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Uridine-cytidine kinase like-1 (UCKL-1) is a largely uncharacterized protein with high
sequence similarity to other uridine-cytidine kinases (UCKs). UCKs play an important role
in the pyrimidine salvage pathway, catalyzing the phosphorylation of uridine and cytidine
to UMP and CMP, respectively. Only two human UCKs have been identified, UCK1 and
UCK2. Previous studies have shown both enzymes phosphorylate uridine and cytidine
using ATP as the phosphate donor. No studies have evaluated the kinase potential of
UCKL-1. We cloned and purified UCKL-1 and found that it successfully phosphorylated
uridine and cytidine using ATP as the phosphate donor. The catalytic efficiency (calcu-
lated as kcat/KM) was 1.2 × 104 s−1, M−1 for uridine and 0.7 × 104 s−1, M−1 for cytidine.
Our lab has previously shown that UCKL-1 is up-regulated in tumor cells, providing pro-
tection against natural killer (NK) cell killing activity. We utilized small interfering RNA
(siRNA) to down-regulate UCKL-1 in vitro and in vivo to determine the effect of UCKL-1
on tumor growth and metastasis. The down-regulation of UCKL-1 in YAC-1 lymphoma
cells in vitro resulted in decreased cell counts and increased apoptotic activity. Down-
regulation of UCKL-1 in K562 leukemia cells in vivo led to decreased primary tumor
growth and less tumor cell dissemination and metastasis. These results identify UCKL-1
as a bona fide pyrimidine kinase with the therapeutic potential to be a target for tumor
growth inhibition and for diminishing or preventing metastasis.

Introduction
Uridine-cytidine kinase (UCK) is a pyrimidine ribonucleoside kinase that catalyzes the phosphoryl-
ation of uridine and cytidine to their monophosphate forms, UMP and CMP, respectively [1–2]. This
is the first step in the pyrimidine salvage pathway and is thought to be rate-limiting [3–4]. UMP and
CMP are further phosphorylated by UMP-CMP kinase and nucleoside diphosphate kinases to UTP
and CTP [3–5]. So far, only two human UCKs have been identified, UCK1 and UCK2 [6–8]. UCK1 is
a 277 amino-acid protein with predicted molecular mass of 31 kDa and is universally expressed in
healthy tissues. UCK2 is a 261 amino-acid protein with predicted molecular mass of 29 kDa and is
restricted to human placenta and various tumor cells [3]. Human UCK1 and UCK2 show 72%
sequence homology [3].
Uridine-cytidine kinase like-1 (UCKL-1) was first identified through its binding to Epstein–Barr

virus encoded nuclear protein, EBNA-3 [9]. UCKL-1 is a 548 amino-acid protein [10]. The
N-terminal half of UCKL-1 has high sequence similarity to both UCK1 and UCK2 and contains an
ATP/GTP binding site like those found in the other UCKs [9]. The C-terminal half of UCKL-1 has
sequence similarity to uracil phosphoribosyltransferase (UPRT) [9].
Studies conducted by our lab to identify proteins that regulate the anti-tumor activity of natural

killer (NK) cells led to the identification of UCKL-1. NK cells play an important role in immune
defense, recognizing and targeting tumor cells [11]. When NK cells encounter a target cell, cytolytic

Accepted Manuscript online:
18 May 2022
Version of Record published:
8 June 2022

Received: 12 November 2021
Revised: 26 April 2022
Accepted: 18 May 2022

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-

ND).

