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Abstract Embryos must communicate instructions to their constituent cells over long distances.

These instructions are often encoded in the concentration of signals called morphogens. In the

textbook view, morphogen molecules diffuse from a localized source to form a concentration

gradient, and target cells adopt fates by measuring the local morphogen concentration. However,

natural patterning systems often incorporate numerous co-factors and extensive signaling

feedback, suggesting that embryos require additional mechanisms to generate signaling patterns.

Here, we examine the mechanisms of signaling pattern formation for the mesendoderm inducer

Nodal during zebrafish embryogenesis. We find that Nodal signaling activity spans a normal range

in the absence of signaling feedback and relay, suggesting that diffusion is sufficient for Nodal

gradient formation. We further show that the range of endogenous Nodal ligands is set by the

EGF-CFC co-receptor Oep: in the absence of Oep, Nodal activity spreads to form a nearly uniform

distribution throughout the embryo. In turn, increasing Oep levels sensitizes cells to Nodal ligands.

We recapitulate these experimental results with a computational model in which Oep regulates the

diffusive spread of Nodal ligands by setting the rate of capture by target cells. This model predicts,

and we confirm in vivo, the surprising observation that a failure to replenish Oep transforms the

Nodal signaling gradient into a travelling wave. These results reveal that patterns of Nodal

morphogen signaling are shaped by co-receptor-mediated restriction of ligand spread and

sensitization of responding cells.

Introduction
Developing embryos often transmit instructions using morphogens, diffusible signaling molecules

that induce concentration-dependent responses in target cells. In the most common conception of

morphogen function, ligands spread from a localized source to form a concentration gradient

(Lander, 2007; Müller et al., 2013; Stapornwongkul and Vincent, 2021). Cells within the gradient

infer their position by sensing the local ligand concentration and initiate a position-appropriate gene

expression program (Rogers and Schier, 2011; Stumpf, 1966; Wolpert, 1969). Examples of gradi-

ent-driven patterning in animal embryos are plentiful; vertebrate germ layer induction

(McDowell and Gurdon, 1999; Schier, 2003; Shen, 2007), dorsoventral organization of the neural

tube (Ericson et al., 1997; Yamada et al., 1993), and digit patterning (Raspopovic et al., 2014;

Sheth et al., 2012) all rely on graded profiles of signaling molecules. Principles derived from these

examples have recently guided the design of synthetic patterning systems. Engineered gradients

have been used to pattern fields of cultured human cells (Li et al., 2018; Toda et al., 2020) and to

replace an endogenous morphogen gradient in the Drosophila wing disk (Stapornwongkul et al.,

2020). The biological and physical processes that set the shape of morphogen gradients are
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therefore of key importance to understanding developmental patterning and to the design of syn-

thetic developmental systems.

Diffusion plays a central role in classical models of morphogen gradient formation (Müller et al.,

2013; Stapornwongkul and Vincent, 2021). Ligand diffusion from a localized source is sufficient to

create a concentration gradient that expands outward over time (Berg, 1993). Adding removal of

the morphogen (through degradation, internalization, or other means) to the model confers stability

(Crick, 1970). In such models, a steady-state gradient that does not further change in time can form

(Wartlick et al., 2009). The shape of this steady-state gradient reflects a balance between ligand

mobility and stability. Increasing the diffusion rate lengthens the gradient, whereas faster removal

shortens it (Wartlick et al., 2009). Although simple, such diffusion-removal models approximate the

behavior of several well-studied morphogens (Kicheva et al., 2012). Recent biophysical studies have

shown that fluorescently tagged morphogens in Drosophila (Kicheva et al., 2007; Zhou et al.,

2012) and zebrafish (Müller et al., 2012; Yu et al., 2009; Zinski et al., 2017) have diffusion rates

consistent with known ranges of action. Similarly, receptor-mediated ligand capture provides a plau-

sible mechanism for morphogen removal and has been shown to be a determinant of gradient range

in some cases (Yu et al., 2009; Baeg et al., 2004; Chen and Struhl, 1996; Lecuit and Cohen, 1998;

Ribes and Briscoe, 2009; Scholpp and Brand, 2004).

While these simple principles seem sufficient to explain gradient formation, diffusive transport

may carry inherent limitations (Müller et al., 2013). For example, diffusing ligands could be difficult

to contain without physical boundaries between tissues (Kornberg and Guha, 2007), and receptor

saturation could preclude stable gradient formation (Kerszberg and Wolpert, 1998). Embryos may

therefore need additional layers of control to spread signaling in a controlled fashion. Indeed, devel-

opmental signaling circuits often incorporate extensive feedback on morphogen production and

sensing (Rogers and Schier, 2011; Freeman, 2000; Freeman and Gurdon, 2002; Meinhardt, 2009).

In these systems, the shapes of signaling pattern can be determined by the action of feedback rather

than the biophysical properties of signaling molecules. For example, it has been argued that positive

feedback on ligand production can substitute for diffusion as a mechanism of morphogen dispersal.

In this scheme, a cascade of short-range interactions—one tier of cells induces signal production in

the next—can propagate signaling in space, even when the ligand itself is poorly diffusive. Such

‘relay’ mechanisms have been invoked to explain germ layer patterning in zebrafish (van Boxtel

et al., 2015), as well as Wnt and Nodal signal spread in micropatterned stem cell colonies

(Chhabra et al., 2019; Liu, 2021). Negative feedback can also shape signaling gradients, for exam-

ple, by scaling patterns to fit tissue size (Almuedo-Castillo et al., 2018; Ben-Zvi et al., 2008),

restricting signaling in space (Chen and Struhl, 1996), or turning off pathway activity when it is no

longer needed (van Boxtel et al., 2015; Golembo et al., 1996). Due to the abundance of mecha-

nisms that can contribute to signaling pattern shape, the mechanisms of gradient formation remain

points of contention, even for well-studied morphogens.

Here, we examine the mechanism of gradient formation for the canonical morphogen Nodal.

Nodals are TGFb family ligands that function by binding to cell surface receptor complexes consist-

ing of Type I and Type II activin receptors and EGF-CFC family co-receptors (Schier, 2003;

Shen, 2007; Gritsman et al., 1999). Receptor complex formation induces phosphorylation and

nuclear accumulation of the transcription factor Smad2, which cooperates with nuclear cofactors to

activate Nodal target genes (Massagué et al., 2005). In early vertebrate embryos, Nodal signaling

orchestrates germ layer patterning: exposure to high, intermediate, and low levels of Nodal corre-

lates with selection of endodermal, mesodermal, and ectodermal fates, respectively (Dougan et al.,

2003; Gritsman et al., 2000; Thisse et al., 2000; Vincent et al., 2003). Nodal signaling is under

both positive and negative feedback control. Nodal ligands induce the expression of nodal genes

(Meno et al., 1999), as well as of leftys (Meno et al., 1999; Chen and Schier, 2002), diffusible inhib-

itors of Nodal signaling. These feedback loops are conserved throughout vertebrates and therefore

appear crucial to the function of the patterning circuit (Shen, 2007).

Zebrafish mesendoderm is patterned by two Nodal signals, Cyclops and Squint (Shen, 2007;

Dougan et al., 2003). The physiologically relevant ligands are heterodimers between Cyclops or

Squint and a third TGFb family member, Vg1 (Bisgrove et al., 2017; Montague and Schier, 2017;

Pelliccia et al., 2017). Gradient formation is initiated by secretion of Nodal ligands from the extra-

embryonic yolk syncytial layer (YSL), below the embryonic margin. Over time, the Nodal patterning

circuit generates a gradient of signaling activity that, at the onset of gastrulation, extends
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approximately 6–8 cell tiers from the margin (van Boxtel et al., 2015; Dubrulle et al., 2015;

Harvey and Smith, 2009; Rogers et al., 2017). Mutations that markedly expand signaling range

(e.g. lefty1;lefty2) result in profound phenotypic defects and embryonic lethality (Rogers et al.,

2017). Proper development therefore relies on the generation of a correct Nodal signaling gradient.

Early studies with ectopically expressed Nodal ligands in zebrafish supported a model of diffusive

spread (Chen and Schier, 2001). Direct observation of diffusion using GFP-tagged Cyclops and

Squint ligands suggested short and intermediate ranges of activity, respectively (Müller et al.,

2012). In this model, the distance that ligands can diffusively travel during the ~2 hr prior to gastru-

lation is a crucial determinant of gradient range. More recently, it was argued that Nodal signal

spread was driven instead by positive feedback (van Boxtel et al., 2015). In this model, a feedback-

driven relay spreads signaling activity away from the margin, and spread is stopped by the onset of

Lefty production. In contrast to the diffusion-driven model, the range of signaling is set by the prop-

erties of the feedback circuit (e.g. the time required for a cell to switch on Nodal production and

the delay in onset of Lefty production).

In this study, we re-examine the mechanisms that regulate Nodal signaling gradient formation in

zebrafish embryos. We find that endogenous Nodal ligands can spread over a normal range in the

absence of signaling feedback and relay, suggesting that diffusion is sufficient for gradient forma-

tion. Unexpectedly, we discover that the EGF-CFC co-receptor Oep is a potent regulator of the

range of both Cyclops and Squint; in mutants lacking oep, Nodal activity is near-uniform throughout

the embryo. We also find that Oep, although traditionally regarded as a permissive signaling factor,

sets cell sensitivity to Nodal ligands. We incorporate these observations into a mathematical model

for Nodal signal spread and predict that replenishment of Oep by zygotic expression is required for

gradient stability. Finally, we verify a surprising prediction of the model: in zygotic oep mutants,

which cannot replace Oep after it has been consumed, Nodal signaling propagates outward from

the margin as a traveling wave. These findings illustrate how the embryo uses an unappreciated

property of Oep—regulation of the rate of ligand capture—to set the range, shape, and intensity of

the Nodal signaling gradient.

