver, blood and kidney of
tongue sole was determined by qRT-PCR. For comparison, the expression level of CsCD209 in muscle
(the lowest expression level) was normalized as 1; The expression of CsCD209 in kidney (B1); spleen
(B2) and blood (B3) during Edwardsiella tarda infection was determined by qRT-PCR at various time
points. In each case, the expression level of the control fish was normalized as 1. Data are the means of
three independent experiments and shown as means ± standard error of the mean (SEM). * p < 0.05,
** p < 0.01.

2.4. Expression of CsCD209 in Head Kidney Leukocytes and Blood

To facilitate functional study, recombinant CsCD209 (rCsCD209) and polyclonal antibody against
rCsCD209 were prepared (Figure S1). With the antibody, CsCD209 expression and distribution
in head kidney leukocytes were determined by flow cytometry as well as confocal microscopy.
The flow cytometry based on the forward scatter (FSC) and side scatter (SSC) revealed that there were
three cell populations, designated P1, P2 and P3, in head kidney leukocytes. According to the flow
cytometric characteristics, cells in P1, P2 and P3 populations, which were similar to those observed
in zebrafish head kidney leukocytes [21], were categorized as lymphocytes, myelomonocytes and
granulocytes, respectively. Flow cytometry showed that CsCD209 expression was detected mainly on
myelomonocytes (28.6%), much less on granulocytes (3.9%), and barely on lymphocytes (Figure 6).
For microscopy, anti-CsCD209 antibody and Alexa Fluor 594-labeled secondary antibody were applied
to reveal the localization of CsCD209. It was found that CsCD209 (red) was co-localized with
DiO-stained membrane (green), suggesting distribution of CsCD209 in the cell membrane (Figure 7).
The CsCD209 signal was barely observed in the cytoplasm. Western blot showed that CsCD209 was
detected in serum (Figure S2), suggesting the existence of soluble form of CsCD209.



Int. J. Mol. Sci. 2017, 18, 1848 6 of 16
Int. J. Mol. Sci. 2017, 18, 1848 6 of 16 

 

Figure 6. Cell-specific expression of CsCD209 determined by flow cytometry. Single cell suspension 
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(rCsCD209) and Alexa Fluor 488-labeled Goat anti-mouse IgG. Dot plot (upper panel) demonstrates 
the distribution of cells in head kidney by light scatter: lymphocytes (red), myelomonocytes (green), 
and granulocytes (blue). Histogram shows the expression of CsCD209 in lymphocytes (lower left), 
myelomonocytes (lower middle), and granulocytes (lower right). 
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4′-6-diamidino-2-phenylindole (DAPI, blue color). Bar: 5 μm. 
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was prepared from head kidney and labeled with antibody against recombinant CsCD209 (rCsCD209)
and Alexa Fluor 488-labeled Goat anti-mouse IgG. Dot plot (upper panel) demonstrates the distribution
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(blue). Histogram shows the expression of CsCD209 in lymphocytes (lower left), myelomonocytes
(lower middle), and granulocytes (lower right).
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2.5. Microbial Binding Activity of rCsCD209

To examine its potential to interact with microorganisms, rCsCD209 or the control protein
recombinant thioredoxin (rTrx), was incubated with the Gram-negative bacteria Vibrio anguillarum,
E. tarda, Escherichia coli, and Pseudomonas fluorescens, the Gram-positive bacteria Bacillus subtilis,
Micrococcus luteus and Staphylococcus aureus, and yeast Pichia pastoris. Binding of the protein to the
microbes was subsequently determined by Western blot. The results showed that compared with rTrx,
rCsCD209 exhibited apparent binding activities to all examined species of bacteria and yeast (Figure 8).
Furthermore, flow cytometry analysis showed that when rCsCD209 was pre-incubated with mannose
or mannan, the binding activity of rCsCD209 to E. tarda was significantly reduced (Figure S3A,B).
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Figure 8. Western blot analysis of the microbial binding activity of rCsCD209. V. anguillarum, E. tarda,
E. coli, P. fluorescens, B. subtilis, M. luteus, S. aureus and P. pastoris were incubated with rCsCD209 or
rTrx. The bound proteins were separated by SDS-PAGE and immunoblotted with anti-His monoclonal
antibody. The purified rCsCD209 and rTrx were loaded as the control.

