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Abstract: Drug-carrying coatings of stents implanted in blood vessels are exposed to various blood
flows. This study investigated the effect of fluid shear stress on the in vitro release kinetics of
sirolimus from poly(lactic-co-glycolic acid) (PLGA) films. The homemade parallel plate flow chamber
was used to exert quantitative shear stress on the sirolimus-carrying film. By adjusting the flow
rate of the release media in the chamber, three levels of shear stress (3.6, 12.0, and 36.0 dyn/cm2)
were respectively applied. For each level of shear stress employed, the release kinetics of sirolimus
from the PLGA films exhibited a four-phase profile: an initial burst release phase (Phase I), a lag
phase (Phase II), a second burst release phase (Phase III), and a terminal release phase (Phase IV).
During Phases I and II, sirolimus was released slowly and in small amounts (<10%); however,
during Phases III and IV, the drug release increased considerably. Comparisons of different shear
stresses indicated that greater shear stress resulted in earlier and faster sirolimus release, with more
cumulative drug release observed. PLGA film degradations (molecular weight reduction, mass loss,
and surface topographical variations) were also investigated to better explain the observed drug
release behavior. Consequently, fluid shear stress was found to significantly accelerate the release
of sirolimus from the PLGA matrices. Therefore, this study could provide a practical method for
evaluating the in vitro drug release from polymer matrices under uniform shear stress, and might
help improve the design of biodegradable coatings on drug-eluting stents.

Keywords: sirolimus release; PLGA degradation; uniform shear stress; parallel plate flow chamber;
drug-eluting stent; biodegradable coating; hemodynamics

1. Introduction

Sirolimus, also called rapamycin, is a triene macrolide antibiotic isolated from the culture medium
of Streptomyces hygroscopicus. Sirolimus has immunosuppressive, antitumor, anti-inflammatory,
and anti-restenotic properties; accordingly, it has been widely used in organ transplantation and
antitumor treatment [1]. In particular, the implantation of sirolimus-eluting stents has significantly
lowered the rate of restenosis after percutaneous coronary intervention, thus achieving an important
milestone in heart disease treatment [2–4].

A sirolimus-eluting stent generally comprises a bare-metal stent, sirolimus, and a polymer
coating. The bare-metal stent expands the vessel to prevent vascular retraction. The polymer coating
serves as the sirolimus storage and release control platform, and therefore affects the drug release [5].
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Preclinical animal tests and clinical experiments have shown that the treatment effects of drug-eluting
stents (DESs) depend directly on their drug release kinetics, which are not only related to the drug
properties and the stent geometric configuration, but also related to the coating [6,7]. Early DESs
employed non-degradable polymers as coating matrices. However, such materials can induce late
thrombosis and hypersensitivity; hence, current DESs mostly use biodegradable materials [8–11].
Poly(lactic-co-glycolic acid) (PLGA) is a Food and Drug Administration (FDA)-approved biodegradable
polymer that is widely used in biomedicine. PLGA degrades into non-toxic lactic acid and glycolic acid
through hydrolysis in vivo, and these acids then enter the tricarboxylic acid cycle to be further degraded
into carbon dioxide and water [12]. Because of its satisfactory biocompatibility, biodegradability,
and adjustable erosion time, PLGA has been extensively employed in absorbable sutures [13],
tissue engineering scaffolds [14,15], bone surgery [16], and drug delivery systems [17–19]. More notably,
various kinds of PLGAs have been commonly used as coating materials in commercially available
DESs [20–22].

When PLGA is employed as a drug carrier, its degradation kinetics directly affect the drug
release kinetics. The degradation rate of PLGA not only depends on its own properties, such as
the proportion of lactic acid and glycolic acid, molecular weight, crystallinity, and shape, but also
depends on other chemical and biological factors, including the degradation media, enzymes,
and microorganisms [23–26]. Moreover, when PLGA is employed in fabricating implants, the local
mechanical environments (e.g., cyclic loading) substantially affect the degradation kinetics of
PLGA [27–29]. Hemodynamic shear stress is the most common type of mechanical load caused
by blood flow in the vessels [30]. In addition to affecting the functions of vascular cells, hemodynamic
shear stress is closely related to the transportation and concentration distribution of physiologically
active substances in vascular beds [31–33]. Hemodynamic shear stress has been documented to
play a critical role in atherosclerosis and in-stent restenosis [34,35]. Blood flow rates in human
arteries vary markedly, and such variations lead to considerably different shear stresses on the
drug-carrying coatings of implanted stents [36–38]. Our previous studies showed that fluid shear stress
significantly affected the degradation rate of PLGA [39,40]. However, to our knowledge, no quantitative
studies have confirmed whether fluid shear stress influences the in vitro drug release kinetics from
PLGA coatings.