Results

The Nodal signaling gradient forms in the absence of feedback
The Nodal signaling gradient may reflect the diffusive properties of Nodal ligands secreted from the

YSL or the action of signaling feedback and relay. To characterize the contribution of diffusion spe-

cifically, we set out to visualize the Nodal gradient in mutants that lack signaling feedback and relay

altogether. This goal presented two key challenges. First, endogenous Nodal ligands have not been

successfully visualized by antibody staining or fluorescent tagging in zebrafish. Second, knocking out

the full complement of all known Nodal feedback regulators—for example lefty1, lefty2, cyclops,

squint, dpr2 (Zhang et al., 2004), etc—in combination is impractical. To address these two limita-

tions, we were inspired by previous approaches for clone-mediated perturbations to morphogen

gradients (Baeg et al., 2004; Belenkaya et al., 2004; Cadigan et al., 1998; Eldar and Barkai,

2005; Entchev et al., 2000) and developed a ‘sensor’ cell assay (Figure 1A). In this approach, we

transplant Nodal-sensitive (‘sensor’) cells from a gfp-injected donor embryo to the margin of a host

that is Nodal-insensitive and therefore lacks feedback. We then visualize signaling in the sensor cells

by immunostaining for phosphorylated Smad2 (pSmad2) and GFP. Because host cells cannot

respond to Nodal, they cannot modulate signal spread by either positive or negative feedback. For

example, a transcriptional relay that spreads nodal expression would not form in this scenario. In

addition, the sensor cells ‘report’ on their local Nodal concentration via pSmad2 staining intensity,

enabling us to sample the activity of endogenous, untagged ligands. For the experiments described

here, we use sensor cells from Mvg1 donors. These cells are Nodal-sensitive but cannot produce

functional Nodal-Vg1 heterodimers and therefore cannot spread signaling via positive feedback

(Montague and Schier, 2017). To pilot the sensor cell assay, we transplanted cells from an Mvg1

donor into a wild-type host (Figure 1B, upper panel). The Mvg1 sensors exhibited a-pSmad2 stain-

ing intensity similar to their wild-type neighbors, and quantification of staining across replicate

embryos revealed similar signaling gradients for host and sensor cells (Figure 1B, lower panel; blue

and red points, respectively). This result demonstrates that transplanted sensor cells accurately
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Figure 1. Nodal gradient formation in the absence of feedback. (A) Schematic of sensor cell assay. Mvg1 donor embryos were marked by injecting gfp

mRNA at the 1-cell stage. At high stage, just before the onset of Nodal signaling, GFP-marked sensor cells were transplanted from the animal pole of

the donor to the margin of a Nodal-insensitive host. At 50% epiboly, embryos were fixed and immunostained for GFP and Nodal signaling activity (a-

pSmad2). Imaging of chimeric embryos (far right) enables inference of the gradient shape from a-pSmad2 staining (magenta) in sensor cells (green).

Figure 1 continued on next page
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report on their local signaling environment. We further note that sensor cell migration after trans-

plant does not appear to compromise the assay, as sensor cells exhibit signaling intensities appropri-

ate for their position at the time of embryo fixation. This outcome is consistent with previous

observations that cell rearrangement at the margin is minimal prior to gastrulation (Dubrulle et al.,

2015; Helde et al., 1994; Wilson et al., 1993).

We next applied this approach to MZsmad2 host embryos, which lack all Nodal signaling. Smad2

is required to activate Nodal-dependent gene expression, and zebrafish MZsmad2 embryos pheno-

copy mutants lacking Nodal ligands (Dubrulle et al., 2015). We verified that MZsmad2 embryos lack

pSmad2 (Figure 1—figure supplement 1) but continue to express cyclops and squint in the YSL

(Figure 1—figure supplement 2). Expression of both Nodals was excluded from the blastoderm,

confirming that these mutants are incapable of Nodal autoregulation (Figure 1—figure supplement

2). Mvg1 sensor cells transplanted into MZsmad2 mutants exhibit clear Nodal signaling activity sev-

eral cell tiers from the margin (Figure 1C, upper panel), while signaling was completely absent in

host cells. Quantification of staining in MZsmad2 hosts (Figure 1C, lower panel) revealed a Nodal

signaling gradient similar in range to that of wild-type controls (Figure 1B., lower panel; half-distan-

ces of 45 and 37 mm for MZsmad2 and wild type, respectively). Together, these experiments suggest

that YSL-derived Nodal ligands can form a gradient of normal range without help from signaling

feedback and relay.

Nodal signaling range is expanded in the absence of Oep
The above results support a model in which diffusion drives Nodal spread. However, it remains

unclear how the embryo sets the range of ligand dispersal. Biophysical studies with GFP-tagged

Nodals suggest that ligand mobility may be hindered by interaction with extracellular factors, as

measured diffusion rates for both Cyclops and Squint are >10 fold lower than for free GFP

(Müller et al., 2012). However, no factors that explain hindered mobility of endogenous ligands

have been identified. Cell surface receptor complexes are clear candidates for this role (Wang et al.,

2016), because transient ligand capture or receptor-mediated endocytosis could constrain the gradi-

ent (Wartlick et al., 2009), and receptors have been shown to regulate gradient range for other sig-

nals (Baeg et al., 2004; Chen and Struhl, 1996; Lecuit and Cohen, 1998; Okabe et al., 2014).

To test whether receptor complex components regulate the range of Nodal signaling, we per-

formed sensor cell transplants in embryos lacking the essential Nodal co-receptor Oep (MZoep

mutants Gritsman et al., 1999). We found that Mvg1 sensor cells detected Nodal activity over a dra-

matically longer range in MZoep hosts than in wild-type controls (Figure 2A,B). Indeed, transplant-

ing sensor cells to the animal pole revealed that Nodal ligand activity can be detected throughout

the embryo when Oep is absent (Figure 2D,E). To test whether loss of Oep affects both Nodal

ligands similarly, we performed sensor cell assays in MZoep;sqt and MZoep;cyc double mutants.

Figure 1 continued

Because host embryos lack the ability to respond to Nodal, YSL-derived Nodal ligands are responsible for the shape of the Nodal signaling gradient.

(B) Control visualization of the Nodal signaling gradient in wild-type hosts using a sensor cell assay. Upper panel; Mvg1 sensor cells (yellow) were

transplanted to the margin of a wild-type host. Nodal signaling was visualized by a-pSmad2 staining (magenta), and sensor cell boundaries were

segmented with an automated pipeline (white curves). YSL boundaries are marked with dashed white curves. Lower panel; quantification of staining

intensity in host (blue) and sensor (red) cells across replicate embryos. Nuclei were segmented from DAPI signal using an automated analysis pipeline

implemented in MATLAB. Sensor and host cells were identified as being clearly GFP positive or negative, respectively. Solid curves represent sliding

window averages. Plot was derived from three replicate embryos. (C) Sensor cell assay in MZsmad2 host embryos. Upper panel; GFP-marked Mvg1

sensor cells (yellow) were transplanted to the margin of MZsmad2 host embryos. Nodal signaling was visualized with a-pSmad2 staining (magenta).

Sensor cell boundaries are marked with white outlines, and YSL boundaries are marked with dashed white curves. Lower panel; quantification of host

(blue) and sensor (red) cell staining intensities were carried out as in (B). Plot was derived from six replicate embryos.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. In Figure 1B, sensor cell assay results were quantified by segmenting nuclei and classifying each nucleus as host- or donor-derived by

GFP intensity.

Source data 2. In Figure 1C, sensor cell assay results were quantified by segmenting nuclei and classifying each nucleus as host- or donor-derived by

GFP intensity.

Figure supplement 1. MZsmad2, Mvg1, and MZoep mutants lack pSmad2.

Figure supplement 2. MZsmad2 and MZoep embryos have intact Nodal sources.
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Figure 2. The Nodal gradient is expanded in MZoep mutants. (A-C) Sensor cell assay and gradient quantifications in (A) wild type, (B) MZoep, and (C)

lft1-/-;lft2-/- embryos. Mvg1 sensor cells were marked with GFP (yellow) and transplanted to the margin of host embryos. Nodal signaling activity is

measured by a-pSmad2 immunostaining (magenta). YSL boundaries are marked with dashed curves and sensor cell boundaries are outlined in solid

white in all a-pSmad2 panels. Gradient quantifications for each experiment are below images; host and sensor cell staining intensities are plotted as

blue and red points, respectively. Sliding window averages are plotted as solid curves. Plots for wild type, MZoep, and lft1-/-;lft2-/- backgrounds were

Figure 2 continued on next page
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Loss of Oep led to an expanded range of action for both Cyclops (i.e. in MZoep;sqt mutants) and

Squint (i.e. in MZoep;cyc mutants), and the signaling ranges in both double mutants were compara-

ble to that observed in the MZoep single mutant (Figure 2—figure supplement 1). We note that

long-range Nodal signaling in oep mutants does not reflect residual Nodal signaling between Mvg1

sensor cells, as signaling intensity was independent of sensor cell density (Figure 2—figure supple-

ment 2). Although endogenous Nodal ligands have not been detectable to date and the sensor

assay is the most sensitive reporter for signaling by Nodal ligands, we ectopically expressed GFP-

tagged Squint in a transplanted clone of source cells. Direct ligand visualization also revealed an

expanded range of secreted Nodal in MZoep mutants compared to wild type (Figure 2—figure sup-

plement 3).

In summary, the sensor assays reveal a remarkable gradient expansion in MZoep mutants when

compared with the effect of other mutations that alter Nodal signaling range. For example, the

expansion of the signaling gradient in lefty1;lefty2 mutant embryos, which lack negative feedback

on Nodal signaling (Rogers et al., 2017; Figure 2C), is mild compared to our observations in MZoep

embryos (Figure 2B,C). These results demonstrate that receptor complexes play key roles in con-

straining the spread of Nodal signals from the YSL.

Oep regulates the range and intensity of Nodal signaling through
ligand capture
EGF-CFC proteins such as Oep are typically regarded as permissive factors for Nodal signaling. Oep

facilitates the assembly of receptor-ligand complexes but is not thought to regulate signaling

beyond conferring competence (Zhang et al., 1998). However, our finding that Nodal ligand range

is expanded in the absence of Oep suggests that it has unappreciated regulatory roles. The simplest

way to accommodate this result is to stipulate that Oep levels set the rate of capture of diffusing

Nodal ligands. Through this mechanism, Oep could control the range of Nodal activity by regulating

the rate of receptor-mediated ligand internalization (i.e. the effective ligand degradation rate). This

model makes two testable predictions. First, increasing Oep levels should enhance cell sensitivity to

Nodal ligands by facilitating capture by receptor complexes. Second, increasing Oep levels should

reduce the range of Nodal signaling by increasing the effective degradation rate.

To test whether Oep regulates cell sensitivity, we asked whether overexpressing oep in sensor

cells increases their responsiveness to endogenous Nodals. We transplanted cells from Mvg1

embryos injected with oep and gfp mRNAs or with gfp alone to the margin of wild-type embryos

and immunostained for GFP and pSmad2. Sensors with increased Oep levels stained more brightly

for pSmad2 than neighboring host cells (Figure 3B), while sensors injected with gfp alone matched

the behavior of their neighbors (Figure 3A). Interestingly, we found that the oep-overexpressing

sensors detected Nodal further from the margin than the host cells, suggesting that the Nodal

ligand gradient extends beyond the domain of detectable signaling in normal embryos (Figure 3B).