2.6. Effect of rCsCD209 on Phagocytosis Towards Bacteria

To examine whether CsCD209-bacteria interaction affected the phagocytosis of the bacteria by
C. semilaevis immune cells, E. tarda was incubated with or without rCsCD209 before encountering head
kidney leukocytes, and phagocytosis was subsequently determined by flow cytometry (Figure 9A).
The results showed that the phagocytic percentage of leukocytes towards E. tarda was significantly
increased after rCsCD209 preincubation (p < 0.05), whereas there was no significant change after rTrx
treatment (Figure 9B). Moreover, the phagocytic index of the leukocytes preincubated with rCsCD209
was significantly higher than that of the control and the leukocytes preincubated with rTrx (p < 0.01)
(Figure 9C).
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Figure 9. rCsCD209 enhanced phagocytosis of bacteria. Head kidney leukocytes were incubated with
fluorescein isothiocyanate (FITC)-labeled Edwardsiella tarda that had been pre-incubated with rCsCD209
or rTrx. Phagocytosis activity was measured by flow cytometry (A); Phagocytic percentage (B) and
phagocytic index (C) were statistically calculated. Results are means± SEM (n = 5), *p < 0.05, ** p < 0.01.

3. Discussion

In mammals, CD209 is a type II membrane protein that contains a C-terminal carbohydrate
recognition domain (CRD) and a coiled-coil neck region in the extracellular domain [22]. CRD
is responsible for the pattern recognition towards different glycans, while the neck region is
necessary for oligomerization [23]. The formation of multimeric complexes and the conformational
change of CD209 increase the binding avidity to glycan ligands [24]. The amino acid sequence of
CsCD209 shares moderate identities with the CD209 isoforms of human and mice, especially in
the CRD region, suggesting a conserved function of CD209 between higher and lower vertebrates.
The three-dimensional structure model of CsCD209 exhibited a strong similarity to langerin,
a lectin-type immune receptor with structure characteristics, including the neck region and
C-terminal CRD, similar to that of CD209 [25]. However, it was noteworthy that, unlike langerin,
CsCD209 exhibited two β-sheets in the neck region, suggesting a conformational variation in the
three-dimensional structure of fish CD209.

In humans, CD209 is expressed on several types of macrophage populations that produce
pro-inflammatory cytokines and thus play an essential role in the activation of inflammatory immune
response [26,27]. More pronouncedly, CD209 is expressed on the surface of immature DCs and
mature DCs under the modulation of interleukin-4 [28]. DCs have been proved to be of fundamental
importance in orchestrating mammalian immune response. However, much less is known about the
DCs in lower vertebrates. In zebrafish, a type of DC-like leukocytes with antigen-presenting functions
was identified, which expressed DC function-associated genes [17]. In addition, a CD209 homologue
was also identified in zebrafish, which was involved in adaptive immunity activation, including T cell
activation, IgM production, and bacterial vaccination-elicited immune protection [18]. In rainbow
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trout, the homologue of the human dendritic cell marker CD208/lysosomal associated membrane
protein 3 was found to be constitutively expressed in head kidney macrophages, and up-regulated
after infection with viral and bacterial pathogens, which is important to the antigen presentation
investigation in teleost fish [20]. In addition, CD209 combined with CD83, CXC chemokine receptor-4
(CXCR-4) and CC chemokine receptor-7 (CCR-7) were used as biomarker candidates of DCs [19].
Recently, a CD8α+ MHC II+ DC-like subpopulation was identified in the rainbow trout skin, showing
phenotypical and functional similarities of semimature DCs, thus supported the hypothesis of a
common origin for all mammalian cross-presenting DCs [29]. In our study, we found that CsCD209
mRNA was most abundant in kidney and blood and significantly augmented by bacterial infection,
and that CsCD209 protein occurred on the surface of a certain subpopulation of myelomonocytes in
head kidney leukocytes and on a very small population of granulocytes. In addition, the CsCD209
protein was also detected in blood, suggesting that CsCD209 may, like human CD209 which is known
to exist as both membrane and soluble proteins [30], be generated in both membrane and soluble
forms. These results indicate that CsCD209 may play a role in pathogen-induced immunity.