Several approaches have been developed to evaluate the in vitro release kinetics of drugs from
stent coatings [41–43]. A non-compendial method is to immerse a DES in a small bottle that contains
a release medium and to shake it at a specific speed, after which the drug release from the DES is
investigated [41]. The shortcoming of this method is that it does not consider the fluid mechanical
environment of the DES in the vessel. To compensate for this shortcoming, the United States
Pharmacopeia has recommended using a USP Apparatus 4 (Flow-through Cell) or USP Apparatus 7
(Reciprocating Holder) [42,43]. Although both devices can create luminal flow to simulate the
intravascular hemodynamic environment, the actual luminal flow field that surrounds a DES is
non-uniform. In addition, the complicated geometric configuration of the stent can further lead to a
non-uniform distribution of shear stress on the coating, which then causes the drug to be released from
various points of the coating at varying rates [44]. Therefore, to quantitatively analyze the effect of
shear stress on the drug release kinetics from a stent coating, an experimental method that can apply a
uniform fluid shear stress to a drug-carrying coating should be developed.

Two conditions must be simultaneously met to ensure that the drug can be released from the
coating under a uniform shear stress: (1) the drug-carrying coating cannot have a complicated
geometric configuration, so its surface should be maintained on the same plane; (2) an experimental
device that can create a uniform flow field for the drug-carrying coating should be used. To obtain the
drug release profile from the coating without accounting for the stent geometric configuration, several
researchers have employed drug-carrying films prepared on a plate as a substitute for a DES coating
when conducting in vitro release tests [45,46]. Additionally, it has been documented that there is a
uniform flow field at the bottom of a parallel plate flow chamber (PPFC) [47,48]. Therefore, we can



Polymers 2017, 9, 618 3 of 12

reasonably assume that replacing a DES with a drug-carrying film and placing the film at the bottom
of a PPFC can result in the application of a uniform shear stress to the film. The present study
examined the effect of shear stress on the release of sirolimus from PLGA films in uniform flow fields.
The home-made PPFCs were used to exert quantitative shear stresses on sirolimus-carrying films.
The released amounts of sirolimus over time were measured and used as the basis for comparing
the drug release profiles under different shear stresses. The variations in mass, molecular weight,
and surface topography of the films were also evaluated to understand the observed drug release
behavior. The results of this study might contribute to the design of biodegradable coatings on DESs.

2. Materials and Methods

2.1. Materials

Sirolimus was supplied by Kerui Pharmaceutical Company (Fuzhou, China). PLGA (LA/GA = 50/50,
MW = 126 kDa) was obtained from Jinan Daigang Biomaterial Company (Jinan, China). Ethanol of
high-performance liquid chromatography (HPLC) grade was purchased from Sinopharm Chemical
Reagent Beijing Company (Beijing, China). Tween-20 was from Amresco Company (Solon, OH, USA).
All unspecified chemical reagents were of analytical grade.

2.2. Preparation of Sirolimus-Carrying PLGA Films

PLGA films were prepared using a solvent casting method. First, PLGA was completely dissolved
in chloroform to reach a concentration of 0.85% (w/v). Sirolimus (0.15%, w/v) was added to the PLGA
solution and mixed well to form a homogeneous solution of drug and polymer. Then, the mixture (10 mL)
was placed on a glass plate (length: 150 mm, width: 50 mm), which was placed on a level-adjusted
platform. The sample was kept at room temperature (25 ◦C) for five days so that the solvent dried
naturally. Finally, the sirolimus-carrying PLGA films were placed in a vacuum oven at 37 ◦C for seven
days to evaporate residual chloroform. A micrometer was used to measure the thickness of the dried
drug-carrying PLGA films, and the average thickness was found to be 0.11 mm ± 0.01 mm.