Figure 2 continued

derived from 8, 10, and 8 replicate embryos, respectively. Decay parameters for single-exponential model fits (±95% confidence bounds) are

�0.02 ± 0.004 mm�1,–0.007 ± 0.002 mm�1 and �0.013 ± 0.002 mm�1 for wild-type, MZoep and lft1-/-;lft2-/ hosts, respectively. (D) Left panel; Mvg1 sensor

cells (yellow) were transplanted directly to the animal pole of a wild-type host. The endogenous Nodal signaling gradient is visible at the embryonic

margin (magenta). White box highlights region expanded for detail view in right panel. Right panel; Nodal signaling activity is absent in both host and

sensor cells. (E) Left panel; Mvg1 sensor cells (yellow) were transplanted to the animal pole of an MZoep embryo. Nodal signaling is absent at the

embryonic margin. White box highlights region expanded in the right panel. Right; sensor cells detect Nodal at the animal pole (magenta).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. In Figure 2A, sensor cell assay results were quantified by segmenting nuclei and classifying each nucleus as host- or donor-derived by

GFP intensity.

Source data 2. In Figure 2B, sensor cell assay results were quantified by segmenting nuclei and classifying each nucleus as host- or donor-derived by

GFP intensity.

Source data 3. In Figure 2C, sensor cell assay results were quantified by segmenting nuclei and classifying each nucleus as host- or donor-derived by

GFP intensity.

Figure supplement 1. Cyclops and Squint signal over a long range in the absence of Oep.

Figure supplement 2. Clustering does not contribute to Nodal sensitivity in sensor cells.

Figure supplement 3. The Nodal ligand gradient is shaped by oep expression.
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Figure 3. Oep levels regulate Nodal ligand capture and signaling range. (A–B) Oep overexpression increases

sensitivity to Nodal ligands. (A) Upper panel: control transplant of GFP-marked Mvg1 sensor cells (yellow) to the

margin of wild-type hosts. Nodal signaling activity was measured by a-pSmad2 immunostaining (magenta). In all

panels, YSL boundaries are marked with dashed white curves, and sensor cells have been outlined in solid white in

Figure 3 continued on next page
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We note that the increased sensitivity of the oep-overexpressing sensors does not reflect the action

of hyperactive-positive feedback on Nodal production, as Mvg1 cells are incapable of producing

functional Nodal-Vg1 heterodimers. These results suggest that, in addition to being required for sig-

naling competence, Oep regulates sensitivity to Nodal ligands.

To test whether Oep levels modulate Nodal range, we asked whether overexpression of oep

could restrict signaling. We performed sensor cell assays in MZsmad2 hosts injected with oep mRNA

at the one-cell stage. Overexpression of Oep indeed reduced the range and intensity of Nodal sig-

naling (Figure 3D) when compared with uninjected hosts (Figure 3C). We note that the choice of

MZsmad2 hosts was important for interpretation of the experiment. As Oep sensitizes cells to Nodal

ligands, increasing expression in signaling-competent host embryos could lead to increased signal-

ing by triggering Nodal positive feedback. Nodal signaling is disabled downstream of the receptor

in MZsmad2 mutants, allowing us to specifically test Oep’s role in regulating ligand range without

this confound.

To further test the idea that Oep restricts Nodal spread, we analyzed the distribution of fluores-

cently-tagged Squint in embryos expressing excess oep. In the first experiment, we visualized the

range of Squint-sfGFP gradients generated by transplanted source cells in hosts lacking oep

(MZoep) and hosts overexpressing oep (MZoep injected with oep mRNA). Consistent with our sen-

sor cell results, overexpression of oep resulted in marked shortening of the Squint-sfGFP gradient

relative to MZoep (Figure 2—figure supplement 3). In a second experiment, we expressed Halo-

tagged Vg1 and Squint in the YSL and monitored their accumulation in sensor cells (Figure 3—fig-

ure supplement 1). Embryos producing tagged ligands were generated by injecting mRNAs encod-

ing vg1-halotag and squint directly into the YSL shortly after its formation (1k-cell stage). To

concentrate and clearly visualize the Halo-tagged ligand, we transplanted sensor cells from a donor

embryo injected with oep mRNA to the animal pole, akin to a morphotrap approach

(Stapornwongkul et al., 2020; Almuedo-Castillo et al., 2018; Harmansa et al., 2017;

Harmansa et al., 2015). Halo-tagged ligand accumulated in the animal pole sensors in MZoep hosts

but not in wild-type hosts. This accumulation was prevented by overexpressing oep in the MZoep

hosts. Together, these results indicate that Oep regulates both the range and intensity of Nodal

signaling.

Figure 3 continued

all a-pSmad2 panels. Lower panel: quantification of Nodal signaling in sensor (red) and host cells (blue) across

replicate embryos. Sliding window averages are plotted as solid curves. Plot was derived from eight replicate

embryos. (B) Upper panel: transplant of sensor cells from an Mvg1 donor injected with gfp and 110 pg oep mRNA

at the one-cell stage to the margin of wild-type hosts. Sensor cells (yellow) exhibit enhanced Nodal signaling

activity (magenta) compared to their host-derived neighbors. Lower panel; staining of host (blue) and sensor (red)

cells was quantified as in (A). Plot was derived from nine replicate embryos. (C-D) Oep overexpression restricts

Nodal spread. (C) Upper panel: sensor cell measurement of the Nodal gradient in MZsmad2 embryos. Mvg1

sensor cells were marked with GFP (yellow), and Nodal signaling activity was measured by a-pSmad2

immunostaining (magenta). Lower panel: quantification of Nodal signaling in sensor (red) and host cells (blue) was

quantified as in (A). Plot was derived from nine replicate embryos. (D) Upper panel: Mvg1 sensor cell measurement

of the Nodal signaling gradient in MZsmad2 hosts injected with 110 pg oep mRNA at the one-cell stage. Lower

panel; gradients were quantified as in (A). Plot was derived from nine replicate embryos.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. In Figure 3A, sensor cell assay results were quantified by segmenting nuclei and classifying each

nucleus as host- or donor-derived by GFP intensity.

Source data 2. In Figure 3B, sensor cell assay results were quantified by segmenting nuclei and classifying each

nucleus as host- or donor-derived by GFP intensity.

Source data 3. In Figure 3C, sensor cell assay results were quantified by segmenting nuclei and classifying each

nucleus as host- or donor-derived by GFP intensity.

Source data 4. In Figure 3D, sensor cell assay results were quantified by segmenting nuclei and classifying each

nucleus as host- or donor-derived by GFP intensity.

Figure supplement 1. Nodal ligand range is expanded in MZoep mutants.
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A simple model incorporating Oep-Nodal interaction reproduces
experimental observations
We formulated a simple mathematical model of Nodal gradient formation to explore whether Oep-

mediated capture of diffusing Nodal ligands is sufficient to explain our experimental data

(Figure 4A). In the model, Nodal is secreted at a constant rate at one end of a two-dimensional tis-

sue and diffuses freely until it is captured by a free receptor complex. We stipulate that ligand-

receptor association follows pseudo first-order kinetics (i.e. that the free receptor concentration can

be regarded as constant) and that internalization of receptor-ligand complexes is also first-order. To

track integration of signaling activity, we also incorporate phosphorylation of Smad2 with a rate pro-

portional to ligand-receptor complex concentration. Where possible, parameter values were taken

from the literature. Model details and a summary of the rates used in simulations are presented in

Supplementary file 1.
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Figure 4. A simple model of Nodal diffusion and capture reproduces experimental observations. (A) Schematic of Nodal diffusion-capture model.

Simulations were performed on a two-dimensional tissue of 100 mm x 300 mm. Nodal molecules are secreted at a constant rate from a localized source

at one boundary of the tissue (i.e. 0 < x < 5 mm) and diffuse freely until capture by cell surface receptors (‘Oep’). Ligand-receptor complexes are

removed from the system by internalization. To track signaling activity, Smad2 phosphorylation is simulated with rate proportional to the concentration

of receptor-ligand complexes. (B-D) Simulation of transplant experiments. In each simulation, the behavior of sensor cells (white outlines) is compared

with the behavior of the host embryo (remainder of tissue). Parameters were independently set for host and sensor regions, allowing for simulation of

experiments with mutations and overexpression. Signaling activity (i.e. [pSmad2]) is plotted in magenta. Upper panels present representative

simulations with randomly-positioned sensor cells. Lower panels depict quantified signaling intensities for sensor cells from the panel above (blue

points) and average intensities derived from replicate simulations (red curves). (B) Wild-type gradient simulation. Sensor cells with normal Oep levels are

transplanted into a host with normal Oep levels. A stable gradient forms, and signaling is identical in sensor cells and neighboring regions. (C) Gradient

expansion in MZoep mutants. Sensor cells contain normal Oep levels, but host cells lack Oep. Sensor cells detect ligand throughout the tissue. (D)

Gradient contraction with oep overexpression. Sensor cells contain normal Oep levels, whereas host cells lack Smad2, but overexpress oep. Signaling is

absent in the host tissue—due to lack of Smad2—but elevated receptor expression restricts Nodal spread to the sensors.
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This simple model reproduces a signaling gradient with a scale and shape consistent with our

observations in wild-type embryos (Figure 4B). To reproduce our experimental data, we simulated

sensor cell assays (Figure 4B–D, sensor cells highlighted with white outlines). Expansion of the Nodal

ligand gradient in MZoep mutants can be reproduced by simulating ‘hosts’ with the receptor con-

centration set to zero (Figure 4C). Similarly, restriction of signaling range via oep overexpression

could be reproduced by increasing receptor levels in host cells, but not in the sensors (Figure 4D). A

model in which Nodal capture rate is set by Oep concentration can therefore reproduce our major

experimental findings.

Loss of Oep replenishment transforms nodal signaling dynamics
The simplified model presented above assumes that free receptor cannot be depleted by ligand

binding. While convenient, this condition may be difficult for the embryo to achieve in practice. For

example, maintaining receptors at high concentration would preclude depletion but could also pre-

vent ligand from traveling long distances before capture. Another way for the embryo to avoid

depletion would be to continually replace receptor components as they are consumed by ligand

binding. To explore the role of receptor complex replacement in gradient formation, we explicitly

incorporated receptor production and degradation into the model (Figure 5A).

Simulations incorporating receptor production and consumption generate stable exponential gra-

dients (Figure 5B) with length scales comparable to our measurements in zebrafish embryos. To test

the consequences of losing co-receptor replacement, we simulated gradient formation in a system

that begins with a finite supply of free receptors that are not replaced. This change results in a sur-

prising transformation of Nodal signaling dynamics; simulations with finite co-receptor supply gener-

ate a traveling wave of Nodal signaling that propagates outward from the ligand source (Figure 5C,

magenta). These dynamics reflect the gradual consumption of co-receptors due to ligand binding

and subsequent endocytosis (Figure 5C, cyan). Initially, when co-receptor is plentiful, the source

generates a decaying gradient of signaling. Over time, receptors close to the source are depleted,

allowing Nodal ligands to rapidly traverse this space, ultimately reaching a new population of sensi-

tive cells. We note that wave formation does not critically depend on our assumptions regarding the

mechanism of co-receptor downregulation; a model that incorporates Oep trafficking and recycling

also supports our key conclusions (Figure 5—figure supplement 1). In sum, these simulations raise

the possibility that co-receptor replenishment is a key determinant of the Nodal gradient shape.