1149

Biochemical Journal (2022) 479 1149–1164
https://doi.org/10.1042/BCJ20210770

http://orcid.org/0000-0001-7726-781X
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


granules, containing perforin and granzymes, are released and enter the target cell, leading to apoptosis [11].
We identified a novel protein found in the cytolytic granule membranes of NK cells called natural killer
lytic-associated molecule (NKLAM). NKLAM is an E3 ubiquitin ligase, a member of the RING1-in between
RING (IBR)-RING2 (RBR) protein family [11]. E3 ubiquitin ligases regulate the ubiquitination of proteins by
catalyzing the transfer of activated ubiquitin from an E2 ubiquitin conjugating enzyme to its substrate [11].
Ubiquitination is an important post-translational modification, targeting proteins for degradation by protea-
somes or altering their cellular localization and function [12–14].
Using the yeast two-hybrid system, we identified UCKL-1 as a substrate for NKLAM [10]. Overexpression

studies in HEK293 cells showed coprecipitation of NKLAM and UCKL-1 and interaction between the two led
to decreased expression of UCKL-1 [10]. Colocalization studies confirmed that UCKL-1, in the presence of
NKLAM, translocates from the nucleus to the cytoplasm, where it is ubiquitinated and degraded [10]. Due to
its homology to other UCKs, we investigated the involvement of UCKL-1 in proliferation and survival of
tumor cells. Down-regulation of UCKL-1 in K562, a human erythroleukemia cell line, resulted in decreased
tumor cell proliferation and increased spontaneous apoptosis and susceptibility to NK cell lysis [15].
Overexpression of UCKL-1 in vitro provided protection of K562 cells from NK cell lysis [16]. In vitro and in
vivo overexpression of UCKL-1 in RMA-S cells, a mouse lymphoma cell line, also increased their resistance to
NK cell lysis [16].
Several studies have identified UCKL-1 as a potential biomarker, with increased expression in prostate cancer

[17], breast cancer [18], colorectal cancer [19], hepatocellular carcinoma [20], and lung cancer [21].
Additionally, overexpression of UCK2 was reported in various tumor cells. One study demonstrated that UCK2
overexpression in breast cancer tissue correlated with a less differentiated phenotype and shorter survival time
among patients with breast cancer [22]. Another study found that patients with high UCK2 expression in hepa-
tocellular carcinoma tissues had more aggressive clinicopathological features and poorer prognosis compared
with those with low UCK2 expression [23]. There have been no studies to date identifying UCK1 as a prognos-
tic marker in cancer.
Other investigators characterized the kinase activity of UCK1 and UCK2. Van Rompay et al. [3] reported

that the KM values for UCK2 were 4- to 6-fold lower for uridine and cytidine, respectively, compared with the
KM values for UCK1. The Vmax values for UCK2 were several-fold higher than UCK1 [3]. Catalytic efficiency,
calculated as kcat/KM, showed both uridine and cytidine were more efficient substrates for UCK2 than UCK1
[3]. Meinsma and Van Kuilenburg also compared UCK1 and UCK2 kinase activity. Although both proteins
were expressed in a panel of neuroblastoma cell lines, the Vmax of UCK2 was 22- and 8-fold higher with
uridine and cytidine, respectively, compared with UCK1 [8]. The KM of UCK1 was 39- and 40-fold higher with
uridine and cytidine, respectively, compared with UCK2 [8]. Catalytic efficiency showed uridine and cytidine
were more efficient substrates of UCK2 than UCK1 [8]. To date, no studies have characterized the kinase prop-
erties of UCKL-1.
The present investigation was initiated to determine whether UCKL-1 has pyrimidine kinase activity and to

further investigate its role in tumor cell growth both in vitro and in vivo. We focused our comparison of
UCKL-1 kinase activity with UCK2 due to UCK2’s efficient catalytic activity, its selective expression in tumor
cells, and the identification of both UCKL-1 and UCK2 as potential biomarkers in multiple cancer types. We
cloned human UCKL-1 with two polyhistidine tags and purified the recombinant protein by immobilized
metal affinity chromatography (IMAC). Phosphorylation of uridine and cytidine was analyzed using an enzym-
atic assay. We demonstrated that UCKL-1 catalyzes the phosphoryl transfer from ATP to uridine and cytidine
similarly to UCK2. We determined the involvement of UCKL-1 in murine cancer cell apoptosis and prolifer-
ation in vitro utilizing YAC-1 mouse lymphoma cells. We investigated the effects of down-regulation of
UCKL-1 on primary tumor growth and metastasis in vivo using green fluorescent protein (GFP)-expressing
K562 leukemia tumor cells in immunodeficient mice. UCKL-1 down-regulation in tumor cells reduces tumor
growth and increases apoptosis in vitro and in vivo and decreases tumor dissemination and metastasis in vivo.