2.3. Release of Sirolimus

The experimental device that applied a uniform shear stress to the sirolimus-carrying PLGA film
was described in our previous paper [39]. Briefly, this apparatus mainly consisted of a self-designed
PPFC and a circulating system. The glass plate with the sirolimus-carrying PLGA film was placed
at the bottom of the PPFC. A 50 mL aqueous solution of Tween-20 (4 g/L) was used as the release
medium, and infused into the circulating system. The sirolimus-carrying PLGA films in this study
were divided into three groups by the level of shear stress. In Group L, Group M, and Group H,
the flow rates of the release media were set to be 3, 10, and 30 mL/min, respectively, which maintained
the levels of fluid shear stress at 3.6 (low), 12.0 (medium), and 36.0 dyn/cm2 (high). For each group,
four sirolimus-carrying PLGA films were used. The in vitro sirolimus release experiments were
performed in a constant temperature oven (37 ◦C). Every 24 h, the release medium was completely
refreshed. The sirolimus content in the release medium was measured using HPLC.

2.4. Analysis of Sirolimus

The quantitative analysis of sirolimus was performed using an HPLC system equipped with
Waters 600E pumps, and a 2487 dual wavelength absorbance detector (Waters Corp., Milford, MA, USA).
The chromatography column employed was a J’sphere ODS-H80 (250 mm × 4.6 mm, YMC Co.,
Kyoto, Japan), and its temperature was maintained at 60 ◦C. A mobile phase of water and ethanol
(35/65, v/v) was used at a flow rate of 0.6 mL/min. The ultraviolet detection wavelength was set
at 277 nm. Chromatographic peak data collection, analysis, and processing were conducted using
Waters Empower software.
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2.5. Sirolimus-Carrying PLGA Film Degradation

At designated time points, sirolimus-carrying PLGA films were retrieved from the flow chambers,
and carefully removed from the glass plates. The samples were then rinsed with distilled water,
and dried in a vacuum oven until they had a constant weight. The mass loss of the sirolimus-carrying
PLGA film was evaluated using gravimetric analysis:

Weight loss (%) = (Wini − Wdry)/Wini × 100% (1)

where Wini is the initial film mass, and Wdry is the dried mass of the degraded film.
The PLGA film that had undergone a mass variation analysis was next dissolved in chloroform

and filtered. A viscosity test was administered on the filtered solution by using an Ubbelohde
viscometer at 25.0 ± 0.1 ◦C. The viscosity-average molecular weight of PLGA was obtained with the
Mark–Houwink equation [49].

The surface morphology of the film was observed by field emission scanning electron microscopy
(FE-SEM) (Quanta 250 FEG, FEI Company, Hillsboro, OR, USA). The magnification of the FE-SEM
image was 20,000 times. Prior to being observed, each sample was sputtered with gold for
better conductivity.

2.6. Statistical Analysis

Experimental data are represented by mean and standard deviation (n = 4). Statistical
comparisons among groups were performed by analysis of variance (ANOVA) and Tukey’s post
hoc test using SPSS 17.0 software (SPSS Inc., Chicago, IL, USA, 2008). A p < 0.05 was considered
statistically significant.

3. Results and Discussion

3.1. Sirolimus Release Kinetics

Figure 1 illustrates the release kinetics of sirolimus from PLGA films under various shear stresses.
In each group, the sirolimus release kinetics exhibited a four-phase release profile. In Phase I,
less than 3% of sirolimus was released in the initial two days. After the small initial burst release,
the drug release slowed and continued for an extensive period of time (≥19 days); this duration was
also referred to as the lag phase (Phase II). Then, a sudden acceleration of drug release occurred,
indicating the completion of the lag phase and the beginning of the second burst release phase
(Phase III). During Phase III, the rate and duration of drug release were strongly dependent on the
shear stress level. As the remaining drug content in the film decreased, the drug release slowed down,
thus signaling the onset of the terminal release phase (Phase IV). To explain the mechanism of the
sirolimus release kinetics from the PLGA films, the following zero-order release equation was used to
analyze the sirolimus release data during different release phases:

Md/M∞ = kdt (2)

where Md/M∞ is the proportion of the drug released at time t, and kd denotes the constant of the drug
release kinetics and can be obtained by linear fitting [50].