CD209 is a C-type lectin belonging to a large and diverse lectin family found in a wide range of
vertebrates [31,32]. It mainly functions as a PRR through its CRD, which exhibits an extensive microbial
binding activity to mannosylated glycans on pathogens [33]. For example, CD209 was reported to
bind directly to mycobacteria-specific lipoglycan lipoarabinomannan presented on the surface of
Mycobacterium tuberculosis, whereby mediating bacterial entry into DCs [34]; CD209 recognized and
bound highly mannosylated envelope glycoprotein gp120 from HIV and promoted viral infection
of CD4+ T lymphocytes [35]. In our study, we found that rCsCD209 exhibited an extensive binding
activity to various microbes including Gram-negative and Gram-positive bacteria as well as fungi,
indicating that CsCD209 can serve as a PRR with a broad microbial recognition range, which may
facilitate the initiation of immune response during pathogen invasion.

Phagocytosis plays a vital role in innate immune defense and activation of adaptive
immunity [36,37]. In mammals, phagocytes have evolved a number of receptors to facilitate the
phagocytic process [38], for example, human CD209 functioned as an immune receptor for Yersinia pestis
and promoted phagocytosis by DCs [39]. It could also bind specifically to the core LPS of E. coli K12,
promoting bacterial adherence and phagocytosis [40]. DCs expressing CD209 were reported to capture
the hepatitis C virus by specific binding to the envelope glycoprotein E2, and efficiently transinfected
adjacent human liver cells [41]. In the teleost fish sea bass, macrophages and neutrophils possess
potent phagocytic capacities against Photobacterium damselae infection [42]. In the case of tongue sole,
we found that preincubation of E. tarda with rCsCD209 significantly enhanced phagocytosis of the
bacteria by tongue sole head kidney leukocyte, suggesting that rCsCD209 promoted the intracellular
uptake of the bound bacteria. This result, together with the observation that E. tarda upregulated
the expression of CsCD209, indicates that CsCD209 probably acts as an innate immune factor that
contributes to the clearance of invading pathogens.

In conclusion, the present study reveals that CsCD209 serves as a PRR with microbial recognition
activity against a wide range of bacteria and fungi, and that CsCD209 modulates the phagocytosis of
pathogens by host immune cells. These results suggest an important role of fish CD209 in antimicrobial
immune defense.

4. Materials and Methods

4.1. Fish

Clinically healthy tongue sole were purchased from a commercial fish farm in Shandong Province,
China, and maintained at 20 ◦C in aerated seawater. The fish were acclimatized in the laboratory
for 2 weeks and verified to be clinically healthy. All animal-involving experiments of this study
were approved by the Ethics Committee of Institute of Oceanology, Chinese Academy of Sciences as
reported previously [43].
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4.2. Bacterial Strains and Culture Conditions

Vibrio anguillarum, Edwardsiella tarda and Pseudomonas fluorescens were grown in
Luria–Bertani (LB) broth at 28 ◦C for 12 h with shaking at 180 rpm. Escherichia coli, Staphylococcus
aureus, Micrococcus luteus and Bacillus subtilis were grown in LB broth at 37 ◦C for 8 h with shaking at
220 rpm. Pichia pastoris was grown in yeast extract peptone dextrose (YPD) medium at 30 ◦C for 24 h
with shaking at 220 rpm. All microbes were grown to mid-log phase and harvested by centrifugation
at 6000× g for 15 min, followed by washing three times with PBS (pH 7.2).

4.3. Sequence Analysis

The BLAST algorithm (http://www.ncbi.nlm.nih.gov/blast) and the Expert Protein Analysis
System (http://www.expasy.org) were performed to analyze the amino acid sequence. Domain
search was performed with the simple modular architecture research tool (SMART) version 4.0
(http://www.smart.emblheidelberg.de/). The potential three-dimensional structure was established
using the SWISS-MODEL prediction algorithm (http://swissmodel.expasy.org/) and displayed
by Deepview/Swiss-Pdb Viewer version 4.0. The ClustalW multiple alignment program (http:
//www.ebi.ac.uk/clustalw/) was performed to create the multiple sequence alignment. Phylogenetic
analysis was performed with the neighbor-joining algorithm of MEGA 5.0.

4.4. Quantitative Real Time Reverse Transcription-PCR (qRT-PCR)

4.4.1. qRT-PCR Analysis of CsCD209 Expression in Different Fish Tissues under Normal Physiological
Conditions