To test this idea, we measured Nodal signaling patterns in zygotic oep mutants (Zoep)

(Schier et al., 1997). This background reproduces the key assumptions of the model above: Zoep

mutants begin with a finite supply of maternally provided oep mRNA but cannot express additional

oep from the zygotic genome (Zhang et al., 1998). Indeed, previous studies have shown that

maternally deposited oep mRNA is undetectable in Zoep mutants by germ ring stage (Zhang et al.,

1998) and that oep mRNA is depleted from wild-type embryos by 60% epiboly in the absence of

zygotic transcription (Vopalensky et al., 2018). We performed a-pSmad2 immunostaining in wild-

type and Zoep mutant embryos at three timepoints following the initiation of Nodal secretion

(dome, 50% epiboly and shield stages). Consistent with previous observations, the wild-type Nodal

signaling profile monotonically decreases from the margin, decaying to background over ~8 cell tiers

(Figure 5D). Strikingly, in Zoep mutants, Nodal signaling is restricted to the margin at dome stage

(Figure 5E, left), but propagates outward to form a broad band of signaling by shield stage

(Figure 5E, right). As predicted by the model, loss of co-receptor replacement by zygotic expression

thus transforms a steady-state exponential gradient into a wave of Nodal signaling that propagates

toward the animal pole. We note that, in accordance with model simulations, overall signaling inten-

sity is lower in Zoep mutants due to lower overall co-receptor levels (Figure 5F). These results high-

light the importance of continued co-receptor replacement in shaping the pattern of Nodal

signaling.

Discussion
In this study, we set out to identify mechanisms that determine the Nodal signaling gradient range

and shape. We find that endogenous Nodals secreted from the YSL can drive signaling over a nor-

mal range in the absence of feedback and relay mechanisms (Figure 1). We go on to demonstrate

that expression of Oep, a Nodal co-receptor, regulates the spread (Figure 2), potency (Figure 3),
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Figure 5. Loss of Oep replacement destabilizes the Nodal signaling gradient. (A) Schematic of model incorporating production and consumption of

receptors. Simulations presented here were performed on a one-dimensional tissue with length 300 mm. Oep replacement is assumed to be constant

with rate k3, and Oep removal reflects a combination of constitutive and ligand-dependent endocytosis. In panels A and B, simulations are presented

as kymographs; each image column shows the state of the system with the source at the bottom and animal pole at the top. Time proceeds from left to

Figure 5 continued on next page
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and shape (Figure 5) of Nodal activity. We present a simple computational model that explains the

Nodal signaling gradient in terms of free ligand diffusion and binding to cell surface receptor com-

plexes (Figure 4). In this description, Oep regulates the range of ligand spread and sensitivity of

embryonic cells by setting the rate of ligand capture. This simple model accommodates our main

observations—gradient formation without feedback, increased signaling range in co-receptor

mutants, restricted range with increased co-receptor expression, and a signaling wave in the

absence of co-receptor replenishment.

Diffusion has long been regarded as an attractive mechanism for signal dispersal in tissues

(Crick, 1970). Indeed, signaling patterns consistent with simple diffusion-degradation mechanisms—

for example single-exponential gradients with length scales of ~10–100 mm— are common in devel-

oping tissues (Kicheva et al., 2012). Viewed in this light, the regulatory complexity of developmen-

tal patterning circuits is striking; if diffusion is sufficient to generate observed signaling patterns, why

are co-factors and extensive feedback loops so common? One possible answer is that diffusion car-

ries inherent disadvantages. For example, it has been argued that diffusible ligands would be

impractical to contain without physical boundaries (Kornberg and Guha, 2007), and that diffusion-

driven gradients would not be a reliable source of positional information (Wolpert, 2016). We and

others have proposed feedback-centered Nodal patterning models that offer a way around these

dilemmas (Müller et al., 2012; van Boxtel et al., 2015; Chen and Schier, 2002; Rogers et al.,

2017; Nakamura et al., 2006). However, it has not been possible to clearly test whether feedback is

required for the dispersal of endogenous ligands. This study is the first to examine the shape of the

Nodal signaling gradient in the absence of feedback and relay. We found that a gradient of approxi-

mately normal range and shape can form even when feedback is disabled.

Recent studies in zebrafish embryos (van Boxtel et al., 2015) and human gastruloids (Liu, 2021)

have proposed that long-range Nodal signaling relies on a positive feedback-driven relay. In zebra-

fish, this conclusion was based on the observations that Nodal signaling induces nodal gene expres-

sion (Meno et al., 1999) and the expression domain of a synthetic Nodal reporter gene coincides

with, but does not extend beyond, the nodal expression domain (van Boxtel et al., 2015). While

these findings are consistent with relay-driven transport, these previous zebrafish studies did not

test whether the range of Nodal signaling indeed depends on nodal autoregulation and contracts

when autoinduction is disrupted. Our findings directly address this question and reveal that relay

mechanisms are not necessary for the generation of a Nodal signaling gradient in zebrafish. Nodal

gene expression in the YSL is sufficient to establish a Nodal signaling gradient.

In human gastruloids, engineered gradients created with juxtaposed ‘sender’ and ‘receiver’ cells

revealed that Nodal signaling is attenuated when receiver cells are nodal mutants (Liu, 2021). This

experiment demonstrates that nodal autoregulation supports the spread of Nodal signaling; how-

ever, since nodal expression in sender cells was also reduced in this context, it remains unclear if

autoregulation is required for maintaining the initial nodal source or for generating a relay of nodal

expression.

Figure 5 continued

right. (B) Simulation of a wild-type gradient. With continual receptor replacement, the system achieves an exponential steady state gradient with length

scale set by the ligand diffusion rate and receptor abundance. The free ligand, free receptor, and receptor-ligand complex concentrations are plotted

from left to right in red, cyan, and magenta, respectively. (C) Simulation of gradient formation in a zygotic oep mutant. Simulation details are identical

to (B), but with receptor replacement rate (k3) set to zero. The system fails to establish a steady state due to gradual consumption and degradation of

receptors. Over time, the Nodal ligand gradient expands (red) to drive a propagating wave of signaling activity (i.e. receptor occupancy, magenta). (D)

Time course of Nodal signaling activity in wild-type embryos. Representative a-pSmad2 (magenta) and DAPI (cyan) are shown for dome, 50% epiboly

and shield stages (left, middle and right panels, respectively). Compilation of signaling gradients across replicates (far right) shows the establishment of

the signaling gradient. Composite gradients were derived from 5, 6, and 6 replicate embryos for dome, 50% epiboly and shield stages, respectively. (E)

Time course of Nodal signaling activity in zygotic oep mutants. Over time, the signaling pattern evolves from a gradient (dome stage) to a band

displaced far from the margin (shield) as the wave travels outward. Compilation of signaling gradients across replicates (far right) illustrates the outward

propagation of signaling. Composite gradients were derived from 7, 6, and 3 replicate embryos for dome, 50% epiboly, and shield stages, respectively.

(F) Time course of Nodal signaling activity in zygotic oep mutants presented with pixel scaling equal to that used in (D). In accord with simulations, the

wave of signaling propagates with a lower intensity than signaling at the margin of wild-type embryos.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. An endocytic trafficking model predicts wave formation in Zoep mutants.
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It is conceivable that different tissues require distinct implementations of the Nodal-Lefty pattern-

ing system. For example, the rapid pace of zebrafish mesendodermal patterning may make diffusion

the only viable Nodal transport mechanism, while slower development in mammalian embryos may

permit the use of multi-step, feedback-driven transport mechanisms. Different features of the Nodal-

Lefty system (activator-inhibitor signaling; differential diffusivity; positive and negative feedback)

might be distinctly employed for pattern formation in different contexts.

Our study identifies new roles for EGF-CFC co-receptors in Nodal signaling. Oep has been tradi-

tionally regarded as a permissive factor for signaling Zhang et al., 1998; it facilitates Nodal associa-

tion with Activin receptors (Cheng et al., 2003; Reissmann et al., 2001; Yeo and Whitman, 2001)

but was not thought to regulate gradient shape or cell sensitivity (Gritsman et al., 1999;

Zhang et al., 1998). Our observations suggest that— similar to receptors for Dpp (Lecuit and

Cohen, 1998), Hh (Chen and Struhl, 1996) and Wg (Baeg et al., 2004)—Oep is a key determinant

of the mobility and potency of its cognate ligand. Indeed, far from being a bystander in gradient for-

mation, Oep is one of the strongest regulators of Nodal range yet discovered. This finding also sug-

gests a potential explanation for a key feature of the Nodal patterning circuit: differential diffusivity

between Nodal ligands and Lefty proteins. GFP-tagged Cyclops and Squint diffuse substantially

slower than free GFP, whereas tagged Lefty proteins diffuse rapidly (Müller et al., 2012). This fea-

ture of Nodal ligands is consistent with a hindered diffusion model in which interactions with immo-

bile binding partners leads to a slow ‘effective’ diffusion rate, even if free molecules diffuse rapidly

(Müller et al., 2013; Müller et al., 2012). Our data raise the possibility that the differential diffusivity

of Nodal and Lefty proteins originates in rates of capture by available receptor complexes.

Oep-mediated ligand capture and signaling sensitization results in short-range enhancement and

long-range inhibition of Nodal signaling: close to the Nodal source, Oep binds Nodal and stimulates

signaling, whereas far from the source, little Nodal is available due to Oep-mediated capture close

to the source. Despite its distinct molecular roles, the Nodal signaling factor Oep thus has a function

reminiscent of the Nodal inhibitor Lefty. Lefty is produced at the margin, but diffuses rapidly to

inhibit Nodal signaling far from the source. A common theme for Nodal regulators is therefore to

counteract the inherent potential for long-range Nodal diffusion and signaling and to restrict Nodal

signaling to a domain near the ligand source.