According to the fitting results (Table 1), the differences in shear stress resulted in two major
changes in the sirolimus release kinetics. (1) Phase II lasted for approximately 21 days in Group L,
but for 19 days in Group H, indicating that an increase in shear stress moderately shortened the
duration of Phase II, and thus brought forward the relatively earlier onset of Phases III; (2) during
Phases III and IV, the drug release increased significantly among the three groups; however, greater
shear stress resulted in earlier and faster release of sirolimus from the PLGA films, further causing
these two phases to be significantly shorter. For example, the initiation of sirolimus release in Group L
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during Phase III occurred on Day 24, and proceeded at a rate of 2.97% day−1 for 13 days; by contrast,
it began in Group H on Day 22 at a higher rate of 5.43% day−1, significantly reducing the duration of
Phase III to 8 days, and subsequently leading to the earlier beginning of Phase IV. During Phase IV,
higher release rates were still observed in Group H than in Group L; thus, it seemed reasonable to
infer that the drug release from the films was completed earlier under greater shear stress. On Day 42,
the highest (70.9% ± 2.3%), medium (61.1% ± 2.2%), and lowest (48.0% ± 2.1%) cumulative sirolimus
release amounts were observed in Groups H, M, and L, respectively (p < 0.05, ANOVA). These data
further confirmed that sirolimus release from the PLGA matrices was significantly accelerated by
shear stress.
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Figure 1. Release curves of sirolimus from poly(lactic-co-glycolic acid) (PLGA) films under various
shear stresses.

Table 1. Release kinetics of sirolimus from poly(lactic-co-glycolic acid) (PLGA) films under various
shear stresses.

Shear Stress Phase Period (Day) kd (% Day−1) R2

3.6 dyn/cm2

Phase I 1–2 ND -
Phase II 3–23 0.24 0.953
Phase III 24–36 2.97 0.960
Phase IV 37–42 1.03 0.987

12.0 dyn/cm2

Phase I 1–2 ND -
Phase II 3–22 0.30 0.976
Phase III 23–32 4.37 0.973
Phase IV 33–42 1.37 0.972

36.0 dyn/cm2

Phase I 1–2 ND -
Phase II 3–21 0.34 0.986
Phase III 22–29 5.43 0.987
Phase IV 30–42 1.71 0.971

Note: The zero-order release equation was used to fit the various phases in the sirolimus release curves,
which provided the release kinetics of sirolimus. R2 is the goodness-of-fit, and kd is the rate constant of the
drug release. ND = not done.

3.2. Degradation of PLGA Films with Sirolimus

The molecular weight variations of sirolimus-carrying PLGA films are presented in Figure 2.
The degradation curves reveal that the molecular weight of all PLGA films decreased as soon as
they were immersed in the release medium, and the molecular weight continued to drop during the
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incubation. Because the reduction in the molecular weight of the PLGA was caused by the random
hydrolysis of its ester bond, the PLGA degradation process conformed to the first-order kinetics. Fitting
of the PLGA molecular weight and degradation time was then performed using the following equation:

ln(Mp/M0) = −kpt (3)

where ln is the natural logarithm, M0 represents the original molecular weight of PLGA, Mp represents
the molecular weight at the degradation time t, and kp describes the rate constant of the reaction [51].
The fitting results showed that the fastest decrease in the PLGA molecular weight was seen in Group H
(0.062 day−1), followed by Group M (0.046 day−1) and Group L (0.033 day−1), suggesting that the
degradation of the PLGA matrix was highly sensitive to the changes in the shear stress caused by the
flow of the drug release media.
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Figure 2. Variations in the molecular weight of sirolimus-carrying PLGA films over time under various
shear stresses.

As shown in Figure 3, the mass loss of the PLGA films was minimal (<10%) for each group in the
first three weeks, and no significant difference in mass loss was identified. In the subsequent three
weeks, substantial mass losses were discovered in all films. Moreover, during this period, the rate of
mass loss increased significantly with the shear stress magnitude. For example, on Day 28, the average
weights in Groups L, M, and H were, respectively, 87.1% ± 1.4%, 75.2% ± 1.8%, and 58.7% ± 1.9%
of their original values (p < 0.05, ANOVA). The clear connection between shear stress and the
degradation of PLGA was further supported by the FE-SEM images of the films on Day 28 (Figure 4).
Surface topographical variations indicated that when the shear stress was elevated, more and bigger
pores appeared on the films in deeper locations, and some interconnected pores occurred. In all,
the above three results (molecular weight reduction, mass loss, and surface change) confirmed that an
increase in shear stress resulted in a faster degradation of the PLGA films.