Kidney, blood, intestine, gill, brain, muscle, heart, spleen, and liver were taken aseptically from five
tongue soles (average 13.6 g). Total RNA was extracted and incubated with DNase I to digest genomic
DNA using the EZNA Total RNA Kit (Omega, Norcross, GA, USA) according to the manufacturer‘s
instructions. Total RNA (1 µg) was used for cDNA synthesis with Superscript II reverse transcriptase
(Invitrogen, Carlsbad, CA, USA). The primers F1 (5′-GATTACATGCCAGTAGTGAGTGAAGG-3′) and
R1 (5′-CCTTGGATTGTTGTCAGGAGTTC-3′) were used for amplification. The qRT-PCR program was
performed as follows: 94 ◦C for 2 min, followed by 40 cycles at 94 ◦C for 15 s, 55 ◦C for 15 s, and 57 ◦C
for 30 s. qRT-PCR was carried out in an Eppendorf Mastercycler (Eppendorf, Hamburg, Germany)
using the SYBR ExScript qRT-PCR Kit (Takara, Dalian, China). The expression levels of CsCD209
mRNA in different fish tissues were analyzed using comparative threshold cycle method (2−∆∆Ct)
with β-actin as an internal reference [44]. The primers designed for β-actin were as follows: forward
primer: 5′-GCACGGTATTGTGACCAACTGG-3′, reverse primer: 5′-CAGGGGAGCCTCTGTGAGC-3′.
The experiment was performed in triplicate, each time with five fish.

4.4.2. qRT-PCR Analysis of CsCD209 Expression in Different Fish Tissues during Pathogen Infection

E. tarda was cultured in LB broth at 28 ◦C to OD600 0.6. The cells were washed with PBS (pH 7.2)
and resuspended in PBS (pH 7.2) to 1 × 106 colony-forming units (CFU)/mL. Tongue sole were
randomly divided into three groups, and intraperitoneally injected with 50 µL E. tarda. The control
group were injected with PBS. Kidney, spleen and blood were aseptically taken from the fish at 6, 12,
24, and 48 h post infection. qRT-PCR analysis of CsCD209 expression in different fish tissues was
performed as described above. β-actin was used as the internal reference for kidney and blood, and
ribosomalprotein L18 (RPL18) was selected as the internal reference for spleen [44]. The primers
designed for RPL18 were as follows: forward primer: 5′-GAACCCTACCCCTCCTCTGT-3′, reverse
primer: 5′-TACGAGAGTCGTAACGCAGC-3′. All experiments were performed in triplicate, each
with five fish.

http://www.ncbi.nlm.nih.gov/blast
http://www.expasy.org
http://www.smart.emblheidelberg.de/
http://swissmodel.expasy.org/
http://www.ebi.ac.uk/clustalw/
http://www.ebi.ac.uk/clustalw/
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4.5. Prokaryotic Expression and Purification of Recombinant Proteins

The coding sequence of CsCD209 was amplified by PCR with gene-specific primer F2
(5′-ATGGCTCATTCAGAGATGATTTCATATGAGG-3′) and R2 (5′-TCACTGATCCCTGGGTGGTG-3′).
The PCR amplification was performed as follows: 5 min at 95 ◦C, 30 s at 94 ◦C and 1 min at 72 ◦C,
for 28 cycles. The PCR product was separated by agarose gel electrophoresis and was cloned into
PMD19-T simple vector (Takara, Dalian, China) followed by sequencing, and was verified with
target CsCD209 coding sequence. The coding sequence was inserted into the Nde I and Xho I sites
of the pET-30a (+) (Novagen, Darmstadt, Germany) expression vector. The recombinant plasmid
was isolated using MiniBEST plasmid purification kit (Takara, Dalian, China), and was transformed
into Escherichia coli Transetta (DE3) (Transgen, Beijing, China) competent cells. The transformant
was cultured in liquid LB broth containing 100 mg·L−1 kanamycin to an OD600 of 0.4–0.6, and
isopropyl β-D-1-thiogalactopyranoside (AiKB, Qingdao, China) was added to the culture at the
final concentration of 0.1 mM. The culture was continued at 16 ◦C for 12 additional hours, and
rCsCD209 was purified with a Ni2+ chelating Sepharose column (Roche, Mannheim, Germany).
The protein was desalted by extensive dialysis against PBS (pH 7.2), and Triton X-114 was used to
remove endotoxin as previously reported [45]. rCsCD209 was subjected to 15% sodium dodecyl
sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and visualized by Coomassie brilliant blue
R-250 staining. The protein concentration was quantified with an Enhanced BCA protein assay kit
(Beyotime, Shanghai, China). Recombinant thioredoxin (rTrx) protein was prepared as described
previously [44]. Briefly, E. coli BL21 (DE3) was transformed with pET32a (Novagen, Darmstadt,
Germany), and the transformant was cultured in LB medium at 37 ◦C to an OD600 of 0.4–0.6.
Isopropyl-β-D-thiogalactopyranoside was added to the culture at the final concentration of 0.4 mM.
The culture was continued at 30 ◦C for 4 additional hours, and rTrx was purified with a Ni2+ chelation
Sepharose column (Roche, Mannheim, Germany). The protein was desalted by extensive dialysis
against PBS (pH 7.2). rTrx was subjected to 15% SDS-PAGE and visualized by Coomassie brilliant blue
R-250 staining. The protein concentration was quantified with an Enhanced BCA protein assay kit
(Beyotime, Shanghai, China).