Results
Comparison of UCKL-1 with UCK1 and UCK2
To date, two human UCKs have been cloned, purified, and tested for enzymatic activity. Due to its homology
to UCK1 and UCK2, UCKL-1 was presumed to have similar activity, but its kinase function had not been eval-
uated. Figure 1 shows the alignment of UCKL-1 with UCK1 and UCK2 protein sequences. Regions of
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homology are depicted in yellow while amino acid similarities are shown in red. Between amino acids 78 and
296 of UCKL-1, there is 44% identity among all 3 proteins. There is 76% amino acid similarity between
UCKL-1 and either UCK1 or UCK2, including the ATP/GTP binding site. Amino acids 329–533 of UCKL-1
have 41% similarity with human UPRT (sequence highlighted in blue). UCKL-1 and UCK2 are both expressed
in tumor cells, and high levels have been associated with poor prognosis for patients with a variety of cancers.
We therefore sought to compare the kinase activity of UCKL-1 and UCK2.

Purification of UCKL-1 and UCK2
Plasmids expressing UCKL-1 and UCK2 with two polyhistidine tags were transformed into E. coli BL21-DE3
competent cells and the recombinant proteins were purified by IMAC. An amount of 100 ng of each purified
protein was run on a 10% SDS-polyacrylamide gel and transferred to a PVDF membrane. The membrane was
probed with anti-UCKL-1 and UCK2 antibodies. An additional gel was stained with Coomassie blue. The
expected molecular weight of His-tagged UCKL-1 is 80 kDa, and His-tagged UCK2, 48 kDa.
Figure 2A shows Coomassie blue staining of a representative gel. Single bands corresponding to UCKL-1 and

UCK2 confirmed the success of isolation and purification of the recombinant proteins. Additionally, immuno-
blot analysis confirmed the isolation and purity of UCKL-1 and UCK2 (Figure 2B–D). Antibody against
UCKL-1 has no cross-reactivity with UCK2 (Figure 2C), and the antibody against UCK2 has no cross-reactivity
against UCKL-1 (Figure 2D).

Figure 1. Alignment of human UCKL-1, UCK1, and UCK2.

Human UCKL-1 (UniprotKB Q9NWZ5), UCK1 (Q9HA47) and UCK2 (Q9BZX2) were aligned using the Clustal program. Identical

amino acids among the three proteins are highlighted in yellow. Similar amino acids between UCKL1 and either UCK1 or UCK2

are depicted in red. The boxed amino acids represent the ATP binding site. The section of UCKL-1 highlighted in blue has

41% similarity to human UPRT (Q96BW1).
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Enzymatic activity of UCKL-1
We conducted an enzymatic assay to determine whether UCKL-1 has pyrimidine kinase activity, and if so, to
compare the activity of UCKL-1 to UCK2. We utilized the ADP-Glo™ Kinase Assay system, in which the
luminescent signal generated is directly proportional to the ADP produced during the kinase reaction and cor-
relates with kinase activity [24].
Initially, we optimized the assay system for UCK2. We detected UCK2 pyrimidine kinase activity consistent

with that reported by others [3,8]. Using conditions that were maximal for UCK2 activity, we were unable to
detect UCKL-1 kinase activity. When changes in pH, salt concentration, and temperature were made, we were
able to successfully measure UCKL-1 kinase activity. Both enzymes efficiently phosphorylated uridine and cyti-
dine (Figure 3). UCKL-1 exhibited a KM value of 3.4 × 10−2 mM for uridine and 6.5 × 10−2 mM for cytidine.
These values were several-fold higher for UCK2 (Table 1). UCK2 exhibited Vmax values several-fold higher
than those for UCKL-1. The catalytic efficiency, calculated as kcat/KM, for UCK2 was 5-fold higher with cyti-
dine compared with UCKL-1. There was no difference between the catalytic efficiency of UCK2 and UCKL-1
with uridine as the substrate.