3.3. Discussion of Release Profiles

The drug release from PLGA-based delivery systems is controlled by PLGA degradation and
numerous other factors. Most drug release curves associated with PLGA matrices belong to one of
three types: biphasic [52], triphasic [53], or four-phasic patterns [54]. Previous sections of this paper
demonstrate that the mechanical environment in which PLGA is located can significantly affect its
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degradation. Herein, the degradation process of PLGA films under various shear stresses is discussed
to further understand the obtained sirolimus release curves.Polymers 2017, 9, 618  7 of 12 
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(a) Before degradation. Degradation under shear stress levels of 3.6 dyn/cm2 (b); 12.0 dyn/cm2 (c);
and 36.0 dyn/cm2 (d) after 28 days.

A comprehensive analysis of Figures 2 and 3 revealed that the degradation of the PLGA films
occurred in three stages, which is consistent with the degradation process of the previous report [55].
In present study, the film variation in each stage was closely related to the characteristics of sirolimus
release. In the first stage of polymer degradation, water molecules in the release media directly
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penetrated the films and caused random breakage of the PLGA ester bonds; hence, a remarkable
decrease in the PLGA molecular weight was observed. However, the PLGA chains were too long
and the majority of degraded fragments could not escape from the bulk; consequently, a little mass
loss was observed in the samples. Accordingly, sirolimus was released slowly and in small quantities
(i.e., Phase II of drug release). Notably, during this period, greater shear stress led to a faster reduction
in the PLGA molecular weight, which facilitated film mass loss and drug release in the following
two stages.

During the second stage, the PLGA molecular weight continued to decrease, causing the formation
of some leachable oligomers and their diffusion into the release medium. This led to a significant
mass loss, and a substantial amount of sirolimus was also released from the matrix (Phase III of
drug release). Moreover, it was particularly noteworthy that greater shear stress could create more
leachable oligomers at an earlier time, resulting in earlier and faster film mass loss and drug release.
Surface topographical variations identified from FE-SEM images also revealed that greater shear stress
led to more and bigger micropores on the film surfaces (Figure 4); the formation of these micropores
contributed to drug diffusion and release. In the third stage, oligomer fragments continued to be
degraded into completely water-soluble products, during which any residual drug in the PLGA was
released (Phase IV of drug release).

In short summary, according to the analysis on the four-phase release profile of sirolimus,
except the small initial burst release (generally attributed to surface adhered drugs), the drug release
behavior during the next three phases synchronized with the three-stage degradation process of
the PLGA films. More importantly, by significantly affecting the degradation rate of PLGA films
in each stage, the applied shear stress caused significant variations in the sirolimus release kinetics.
Although these findings cannot be used to directly deduce their clinical implications for anti-restenosis
treatment, they may provide a basis for the design of DESs. Therefore, research on biodegradable stent
coatings may consider the effects of different shear stresses on the degradation of the matrices, as well
as the resulting influences on drug release.

3.4. Research Limitations

This study has four limitations. First, the degradation of the drug-free PLGA films, which can be
helpful for explaining the sirolimus release kinetics, is ignored in this study. Second, the shear stress
applied to the sirolimus-carrying film was created by a steady flow. In reality, however, the hemodynamic
environment of human arteries in which stents are placed is complicated and diverse; physiological
pulsatile flows coexist with steady flow [56,57]. Third, the aqueous solution containing Tween-20 was
used as the in vitro release medium. Sirolimus is very unstable in various aqueous solutions and has poor
water solubility [58–61]. According to our previous work, the aqueous solution was supplemented by
Tween-20 (4 g/L) to increase the stability and solubility of sirolimus, thereby attaining a favorable sink
condition for the sirolimus release experiments [62]. However, the Tween-20 aqueous solution in this
research could not really simulate the blood components. Fourth, 50 mL of the release medium was used
as the degradation solution of PLGA and refreshed every 24 h. As a result, the significant pH change
in the solution was not observed during the period. However, the accumulation of acid degradation
products in the living tissues can decrease the local pH, which can further play a substantial impact on
polymer degradation and drug release. Therefore, to further understand the release kinetics of sirolimus
from PLGA coatings, our future research will conduct related experiments whose conditions may be more
similar to the human hemodynamic and blood chemistry environments.

4. Conclusions

Overall, this study mainly investigated the in vitro release kinetics of sirolimus from PLGA films
in uniform flow fields using PPFCs. Fluid shear stress was found to significantly accelerate sirolimus
release. Moreover, the observed drug release profiles were better explained by the film degradation
results. Therefore, this study could provide a practical method for evaluating in vitro drug release from
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polymer matrices under uniform shear stress, and might help improve the design of biodegradable
coatings on DESs.
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