4.6. Generation of Mouse Polyclonal Antibody Against rCsCD209

Polyclonal antibody against rCsCD209 was prepared as follows. rCsCD209 (50 µg) was emulsified
with 50 µL complete Freund’s adjuvant (Sigma, St. Louis, MO, USA), and injected into mice of about
6 weeks old mice by multipoint subcutaneous injection. The second and third subcutaneous injection
were performed on the 16th and 30th day with Freund’s incomplete adjuvant. The fourth inoculation
was performed on 37th day without any adjuvant. Serum was collected from the blood samples
at one week after the fourth subcutaneous injection. The serum antibody titer of the polyclonal
antibody against CsCD209 was determined by ELISA as reported previously [46]. The serum was then
buffered by PBS and loaded onto a 2-mL protein A column (GE Healthcare, Piscataway, NJ, USA).
After PBS washing, immunoglobulin G (IgG) was eluted with 100 mM glycine-HCl (pH 2.8). The eluate
was rapidly neutralized with 1 M Tris-HCl (pH 8.5), and dialyzed extensively against PBS (pH 7.2)
overnight. The eluted IgG was concentrated through a 10 kDa cut-off filter (Millipore, Bedford, MA,
USA) by centrifugation at 5000 rpm for 30 min, and the concentration of IgG was quantified to be
0.72 mg/mL. The binding specificity of the purified antibody towards CsCD209 was determined by
Western blotting.

4.7. Western Blot Analysis

4.7.1. Western Blot Analysis of CsCD209 in Head Kidney Leukocytes and Serum

The head kidney was manually homogenized in radioimmunoprecipitation assay (RIPA) buffer
(Sigma, St. Louis, MO, USA) and lysed on ice for 20 min. After centrifugation at 4 ◦C at 12000 rpm for
10 min, the supernatant was collected, and the protein concentration was quantified with the Enhanced
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BCA protein assay kit (Beyotime, Shanghai, China). Blood was drawn from the caudal vein of tongue
sole, and serum was prepared as described previously [43]. Head kidney leukocyte protein (50 µg)
and serum protein (100 µg) were mixed with SDS-PAGE loading buffer, boiled at 100 ◦C for 10 min
and then separated by SDS-PAGE. The protein bands were transferred from gel onto a polyvinylidene
fluoride (PVDF) membrane, and the PVDF membrane was soaked in blocking buffer (5% BSA and
0.05% Tween 20 of PBS, pH 7.2) at room temperature for 1 h. The membrane was then incubated
with antibody against rCsCD209 (1:1000 dilution) at room temperature for 1 h followed by extensive
washing. The membrane was further incubated with horseradish peroxidase (HRP) conjugated goat
anti-mouse IgG (Abcam, Cambridge, Cambridgeshire, UK, 1:5000 dilution) at room temperature for 1 h.
After extensive washing, the immune-reactive protein bands were visualized by using an enhanced
chemiluminescence kit (Pierce, Rockford, IL, USA).

4.7.2. Western Blot Analysis of rCsCD209 Binding to Microbes

rCsCD209 or rTrx were incubated with microbes (1×109 cells/mL) at a final concentration of
100 µg/mL at room temperature for 1 h with continuous rotation. The microbes were then washed
three times with PBS and suspended in SDS-PAGE loading buffer. After boiling at 100 ◦C for 10 min, the
samples were separated by SDS-PAGE. The proteins were transferred from gel onto a PVDF membrane,
and the PVDF membrane was soaked in blocking buffer (5% BSA and 0.05% Tween 20 of PBS, pH 7.2)
at room temperature for 1 h. The membrane was then incubated with monoclonal antibody against
His tag (Abcam, Cambridge, Cambridgeshire, UK, 1:1000 dilution) at 4 ◦C overnight followed by
extensive washing. The membrane was further incubated with HRP conjugated goat anti-mouse IgG
(1:5000 dilution) at room temperature for 1 h. After extensive washing, the immuno-blotted protein
bands were visualized by using an enhanced chemiluminescence kit.