Our results suggest that the embryo’s strategy for replenishing Oep is a key point of control over

the signaling pattern. We found that, without this replacement, the Nodal signaling pattern is quali-

tatively transformed from a stable gradient into a propagating wave. Interestingly, a signaling wave

of this type was predicted in a theoretical study of morphogen gradient formation by

Kerszberg and Wolpert, 1998. In fact, they used this phenomenon to argue that receptor satura-

tion would make stable gradients difficult to achieve by diffusive transport. Our results suggest that

consumption of receptors can create precisely this type of unstable behavior, but that the embryo

achieves a stable gradient through continual turnover of the receptor pool. Though not employed

during mesendodermal patterning, this phenomenon could provide a simple means of repurposing

the Nodal patterning circuit to create dynamic waves of signaling in other contexts. For example, in

left-right patterning the consumption of Oep by Nodal might support the anterior spread of the

expression of the Nodal gene southpaw (Long et al., 2003). More generally, signaling waves have

emerged as a mechanism to coordinate diverse processes such as cell migration (Aoki et al., 2017),

tissue regeneration (De Simone et al., 2021), and apoptosis (Cheng and Ferrell, 2018). Signaling

feedback is generally invoked to explain these phenomena. However, our results suggest receptor

depletion as an alternative, feedback-free mechanism of signaling wave formation. Finally, we specu-

late that the precise dynamics of Oep replacement might contribute additional interesting functions

to patterning systems. For example, signaling-dependent receptor expression could confer robust-

ness to fluctuations in source-derived morphogen production (Barkai and Shilo, 2009; Eldar et al.,

2003).

The surprising dispensability of positive feedback for gradient formation parallels our findings on

the role of negative feedback in Nodal patterning (Rogers et al., 2017). In that work, we showed

that Lefty-mediated feedback—despite its extensive conservation across animals—was dispensable

for normal development in zebrafish. Lefty was instead required for robustness; intact feedback

loops enabled the embryo to correct exogenous perturbations to signaling. This raises the intriguing

possibility that Nodal positive feedback serves a similar purpose. Though dispensable for gradient
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formation per se, positive feedback may help to ensure that a gradient of the appropriate shape

and intensity forms even in the face of mutations, environmental insults or signaling noise.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Gene
(Danio rerio)

oep (tdgf1) ZFIN ZDB-GENE-990415–198

Gene
(Danio rerio)

ndr1 (sqt) ZFIN ZDB-GENE-990415–256

Gene
(Danio rerio)

ndr2 (cyc) ZFIN ZDB-GENE-990415–181

Gene
(Danio rerio)

smad2 ZFIN ZDB-GENE-990603–7

Gene
(Danio rerio)

vg1 (gdf3) ZFIN ZDB-GENE-980526–389

Gene
(Danio rerio)

lft1 ZFIN ZDB-GENE-990630–10

Gene
(Danio rerio)

lft2 ZFIN ZDB-GENE-990630–11

Strain, strain
background
(Danio rerio)

AB ZIRC ZDB-GENO-960809–7

Strain, strain
background
(Danio rerio)

TL ZIRC ZDB-GENO-990623–2

Genetic
reagent
(Danio rerio)

oeptz57 Hammerschmidt
et al., 1996

RRID:ZDB-ALT-980203-1256

Genetic
reagent
(Danio rerio)

sqttcz35 Feldman et al.,
1998

RRID:ZDB-ALT-000913-2

Genetic
reagent
(Danio rerio)

cycm294 Sampath et al.,
1998

RRID:ZDB-ALT-980203-609

Genetic
reagent
(Danio rerio)

smad2vu99 Dubrulle et al.,
2015

RRID:ZDB-ALT-150807-1

Genetic
reagent
(Danio rerio)

vg1a165 Montague and
Schier, 2017

RRID:ZDB-ALT-180515-7

Genetic
reagent
(Danio rerio)

lft1a145 Rogers et al., 2017 RRID:ZDB-ALT-180417-4

Genetic
reagent
(Danio rerio)

lft2a146 Rogers et al., 2017 RRID:ZDB-ALT-180417-5

Recombinant
DNA reagent

pJZoep
Flag1-2

Zhang et al., 1998 Template for
in vitro transcription

Recombinant
DNA reagent

SV40NLS-sfgfp in
pCS2+

Gift from
Dr. Jeffrey Farrell

Template for
in vitro transcription

Recombinant
DNA reagent

sqt-sfGFP
in pCS2+

Montague and
Schier, 2017

Template for
in vitro transcription

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Recombinant
DNA reagent

vg1-halotag in pCS2+ This study Plasmid can be
obtained by
reaching out to N.L.

Template for
in vitro transcription.

Recombinant
DNA reagent

sqt in
pCS2+

Müller et al., 2012 Template for
in vitro transcription

Antibody Anti-phospho-smad2/3
(rabbit monoclonal)

Cell Signaling
Technology

#18338 1:1000 dilution

Antibody Anti-GFP
(chicken monoclonal)

Aves Labs (RRID:AB_2307313) 1:1000 dilution

Antibody Anti-eCdh1
(mouse monoclonal)

BD Biosciences #610181
(RRID:AB_397580)

1:100 dilution

Antibody Goat a-
rabbit
Alexa 647
conjugate
(goat monoclonal)

Thermo-Fisher
Scientific

A-21245
(RRID:AB_2535813)

1:2000 dilution

Antibody Goat a-
chicken Alexa 488
(goat monoclonal)

Thermo-
Fisher Scientific

A-11039
(RRID:AB_142924)

1:2000 dilution

Antibody Goat a -
mouse IgG
(H + L)-
Alexa 488
(goat monoclonal)

Thermo-Fisher A-32723
(RRID:AB_2633275)

1:750 dilution

Peptide,
recombinant
protein

Pronase Millipore Sigma 53702

Commercial
assay or kit

mMessage mMachine Sp6 kit Thermo-Fisher AM1340

Commercial
assay or kit

E.Z.N.A. Cycle Pure Omega Bio-Tek D6492-01

Commercial
assay or kit

E.Z.N.A. Total RNA
Kit I

Omega Bio-Tek R6834-01

Chemical
compound,
drug

kDa Alexa488-dextran conjugate Thermo-Fisher D34682

Chemical
compound,
drug

Janelia Fluor HaloTag Ligand 646 Promega GA1120

Software,
algorithm

ImageJ/FIJI ImageJ/FIJI RRID:SCR_002285 Image Analysis

Software,
algorithm

MATLAB Mathworks RRID:SCR_001622 Image Analysis,
Simulations

Genotyping
Genomic DNA was isolated via the HOTSHOT method from either excised adult caudal fin tissue or

individual fixed embryos (Meeker et al., 2007). Genotyping was carried out via PCR under standard

conditions followed by restriction enzyme digest when appropriate. For brevity, allele designations

were omitted in the rest of the text. lefty1a145: The lefty1a145 allele contains a 13-base-pair deletion

that destroys a PshAI restriction site and was detected as in Rogers et al., 2017. lefty2a146: The

lefty2a146 allele contains an 11-base-pair deletion and was detected as described (Rogers et al.,

2017). squintcz35 : The squintcz35 allele contains a ~ 1.9 kb insertion and was detected as in

Feldman et al., 1998. cyclopsm294 : The cyclopsm294 allele contains a single nucleotide polymor-

phism (SNP) that destroys an AgeI restriction site and was detected as described (Sampath et al.,

1998). oeptz57 : The oeptz57 allele contains a SNP that introduces a Tsp45I restriction site
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(Zhang et al., 1998; Hammerschmidt et al., 1996). The allele was detected via PCR amplification

with primers AC102 and AC103 flanking the SNP followed by Tsp45I digestion overnight. A wild-

type allele yields an undigested band of 285 bp, while a mutant allele yields bands of 140 bp and

145 bp. vg1a165 : The vg1a165 allele contains a 29 bp deletion and was detected as described

(Montague and Schier, 2017). smad2vu99: The smad2vu99 allele contains a SNP that introduces a

BtsCI restriction site (Dubrulle et al., 2015). The allele was detected via PCR amplification with pri-

mers NL-89 and NL-91 flanking the SNP followed by BtsCI digestion overnight. A wild-type allele

yields an undigested band of 298 bp, while a mutant allele yields bands of 221 bp and 77 bp.

Zebrafish husbandry and fish lines
Fish were maintained per standard laboratory procedures (Westerfield, 1993). Embryos were raised

at 28.5˚C in embryo medium (250 mg/L Instant Ocean salt, 1 mg/L methylene blue in reverse osmo-

sis water adjusted to pH seven with NaHCO3) and staged according to a standard staging series

(Kimmel et al., 1995). Wild-type fish and embryos represent the TLAB strain. Lefty1, lefty2, squint,

cyclops, oep, and vg1 mutant fish were maintained as previously described (Montague and Schier,

2017; Rogers et al., 2017; Zhang et al., 1998; Feldman et al., 1998; Sampath et al., 1998).

Cyc+/-;oep-/-, and sqt+/-;oep-/- double mutants were generated by incrossing cyc+/-;oep+/- or sqt+/-;

oep+/- respectively and rescuing them with an injection of 55 pg oep mRNA at the one-cell stage.

Smad2-/- germline carrier fish were obtained by germline transplantation, using Smad2+/- incross

progeny as germ cell donors (Ciruna et al., 2002). Germline carrier embryos were obtained by

either incrossing EK fish or crossing dmrt1E3ins-/- female fish to dmrt1E3ins-/+ male fish. The

dmrt1E3ins-/- and dmrt1E3ins-/+ fish were gifts from Kaitlyn A. Webster/Kellee R. Siegfried and were

used with the intent of biasing germline carriers to female adult fates (Webster et al., 2017).

For experiments shown in the text, mutant embryos were derived as follows: MZoep embryos

were obtained by crossing oep-/- adults; Zoep embryos were obtained by crossing oep � females

with oep-/- males (see genotyping below); MZsmad2 embryos were obtained by crossing smad2-/-

germline carrier adults; Mvg1 embryos were obtained by crossing vg1-/- females with TLAB males;

lft1-/-;lft2-/- embryos were obtained by crossing lft1-/-;lft2-/- adults; sqt+/+;MZoep, sqt+/-;MZoep, and

sqt-/-;MZoep embryos were obtained by crossing sqt+/-;oep-/- adults; cyc+/+;MZoep, cyc+/-;MZoep,

and cyc-/-;MZoep embryos were obtained by crossing cyc+/-;oep-/- adults.

mRNA synthesis and microinjection
pCS2 +vectors containing the CDS of either SV40NLS-sfgfp or oep were linearized with NotI and

subsequently purified with the E.Z.N.A. Cycle Pure (Omega) kit. Purified templates were transcribed

using the mMESSAGE mMACHINE SP6 (Invitrogen/Thermo Fisher Scientific) kit, and the resulting

gfp and oep capped mRNAs were purified with the E.Z.N.A. Total RNA Kit I (Omega). Capped

mRNA concentrations were evaluated via NanoDrop (Thermo Fisher Scientific) spectrophotometry.

Kits were used per manufacturer’s respective protocols.