Expression of UCKL-1, UCK1, and UCK2 in tumor cells
UCK1 and UCK2 are expressed in various tumor cell lines, including K562 cells [8,18,25]. We sought to evalu-
ate the expression of UCKL-1, UCK1, and UCK2 in a panel of tumor cell lines. Lysates from seven human
tumor cell lines (U-87 glioblastoma, K562 erythroleukemia, Jurkat T cell leukemia, Huh-7 hepatocellular car-
cinoma, U-2 OS bone osteosarcoma, MDA-MB-231 triple negative breast adenocarcinoma, and MCF-7 breast
adenocarcinoma) and one mouse tumor cell line (YAC-1 lymphoma) were prepared and subjected to immuno-
blot analysis. The molecular weight of endogenous UCKL-1 is 61 kDa, endogenous UCK1 is 31 kDa, and
endogenous UCK2 is 29 kDa. Actin was used as loading control. Immunoblot analysis (Figure 4) showed the
presence of all three UCKs in this panel of tumor cell lines, with varying levels of expression.

Decreased growth of siUCKL-1 treated cells
Previously, we found that down-regulation of UCKL-1 in K562 cells by RNA interference resulted in increased
apoptosis and decreased proliferation [15]. To determine if this function of UCKL-1 was similar across human
and mouse cell lines, we nucleofected YAC-1 cells with either UCKL-1 siRNA (siUCKL-1) or control siGFP
(siGFP). There were significantly fewer YAC-1 cells treated with siUCKL-1 compared with siGFP-treated cells
after 24 h of culture (Figure 5A). These results correspond with those seen previously with K562 [15].
To determine if the lower cell numbers seen in siUCKL-1-treated cultures compared with siGFP-treated cul-

tures were due to cell death via apoptosis, we measured caspase 3/7 activity in each group. YAC-1 cells with
down-regulated UCKL-1 had significantly more caspase activity than siGFP-treated cells (Figure 5B). This

Figure 2. Purification of bacterially expressed His-tagged UCKL-1 and UCK2.

(A) Coomassie blue stained gel of 100 ng of purified UCKL-1 (lane 1) and UCK2 (lane 2). Single band detected for each:

UCKL-1 at 80 kDa and UCK2 at 48 kDa. (B) Western blot analysis with His antibody confirmed purity and isolation of

His-tagged UCKL-1 (lane 1) and UCK2 (lane 2). (C) Analysis with UCKL-1 (B-11) antibody (lane 1) showed no cross-reactivity

with UCK2 (lane 2). (D) Analysis with UCK2 antibody (lane 2) showed no cross-reactivity with UCKL-1 (lane 1). Blots represent

1 of 3 experiments with identical results.
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corresponds with results seen in caspase activity of K562 cells with down-regulated UCKL-1 [15]. Therefore,
the effect of UCKL-1 down-regulation appears to be similar across mouse and human tumor cells, with higher
levels of apoptotic activity observed in both K562 cells and YAC-1 cells treated with siUCKL-1 [15].

Effect of UCKL-1 down-regulation on primary tumor growth and metastasis
in vivo
To evaluate the effect of UCKL-1 down-regulation on primary tumor growth and metastasis, we injected
K562-GFP cells subcutaneously in the rear flank of immunodeficient NOD-scid IL2Rγnull (NSG) mice. For

Figure 3. Pyrimidine kinase activity of UCKL-1 and UCK2.

Purified UCKL-1 (500 ng) and UCK2 (1 ng) were dispensed into 384-well plates and mixed with a substrate/ATP buffer. Final concentration of ATP

was 100 mM. ADP formation was measured at various substrate concentrations. (A) UCKL-1 with uridine as substrate; (B) UCK2 with uridine as

substrate; (C) UCKL-1 with cytidine as substrate; (D) UCK2 with cytidine as substrate. Kinase reactions were measured at 0, 60, 120, and 180 min.

Luminescence at each time point was converted to the amount of ADP formed during the kinase reaction using an ATP-to-ADP conversion curve.