4.8. Flow Cytometry

4.8.1. Flow Cytometry Analysis of CsCD209 Expression

Tongue sole head kidney was surgically removed and passed through a nylon mesh with L15
medium (Gibco, Grand Island, NY, USA). The cell suspension was then placed on the top of a 61%
Percoll (Pharmacia, Uppsala, Sweden) gradient and centrifuged at 4000 rpm for 10 min at 4 ◦C.
Leukocytes were collected from the interphase, and the remaining red blood cells were removed as
previously reported [47]. The cell viability of head kidney leukocytes was measured using the trypan
blue (Sigma) exclusion assay, and the percentage of live cells was more than 95% of the total leukocytes.
The cells (1 × 106 leukocytes) were incubated with 5% bovine serum albumin (BSA) at 22 ◦C for 1 h
followed by PBS washing for three times. Antibody against rCsCD209 (1:1000 dilution) was added to
the cells, followed by incubation at 22 ◦C for 1 h. After washing three times with PBS, the cells were
incubated with Alexa Fluor 488-labeled Goat anti-mouse IgG (Abcam, 1:1000 dilution) at 22 ◦C for 1 h.
The cells were washed as above and determined for fluorescence intensity with a FACSAria II flow
cytometer (BD Biosciences, Heidelberg, Germany). The experiment was performed in triplicate.

4.8.2. Flow Cytometry Analysis of rCsCD209 Binding to Bacteria

rCsCD209 (10 µg/mL) was preincubated with or without mannose (200 mM) or mannan
(100 µg/mL) at room temperature for 1 h with continuous rotation, and further mixed with E. tarda
(1 × 108 cells/mL) for 30 min with continuous rotation. The bacteria were then washed three times
with PBS, and incubated with FITC-labeled anti-His antibody (Abcam, Cambridge, Cambridgeshire,
UK, 1:500 dilution) for another 30 min. Flow cytometry was performed to determine the binding
activity of rCsCD209 to bacteria after extensive washing.
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4.8.3. Flow Cytometry Analysis of Phagocytosis

E. tarda was washed by PBS (pH 7.2) and then incubated with 0.1 mg/mL FITC (Sigma, St. Louis,
MO, USA) at room temperature with gentle stirring for 1 h. The FITC-labeled E. tarda was extensively
washed with PBS and incubated with or without rCsCD209 (100 µg/mL) at room temperature for 1 h.
After washing with PBS for three times, FITC-labeled E. tarda was added to head kidney leukocytes
(1 × 106 cells/mL) at a ratio of 10:1 and incubated for 1 h at room temperature. The cells were
washed with PBS for three times, and trypan blue (1.2 mg/mL) was added to the cells to quench
surface-bound FITC-labeled bacteria. The phagocytic percentage was analyzed by flow cytometry
(BD Biosciences, Heidelberg, Germany). The phagocytic index was calculated as the percentage of
phagocytic leukocytes multiplied by the mean intensity of that population [48]. The experiment was
performed in triplicate.

4.9. Microscopic Analysis of the Subcellular Distribution of CsCD209

Head kidney leukocytes prepared as above were plated on glass-bottomed culture dishes and
incubated at 22 ◦C for 3 h before use. The cells were then incubated with 4% paraformaldehyde at room
temperature for 15 min and further incubated with 0.1% Triton X-100 for 10 min. After washing with
PBS, 3% BSA in PBS was added to block non-specific binding sites for 1 h. The cells were incubated
with anti-rCsCD209 antibody (1: 1000 dilution) at room temperature for 1 h, and washed with PBS
for three times. Alexa Fluor 594-labeled goat anti-mouse IgG (1:1000 dilution) was added to the cells
and incubated at room temperature for 1 h. The cells were further incubated with DiO for 30 min and
then with 4′-6-diamidino-2-phenylindole (DAPI) for 5 min. After extensive washing with PBS, the
cells were monitored with a Carl Zeiss LSM 710 confocal microscope (Carl Zeiss, Jena, Germany).

4.10. Statistical Analysis

All experiments were repeated three times. The two-sample Student’s t test was used for the
comparisons between groups. Statistical analysis was performed with GraphPad Prism 5 software
(GraphPad Software, La Jolla, CA, USA). Results are shown as means± SEM, and statistical significance
was defined as p < 0.05.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/9/1848/s1.
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