Sensor cell transplant experiments
Mvg1 sensor donors were injected with either 1 nl of 55 pg/nl gfp mRNA or 1 nl of 55 pg/nl gfp

mRNA +110 pg/nl oep mRNA (Figure 3B) at the one-cell stage. MZsmad2 +oep hosts (Figure 3D)

were injected with 1 nl of 110 pg/nl oep mRNA at the one-cell stage. Prior to injection, both donor

and host embryos were enzymatically dechorionated using 1 mg/ml Pronase (Millipore Sigma). After

injection, embryos were raised at 28.5˚C in 1% agarose-coated plastic dishes in embryo medium. At

high stage, donor and host embryos were placed in 1X Danieau’s buffer, and ~5–10 blastomeres

were transplanted from the animal pole of donor embryos to the margin of host embryos, unless

specified otherwise. After transplantation, host embryos were returned to embryo medium and

raised to 50% epiboly at 28.5˚C before fixation.

a-pSmad2 immunostaining
The protocol was modified from Rogers et al., 2017. Briefly, embryos were fixed in 4% formalde-

hyde overnight at 4˚C in 1x PBSTw (1x PBS + 0.1% (v/v) Tween 20), washed in 1x PBSTw, dehydrated

in a MeOH/PBST series (25%, 50%, 75%, and 100% MeOH), and stored at �20˚C until staining.

Embryos were rehydrated in a MeOH/PBSTr (1x PBS + 1% (v/v) Triton X-100) series (75%, 50%, and

Lord, Carte, et al. eLife 2021;10:e54894. DOI: https://doi.org/10.7554/eLife.54894 17 of 31

Research article Computational and Systems Biology Developmental Biology

https://doi.org/10.7554/eLife.54894


25% MeOH), washed 3x in PBSTr, and manually de-yolked. Embryos were then incubated for 2 hr at

room temperature (RT) in antibody binding buffer (PBSTr +1% (v/v) DMSO) before overnight incuba-

tion with 1:1000 a-pSmad2 antibody (Cell Signaling Technology #18338) and, when required, 1:1000

a-GFP antibody (Aves Labs AB_2307313) in antibody binding buffer at 4˚C. After 1˚ antibody incuba-

tion, embryos were washed 6X with PBSTr before a 30 min RT incubation in antibody binding buffer.

Embryos were then incubated in 1:2000 goat a-rabbit Alexa 647 conjugate (ThermoFisher A-21245)

and, when required, 1:2000 goat a-chicken Alexa 488 conjugate (ThermoFisher A-11039) in antibody

binding buffer. Embryos were then washed 6X with PBSTr and 1X PBSTw respectively before a 30

min RT incubation with DAPI. Embryos were washed 3X in PBSTr before dehydration in a MeOH/

PBSTw series (50% and 100% MeOH). Embryos were stored at �20˚C in MeOH until imaging.

Embryo clearing and imaging
Embryos were first cleared in 2:1 benzyl benzoate:benzyl alcohol (BBBA) (Yokomizo et al., 2012).

After clearing, embryos were mounted in BBBA in individual wells of a 15-well multitest slide (MP

Biomedicals). Mounting was performed under a Zeiss Stemi 2000 stereoscope fitted with a Nightsea

adaptor system with UV filters and light head to enable embryo visualization. Embryos were then

cracked with forceps before placement of a #1.5 coverslip, approximately flattening the embryos.

The coverslip was secured with adhesive tape before imaging on a Zeiss LSM-700 inverted confocal

microscope.

smFISH probe synthesis
Single-molecule fluorescent in situ hybridization (smFISH) probes against the coding sequences of

cyclops and squint were designed using the Stellaris Probe Designer, with oligo length 18–22 bp

and minimum spacing length two nucleotides. Probes were then checked for cross-reactivity

between orthologs (probes with <4 mismatches were discarded) and ordered with 3’ C7 amino

group modifications (IDT). Thirty-nine probes against cyclops and 44 against squint were purchased.

Probe libraries for each gene were pooled, dehydrated in a Speedvac, and resuspended in water at

a concentration of 1 mM. Probes were then coupled to Atto-647N NHS ester (Millipore Sigma

#18373) per supplier protocol and purified with the Zymo Oligo Clean and Concentrator kit. Probe

concentration was then determined using NanoDrop (Thermo Fisher Scientific) spectrophotometry.

smFISH staining and imaging
The smFISH staining protocol is modified from previous reports (Oka and Sato, 2015; Stapel et al.,

2016). Briefly, embryos were fixed in 4% formaldehyde overnight at 4˚C in 1x PBSTw (1x PBS + 0.1%

(v/v) Tween 20), washed in 1x PBSTw, dehydrated in a MeOH/PBST series (50% and 100% MeOH),

and stored at �20˚C until staining. Embryos were rehydrated in a MeOH/PBSTw (50% and 100%

PBSTw) series before manual deyolking. Embryos were then incubated in pre-hybridization buffer

(preHB) (10% formamide, 2x SSC, 0.1% (v/v) TritonX-100), 0.02% (w/v) BSA, and 2 mM ribonucleo-

side-vanadyl complex (NEB) for 30 min at 30˚C before overnight incubation with 10 nM probes in

hybridization buffer (10% (w/v) dextran sulfate (MW 500,000) in preHB) at 30˚C in the dark. After

staining, embryos were washed 2 � 30 min at 30˚C in hybridization wash solution (10% (v/v) formam-

ide, 2x SSC, 0.1% (v/v) Triton X-100) before a brief wash in 2x SSC +0.1% (v/v) Tween-20. Finally,

embryos were incubated for 20 min at 30˚C in 0.2X SSC before a 15-min incubation in DAPI and 2 �

2 x SSC +0.01% Tween washes.

For membrane staining, 1:100 a-eCdh1 antibody (BD Biosciences #610181) was added overnight

with the probes in hybridization buffer. After the 20 min 0.2X SSC wash, 1:750 Goat a -mouse IgG

(H + L)-Alexa 488 (ThermoFisher A32723) in PBSTw was added, and embryos were incubated for 2

hr at RT in the dark. Embryos were washed 6X with PBSTw before a 15 min DAPI incubation and 2 �

2 x SSC +0.01% Tween washes.

For mounting, embryos were kept in 2X SSC, cut from the margin to the animal pole with a scal-

pel, and mounted in 2X SSC on a standard glass slide between two double-sided adhesive tape

bridges (3M Scotch). A #1.5 coverslip then approximately flattens the embryo and is secured in place

by the adhesive tape. Mounted embryos were then imaged on a Zeiss LSM-880 inverted confocal

using the Airyscan detector.
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Image segmentation
Staining intensities for individual nuclei were compiled for Figures 1–3. Nuclei were segmented

from DAPI channel images using a custom pipeline implemented in MATLAB as described previously

(Rogers et al., 2017). Before segmentation, each image stack was manually inspected to identify

acceptable z-bounds. Lower bounds were chosen to exclude internal YSL nuclei from the segmenta-

tion. Briefly, for each slice, out-of-plane background signal was approximated by blurring adjacent

Z-slices with a Gaussian smoothing kernel and subtracted. Nuclei boundaries were identified using

an adaptive thresholding routine (http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm). Spurious

objects were discarded by morphological filtering (area threshold followed by image opening with a

disc-shaped structuring element).

Three-dimensional objects were compiled from the two-dimensional segmentation results with a

simple centroid-matching scheme. A disc of diameter five pixels was defined centered at the cen-

troid of each two-dimensional object, and three-dimensional objects were identified by object label-

ing with a 6-connected neighborhood. Intuitively, this procedure matches objects whose centroids

are separated by <10 pixels (i.e. twice the disc diameter used prior to object matching). Objects

that fail to span at least 2 Z-slices were discarded. Fluorescence intensities in the DAPI, GFP and

pSmad2 channels were compiled as average pixel intensities within the three-dimensional segmenta-

tion boundaries.

Genotyping of Zoep, cyc;oep, and sqt;oep mutant embryos
Crosses leading to homozygous Zoep, cyc;oep, and sqt;oep mutant embryos were generated from

non-homozygous parents. Specifically, Zoep embryos were generated by crossing an oep-/- male

against a oep+/- female; cyc;oep embryos were generated from a cross between cyc+/-;oep-/-

parents; sqt;oep embryos were generated from a cross between sqt+/-;oep-/- parents. To identify the

genotype of embryos used for imaging, each embryo was manually cut into halves (i.e. through the

animal pole) with a clean scalpel after pSmad2 immunostaining. One half of the embryo was dehy-

drated for clearing and imaging (as described in the a-pSmad2 immunostaining methods section),

and the other was used for genomic DNA preparation and genotyping. Genotyping was carried out

for each mutation as summarized above. For Zoep staining, genotyping was carried out as described

for 30% epiboly and 50% epiboly stages; this revealed that Zoep embryos could be clearly identified

by average staining intensity. Shield-stage Zoep embryos were identified by staining intensity.

Sensor cell identification and gradient quantification
All gradient quantifications in Figures 1–3 plot nuclear staining intensity as a function of distance

from the embryonic margin. Because the margin boundary is curved in our flat mounts, these distan-

ces are not a simple function of position within the image. A semi-automated routine was therefore

implemented in MATLAB to calculate the distance from the margin for each nucleus. In brief, the

YSL-embryo boundary was manually identified and drawn using maximum intensity projections of

the DAPI channel. This boundary was then converted into a binary mask and a distance transform

was applied. After the distance transform, every pixel in the image adopts a value equal to its dis-

tance to the closest non-zero pixel (i.e. the margin contour); the distance from the margin for each

nucleus was defined as the pixel intensity of the distance transform image at the corresponding cen-

troid position.

In order to quantify the gradients in Nodal-insensitive host embryos, sensor cells had to be specif-

ically identified. A classification scheme based on nuclear GFP intensity was therefore devised.

Because there was some background a-GFP staining, even in cells that did not receive gfp mRNA,

the approximate baseline GFP intensity was identified by taking a sliding window median of GFP

staining intensity as a function of nuclear distance from the margin. GFP+ cells were identified as

having nuclei brighter than 3-fold above the local baseline, and GFP- cells were identified as having

staining intensity at or below the local baseline. These thresholds are stringent and resulted in some

false-negative nuclear classifications (e.g. likely GFP+ nuclei that failed to be classified as such). How-

ever, they do ensure that the nuclei plotted in the main text represent only clear GFP+ or GFP- pop-

ulations. This analysis was also performed using less stringent thresholds and manual correction of

results, which generated comparable conclusions to the results presented in the paper.
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After calculation of GFP staining status and distance from the margin for each nucleus, average

gradients were compiled. To facilitate comparison between replicate embryos, the pSmad2 staining

intensities were normalized to the baseline intensity (i.e. average nuclear intensity of all nuclei falling

between 150 and 200 mm) from the margin. After this normalization, data from each embryo were

pooled, and average gradients were compiled with a sliding window average (solid curves in quanti-

fied gradients in Figures 1–3) with a window size of 20 mm. Due to sparse sampling of the gradients

by sensor cells, some statistical fluctuations in average gradient shape are evident (e.g. the ‘hump’

in Figure 2C).