ADP formation was plotted versus time. Each data point represents the mean ± SD of 3–5 replicates.

Table 1 Enzymatic properties of the recombinant proteins, UCKL-1 and UCK2, with ATP as
phosphate donor

Substrate

KM (mM) Vmax (mmol/mg/min) kcat/KM (s−1, M−1)

UCKL-1 UCK2 UCKL-1 UCK2 UCKL-1 UCK2

Uridine 3.4 × 10−2 207.3 3.1 × 10−4 3.98 1.2 × 104 1.5 × 104

Cytidine 6.5 × 10−2 25.07 3.5 × 10−4 1.09 0.7 × 104 3.5 × 104

Kcat was calculated using molecular mass of 80 kDa for UCKL-1 and 48 kDa for UCK2.
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primary tumor growth studies, mice were injected with tumor cells into both flanks. This reduced tumor size
variability among the mice. Once tumors were established (day 8), scrambled siRNA (sicontrol) or siUCKL-1
was injected intratumorally every other day. Tumors on one flank were treated with sicontrol and the other
side with siUCKL-1. siUCKL-1-injected primary tumors were significantly smaller than sicontrol-injected
tumors at day 10, 12, 14, and 15 (Figure 6A). After 15 days, mice were sacrificed, photographed (Figure 6C)
and tumors excised and weighed. All animals survived until end of study and none were withdrawn prior to its
completion. siUCKL-1-injected primary tumors weighed 2.5-fold less than sicontrol-injected tumors
(Figure 6B).

Figure 4. Immunoblot analysis of UCKL-1, UCK1, and UCK2 expression in various tumor cell lines.

(A) Whole-cell lysates were prepared and UCKL-1, UCK1, and UCK2 were detected by immunoblotting. Actin was used as a

loading control. (B–D) Densitometric analysis of UCKL-1, UCK1, and UCK2 expression relative to actin for each cell line (mean

± SD, n = 3).

Figure 5. Down-regulation of UCKL-1 in YAC-1 cells induces apoptosis.

(A) YAC-1 cells were nucleofected with either siGFP control (siGFP) or siUCKL-1. Cell counts were significantly lower at 16, 20, and 24 h after

nucleofection of siUCKL-1 compared with siGFP (mean ± SD, n = 5, * P≤ 0.02, ** P≤ 0.002, *** P≤ 0.0002). UCKL-1 down-regulation was confirmed

by real-time PCR 24 h after nucleofection. (B) YAC-1 cells nucleofected with siUCKL-1 had more caspase 3/7 activity than siGFP-treated cells

(mean ± SD, n = 4, * P≤ 0.02). Caspase activity was determined by a luminescent assay and UCKL-1 down-regulation confirmed by real-time PCR.
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The expression of GFP by K562 cells allowed for tumor visualization within the mouse. Figure 7 shows
expression of GFP by the subcutaneous tumors in the rear flank of a representative mouse. The
siUCKL-1-injected tumor was visibly smaller than the sicontrol-injected tumor in vivo (Figure 7, left) and after
extraction from the mouse (Figure 7, right). The GFP expression level in siUCKL-1-injected tumors was 3-fold
lower than in sicontrol-injected tumors.
Since we observed a difference in primary tumor growth, we examined the effect of UCKL-1 down-regulation

on the level of lung metastasis and tumor dissemination. For these studies, mice were injected subcutaneously
on one side with K562-GFP cells. Each mouse was injected intratumorally with either sicontrol or siUCKL-1.
Lung metastasis was determined by the level of GFP expression in the lungs using qPCR, which reflects the
number of K562-GFP cells present. Mice in which the primary tumor was injected with siUCKL-1 had 5-fold
less lung GFP expression than sicontrol-injected mice (Figure 8A). Less GFP expression was also observed in
the blood of siUCKL-1-injected mice (Figure 8B). No GFP was detected in the lungs or blood of non-tumor
bearing mice. Therefore, decreasing UCKL-1 expression in primary tumors through siRNA delivery impacted
primary tumor growth, lung metastasis, and release of tumor cells into circulation.
Primary tumors were harvested, fixed, paraffin embedded, sectioned, and analyzed for levels of terminal

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) to quantitate DNA damage, reflective of apop-
tosis. In vitro siUCKL-1 treatment of K562 induced apoptosis [15]. A similar effect on apoptosis was observed
in vivo. Tumors injected with siUCKL-1 had greater TUNEL staining (measured as positive pixel area) than

Figure 6. UCKL-1 down-regulation inhibits primary tumor growth in NSG mice.