YSL-specific expression and visualization of Halo-tagged Vg1-Squint
heterodimers
In Figure 3—figure supplement 1, visualization of Halo-tagged Vg1-Squint heterodimers was

achieved using a modified sensor cell assay. Donor and host embryos were collected in 1X E3

medium at the one-cell stage and immediately dechorionated with 1 mg/ml Pronase (Protease type

XIV from Streptomyces griseus, Millipore Sigma). Host embryos for the MZoep +oep mRNA condi-

tion were injected with 110 pg oep mRNA at the one-cell stage. Wild-type donor embryos were

injected with 110 pg oep mRNA and 0.6 ng of 3 kDa Alexa 488-dextran conjugate (Invitrogen) at the

one-cell stage. Sensor cells derived from oep-injected donors were used to enhance the sensitivity

of the assay. As increased oep expression improves ligand capture (Figure 2B), fluorescent ligand

accumulation was easier to observe using these sensors.

Between the 512-cell stage and the 1 k-cell stage, when the YSL has become an obvious struc-

ture, the YSL of host embryos was injected at four adjacent points with 0.065 nl of 255 ng/ml vg1-

HaloTag mRNA, 167 ng/ml squint mRNA, and 90 ng/ml gfp mRNA. Injected host embryos were left

to recover in 1X E3 medium at 28.5˚C for 20 min before being transferred to 1.5 mL non-stick surface

micro-centrifuge tubes (VWR) filled with 250 ml of 200 nM Janelia Fluor HaloTag Ligand (Promega)

that had been diluted in 1X E3 medium. Tubes were then placed at a shallow ~10˚ angle and left in

the dark at 28.5˚C for 1 hr.

After staining, embryos were transferred into 1X Ringer’s solution (116 mM NaCl, 2.8 mM KCl, 1

mM CaCl2, 5 mM HEPES) for transplantation. Cells were transplanted from the animal pole of oep-

injected wild-type donor embryos to the animal pole of host embryos. After transplantation, host

embryos were left to recover in 1X Ringer’s solution for 10 min before being transferred back to 1.5

mL non-stick surface micro-centrifuge tubes (VWR) filled with 250 ml of 200 nM Janelia Fluor HaloTag

Ligand (Promega) that had been diluted in 1X E3 medium. Tubes were again placed at a

shallow ~10˚ angle and left in the dark at 28.5˚C.

Thirty min before imaging, embryos were removed from HaloTag ligand solution and washed 2 �

7 min in 1X E3 medium in separate wells of a 1% agarose-coated plastic 6-well plate. After washing,

embryos were mounted in 1% low melting point agarose on glass-bottom Petri dishes (VWR) with

animal poles facing the coverslip. After initial agarose droplets containing embryos had set, the

entire coverslip was covered in 1% low melting point agarose and subsequently covered in 1X E3

medium after setting.

Embryos were imaged on a confocal microscope with Olympus IX83 stand, UPL S APO 30x silicon

oil objective, Yokogawa CSU-W1 confocal scanner unit, and Hamamatsu ORCA-Fusion camera. Adja-

cent Z slices were taken with 3 mm spacing.

Visualization of Squint-sfGFP gradients with transplanted source cells
In Figure 2—figure supplement 3, ectopic Squint-sfGFP gradients were generated in wild-type,

MZoep and oep-overexpressing MZoep hosts using transplanted source cells. This was carried out

as described previously (Müller et al., 2012). Briefly, wild-type donors were injected with 250 pg

sqt-sfgfp mRNA and 0.2 ng of 10 kDa Alexa647-dextran conjugate (ThermoFisher) at the one-cell

stage. MZoep +oep hosts were injected with 110 pg oep mRNA at the one-cell stage. All embryos

were stored in 1% agarose-coated plastic plates in 1X E3 medium at 28.5˚C after injection.

At sphere stage, embryos were transferred to 1X Ringer’s solution for transplantation. Approxi-

mately 50 source cells were removed from donor embryos and left briefly in 1X Ringer’s solution to

allow for the dissipation of any cellular debris and residual secreted ligand before approximately

transplantation to the animal pole of host embryos. Embryos were left in 1X Ringer’s solution for 10
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min to recover before being transferred to 1X E3 medium in 1% agarose coated plates at 28.5˚C in

the dark. After 1 hr and 40 min from the time of the last transplantation, embryos were mounted in

1% low-melting point agarose on glass-bottom Petri dishes and imaged by confocal microscopy as

described in the previous section.

Gradients were quantified as previously described (Müller et al., 2012). Briefly, maximum inten-

sity projections comprising 15 consecutive confocal slices were prepared for each embryo. A region

of interest adjacent to the transplanted clone (approximately 150 mm long by 40 mm wide) was

extracted from each projection image. Average background intensities from ungrafted control

embryos were subtracted, fluorescence intensities were averaged within 1 mm bins, and curves were

smoothed by sliding window averaging (window size of 5 mm). The resulting curves were sampled

every 5 mm. Each curve was normalized to the fluorescence intensity immediately adjacent to the

source.

Kymograph preparation in Figure 5D and E
In the experimental section of Figure 5, kymographs were presented that average the behavior of

replicate embryos (bars to the right of representative images in Figure 5D and E). To prepare these

kymographs, the distance from the margin for each pixel in the maximum intensity projection a-

pSmad2 image was calculated as described in the above section. Pixels were then binned by dis-

tance from the margin and averaged across embryos to generate the plots in Figure 5. Each vertical

bar in the plot was drawn for all of the data from a given stage (from left to right: dome, 50% epib-

oly and shield). Color scalings were selected for visibility and are not equivalent between the wild-

type and Zoep datasets.

Gradient simulations
Sensor cell assay simulations were implemented in MATLAB using the PDE toolbox. Simulations

were carried out on a two-dimensional rectangular slab (100 � 300 mm) with no-flux boundary condi-

tions. The Nodal source was simulated as a thin strip of tissue (the first 5 mm) that produced Nodal

at a constant rate. Sensor cells were simulated as small circular domains with permeable boundaries

(6 mm diameter) in which parameters (e.g. presence or absence of free receptors) could be set inde-

pendently of the rest of the tissue. Simulations were run ~2.5 hr of simulation time in an effort to

mimic the normal duration of Nodal gradient spread in zebrafish embryos. Simulations are described

in detail in the SI (Reproduction of sensor cell assay with gradient simulations). Plots in Figure 4

depict the entire tissue domain at the conclusion of the simulations.

Simulations incorporating receptor production and replacement were implemented in MATLAB

using pdepe. Simulations were carried out on a one-dimensional tissue (300 mm long) with no-flux

boundary conditions. The Nodal source was simulated as a thin strip of tissue (the first 5 mm) that

produced Nodal at a constant rate. Simulations were run for ~2.5 hr of simulation time in an effort to

mimic the normal duration of Nodal gradient spread in zebrafish embryos. Simulations are described

in detail in the SI (Gradient simulations accounting for receptor production and consumption). Plots

in Figure 5B and C are kymographs summarizing the state of the system at regularly sampled times.

Each column of kymograph shows the concentration of a given component at each position in the

system (‘YSL’ at the bottom), and adjacent columns are separated by 20 s of simulation time. Kymo-

graphs begin plotting data at t = 0 to capture the transients associated with gradient formation.

Pixel scalings (i.e concentration scales) are not identical between Figure 5b and c; scalings were

chosen to maximize data visibility. Due to the absence of receptor replacement, concentrations of

free receptor and receptor-ligand complexes are markedly lower in Figure 5c (in accordance with

experimental data in Zoep mutants, see Figure 5F).
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Appendix 1

Computational Models of Nodal Gradient Formation
Reproduction of sensor cell assay with gradient simulations

Simulations presented in Figure 4 were implemented using the MATLAB PDE toolbox. The host

embryo was represented as a two-dimensional rectangular slab (100 � 300 mm). ‘Sensor cells’ were

simulated as circular domains of 6 mm diameter—with independently set simulation parameters—

scattered throughout the rectangular domain. Equations governing the model are specified as

below:

qN x; tð Þ

qt
¼DNr

2N x; tð Þ� k1N x; tð ÞRþ k�1C x; tð Þ

qC x; tð Þ

qt
¼ k1N x; tð ÞR� k�1C x; tð Þ� k2C x; tð Þ

qS x; tð Þ

qt
¼ ksC x; tð Þ� k�sS x; tð Þ

Where N x; tð Þ, C x; tð Þ, and S x; tð Þ refer to the concentration of free Nodal, Nodal-Receptor com-

plex, and pSmad2 at position x at time t, respectively. Parameter values are summarized in the table

below. All boundaries are specified as no-flux, and N x; t¼ 0ð Þ ¼ 0 and S x; t¼ 0ð Þ ¼ 0 were assumed for

initial conditions. The Nodal source was simulated by specifying a constant Nodal production rate

(lN ) for points lying in the region 0 � x� 5. For simplicity, we assume the receptor concentration, R,

to be constant at each position throughout the simulation. Simulations were run for ~2.5 hours of

simulation time to mimic the normal duration of Nodal spread in zebrafish embryos.

Remarks:

1. These simulations instantiate a simple model of morphogen gradient formation—constant syn-
thesis at a localized source coupled with linear degradation—that has been discussed at length
elsewhere (Rogers and Schier, 2011; Wartlick et al., 2009; Zhou et al., 2012; Lander et al.,
2002). The steady state gradient for this is a single exponential with length scale set by the dif-
fusion constant and effective Nodal degradation rate (i.e. through complexing with the recep-
tor). Small deviations from this expectation arise due to the finite size of the Nodal source
domain.

2. For the plots in the main text, we track signaling through S, the concentration of phosphory-
lated Smad2. We assume the phosphorylation rate to be first-order with respect to the ligand-
receptor complex—effectively that unphosphorylated Smad2 is neither depletable nor present
in high enough concentrations to reveal saturation of receptor complex kinase activity—and
the dephosphorylation rate to be first order with respect to S. Intuitively, this means that
S reflects receptor occupancy over a time window of ~ 1=k�s. Signaling could also be tracked
as the concentration of occupied receptor and yields qualitatively similar results.

3. For simulations of sensor cells transplanted into MZoep hosts (Figures 2B, 4C), the receptor
concentration (RÞ was set to zero outside of the sensor cell boundaries. Within these bound-
aries, R was kept at the ‘wild-type’ level (i.e. at the same levels as in the simulations from
Figure 4b). We note that the increased signaling intensity in this background reflects the fact
that binding with receptor is the only available degradation pathway for the ligand;
when R ¼ 0, available ligand concentrations are substantially higher throughout the “embryo”.

4. For simulations of sensor cells transplanted into oep-overexpressing hosts (i.e. MZsmad2 +
oep mRNA, Figures 3d, 4d), R was increased by a factor of 2 throughout the host regions,
and ks was set to zero to mimic the absence of Smad2. Simulation parameters within the sen-
sor cell regions retained their ‘wild-type’ values.
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Gradient simulations accounting for receptor production and
consumption
The model presented in Figure 5 explicitly accounts for production and consumption of receptor

components. For the figure panels, the model was simulated on a 1-dimensional domain of length

300 mm. Model equations were specified as follows:

qN x; tð Þ

qt
¼DNr

2N x; tð Þ� k1N x; tð ÞR x; tð Þþ k�1C x; tð Þ

qR x; tð Þ

qt
¼ k3� k1N x; tð ÞR x; tð Þþ k�1C x; tð Þ� k�RR x; tð Þ

qC x; tð Þ

qt
¼ k1N x; tð ÞR� k�1C x; tð Þ� k2C x; tð Þ

Here, N x; tð Þ, R x; tð Þ, and C x; tð Þ refer to the concentration of free Nodal, free receptor and recep-

tor-Nodal complexes, respectively, at position x and time t. No-flux boundary conditions were

assumed at both ends of the domain, and Nodal was produced at a constant rate lN within a source

domain covering 0� x� 5. N x; t¼ 0ð Þ and C x; t¼ 0ð Þ were initiated at zero throughout the field, and

R x; t¼ 0ð Þ was set to lR=k�R for all positions. Simulations were implemented in MATLAB using

pdepe.

1. In this model, receptor synthesis is treated as constitutive throughout the field, and degrada-
tion occurs through ligand-dependent and ligand-independent mechanisms. The ligand-
dependent pathway occurs through degradation of receptor-ligand complexes (schematically
represented as endocytosis in Figures 4 and 5, rate k2C x; tð Þ). The ligand-independent path-
way is assumed to be first-order with respect to free receptor (rate k�RR x; tð Þ).

2. Direct degradation of the receptor—once we have made the step of assuming constitutive
production– is required to achieve steady state concentrations of free receptor outside the
domain of ligand diffusion. In the absence of this degradation route, receptor levels increase
without bound far from the source as the synthesis term is not coupled to receptor levels. We
note that this constitutive degradation explains the gradual decrease of free receptor levels far
from the source in the Figure 4C; without replacement, ligand-independent degradation
would eventually remove all of the receptor in the system. We include this degradation mecha-
nism in the ‘Zoep’ simulations for parity, however the signaling wave occurs even with k�R set
to 0.

3. Ligand-dependent removal of receptor is the key requirement for appearance of the signaling
wave in Zoep mutants. While we regard ligand-dependent endocytosis of receptor complexes
as biologically plausible, our model is agnostic to the actual mechanism. Other mechanisms
can be imagined; for example, irreversible inactivation of receptor-ligand complexes that
remain on the cell surface could also support formation of a wave provided that the ligand
does not dissociate. Indeed, we suspect that any mechanism through which ligand binding
renders receptors incapable further ligand capture or signaling would support wave formation.

4. For Figure 5B and C, we summarize the simulation results for each component with kymo-
graphs. Each column of these images shows the state of the 1-dimensional system—with
source at the bottom and ‘animal pole’ at the top—at each point. Simulation time proceeds
from left to right, and each plot represents two hours of simulation time. We note that, with
biologically reasonable parameters, we observe formation of a stable gradient with receptor
replacement and clear propagation of the wave without receptor replacement.

5. We chose to use a diffusion rate of 30 mm2/sec for the Nodal ligand. We note that this rate is
substantially faster than the effective diffusion rate observed by Muller et al. We chose this
value to illustrate that—even for a highly diffusive ligand— short-range gradients can be gen-
erated by efficient capture. Use of the previously measured diffusion rate (~3 mm2/sec) does
not compromise formation of the wave and is therefore not critical for the conclusions of the
paper. Instead, this change results in a traveling wave with a ‘narrower’ profile, as diffusing
ligand does not travel as far into a field of free receptor before capture.
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Model Parameters

Parameter Description Value Intuition for value Reference

lN Nodal source production
rate

8e-6 mM/
sec

~ 3 Nodal ligand molecules/min per cell -

DN Free Nodal diffusion rate 30 mm2/
sec

MSD of ~ 650 mm after 2 hr Müller et al.,
2012

k1 Nodal-Receptor association
rate

10/
mM*sec

Mean time to capture of ~ 2 s at initial Oep
concentration

De Crescenzo
et al., 2003

k-1 Nodal-Receptor dissociation
rate

6.25e-4/
sec

Mean time to dissociation of 25 min De Crescenzo
et al., 2003

k2 Nodal-Receptor complex
internalization rate

1.7e-3/
sec

Mean time to internalization of 10 min Jullien and
Gurdon, 2005

k3 Receptor production rate 1.6e-5
mM/sec

Approximately 0.7 molecules/sec
produced by a cell of 10 mm diameter

-

k-R Receptor degradation rate
(ligand independent)

2.7e-4/
sec

Average lifetime of 1 hr -

N(x,t = 0) Free ligand initial condition 0 mM for
all x

Embryo starts out with no Nodal. -

R(x,t = 0) Free receptor initial
condition

0.06 mM
for all x

Approximately 2900 molecules for a cell of
10 mm diameter

Dyson and
Gurdon, 1998

C(x,t = 0) Nodal-Receptor complex
initial condition

0 mM for
all x

Embryo starts out with no receptor-ligand
complexes.

-

Gradient simulations accounting for receptor trafficking
Cell culture studies have suggested that canonical TGF-b receptors are internalized at the same rate

whether bound or unbound by ligand (Anders et al., 1997). However, the model presented in Fig-

ure 5 assumes that the rate of receptor endocytosis increases upon ligand binding (i.e. k2 > k-R). As

discussed in remark three in the previous section, this mechanistic assumption is not critical for wave

formation. Instead, the key requirement is that ligand binding results in an increase in the effective

clearance rate of receptors. For the TGF-b system, this requirement can be satisfied at the level of

receptor trafficking; active receptors are ‘downregulated’ after endocytosis (Mitchell et al., 2004),

while inactive receptors are recycled back to the plasma membrane. To demonstrate that this mech-

anism could support wave formation, we formulated a model that explicitly accounts for endosomal

trafficking.

qN x; tð Þ

qt
¼DNr

2N x; tð Þ� k1N x; tð ÞRout x; tð Þþ k�1Cout x; tð Þ

qRout x; tð Þ

qt
¼ k3 � k1N x; tð ÞRout x; tð Þþ k�1Cout x; tð Þ� k�RRout x; tð Þþ kreRin x; tð Þ

qCout x; tð Þ

qt
¼ k1N x; tð ÞRout x; tð Þ� k�1Cout x; tð Þ� k�RCout x; tð Þ

qRin x; tð Þ

qt
¼ k�RRout x; tð Þ� klysRin x; tð Þ� kreRin x; tð Þ

qCin x; tð Þ

qt
¼ k�RCout x; tð Þ� klysCin x; tð ÞF

Here, N x; tð Þ, Rout x; tð Þ, Cout x; tð Þ;Rin x; tð Þ, and Cin x; tð Þ refer to the concentration of free Nodal, free

external receptor, external receptor-Nodal complexes, internalized free receptor and internalized

Nodal-receptor complexes, respectively, at position x and time t. No-flux boundary conditions were
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assumed at both ends of the domain, and Nodal was produced at a constant rate lN within a source

domain covering 0� x� 5. N x; t¼ 0ð Þ, Cout x; t¼ 0ð Þ, Rin x; t¼ 0ð Þ and Cin x; t¼ 0ð Þ were initiated at zero

throughout the field, and Rout x; t¼ 0ð Þ was set to lR=k�R for all positions. Simulations were imple-

mented in MATLAB using pdepe. Example simulation results are presented in Figure 5—figure sup-

plement 1.

Remarks:

1. This model assumes that the rates of internalization of free and bound receptors are identical
(internalization rate constant of k�R in both cases). Ligand binding increases the rate of recep-
tor clearance at the level of receptor trafficking; the rate of clearance of Cin increases by a fac-
tor F over internalized free receptor (Rin).

2. As in the model presented in the previous section, Zoep mutants were simulated by setting
the receptor synthesis rate (k3Þ to 0. This results in the same transformation we observed
before; with receptor replacement the signaling gradient is stable, without replacement signal-
ing propagates outward.

3. We regard the trafficking rates (k-R,kre and klys) as approximate but biologically plausible. The
residence time of receptors at the plasma membrane is set by k-R (average lifetime ~1 hr), and
our chosen value is consistent with measurements of TGF-b receptors in cell culture
(Mitchell et al., 2004), as well as Activin receptors in Xenopus embryos (Jullien and Gurdon,
2005). Selections for kre and klys lead to residence times in the endosomal compartments
of ~20 min for activated and inactivated receptors. The choices for these values can tune the
rate of wave propagation, but are not critical for the qualitative behavior within plausible
ranges of variation.

Trafficking Model Parameters

Parameter Description Value Intuition for value Reference

lN Nodal source production
rate

4e-5 mM/
sec

~ 15 Nodal ligand molecules/min -

DN Free Nodal diffusion rate 30 mm2/
sec

MSD of ~ 650 mm after 2 hr Müller et al.,
2012

k1 Nodal-Receptor
association rate

10/m
M*sec

Mean time to capture of ~ 2 s at initial Oep
concentration

De Crescenzo
et al., 2003

k-1 Nodal-Receptor
dissociation rate

6.25e-4/
sec

Mean time to dissociation of 25 min De Crescenzo
et al., 2003

k3 Receptor production rate 1.6e-5
mM/sec

Approximately 0.7 molecules/sec produced
by a cell of 10 mm diameter

-

k-R Receptor internalization
rate

2.7e-4/
sec

Average lifetime of 1 hr -

kre Receptor recycling rate 8.3e-4/
sec

Average residence of ~ 20 min in endosome
before recycling to membrane

-

klys Lysosomal trafficking rate 8.9e-05 Average residence time of ~ 3 hr in endosome
before clearance

-

F Factor increase in
clearance rate

10 Activated receptors reside in endosome
for ~ 20 min before clearance

-

N(x,t = 0) Free ligand initial
condition

0 mM for
all x

Embryo starts out with no Nodal. -

R(x,t = 0) Free receptor initial
condition

0.06 mM
for all x

Approximately 2900 molecules for a cell of 10
mm diameter

Dyson and
Gurdon, 1998

C(x,t = 0) Nodal-Receptor complex
initial condition

0 mM for
all x

Embryo starts out with no receptor-ligand
complexes.

-
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