(A) 106 K562-GFP cells suspended in Matrigel were injected into the right and left flanks of NSG mice. Once tumors were established (day 8), either

8 mg scrambled siRNA (sicontrol) or UCKL-1 siRNA (siUCKL-1) in 50 ml PBS was injected intratumorally. Tumors were measured and injected with

siRNA every other day for one week. Significantly less tumor growth was seen in the siUCKL-1-injected tumors at day 10, 12, 14, and day of

sacrifice (day 15) (mean ± SD, n = 18, * P≤ 0.001, ** P≤ 0.0005). (B) Subcutaneous tumors were extracted from NSG mice on day 15 and weighed.

SiUCKL-1-injected tumors weighed significantly less than sicontrol-injected tumors (mean ± SD, n = 18, * P≤ 0.001). (C) Representative images of

NSG mice at sacrifice. The siUCKL-1-injected subcutaneous tumor on the right flanks of the mice were visibly smaller than the sicontrol-injected

tumor on the left. Two representative mice are shown.
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those injected with control siRNA. siUCKL-1-injected tumors had 10-fold more apoptosis than
sicontrol-injected tumors (Figure 9). These results indicate that decreasing UCKL-1 expression in tumor cells
induces apoptosis and inhibits tumor growth, dissemination, and metastasis.

Discussion
We previously identified UCKL-1 as a substrate for ubiquitination by NKLAM, an E3 ligase important in NK
cell anti-tumor activity [10]. UCKL-1 was first identified by Kashuba et al. [9] through its binding to Epstein–

Figure 7. Diminished growth of siUCKL-1 treated tumors in vivo.

NSG mice were injected subcutaneously with K562-GFP tumor cells on both rear flanks. Tumors were injected with either scrambled (sicontrol) or

UCKL-1 siRNA (siUCKL-1) every other day and measured. Representative IVIS images of NSG mice showed less growth of siUCKL-1-injected

tumors. Tumors were visible by GFP both in the mouse (left) and after extraction (right). The levels of GFP were analyzed by IVIS software and

quantitated by photon efficiency. There was 3-fold less GFP expression in the siUCKL-1 tumors compared with the sicontrol tumors (n = 18).

Figure 8. Less lung metastasis and fewer circulating tumor cells in mice receiving intratumoral injections of siUCKL-1.

(A) Lungs from tumor-bearing NSG mice were extracted and analyzed for GFP expression by quantitative RT-PCR. GFP expression correlates with

the number of K562-GFP tumor cells present. The level of lung metastasis was significantly lower in mice injected with siUCKL-1 than in

sicontrol-injected mice (mean ± SD, n = 34, ** P≤ 0.01). (B) At time of sacrifice, 500 ml blood was removed from the heart. RNA was extracted and

analyzed for GFP by quantitative RT-PCR. Mice bearing siUCKL-1-injected tumors had significantly fewer circulating tumor cells than mice bearing

sicontrol-injected tumors (mean ± SD, n = 13, * P≤ 0.04). No GFP expression was detected in mice without tumor present.
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Barr virus nuclear antigen 3 protein (EBNA-3). They theorized UCKL-1 was a novel uridine kinase (UK)/uracil
phosphoribosyltransferase (UPRT; UK/UPRT), an enzyme with dual catalytic activity. UCKs are pyrimidine
ribonucleoside kinases that catalyze the phosphorylation of uridine and cytidine to their monophosphate
forms, while UPRT catalyzes the conversion of uracil to UMP [1,26]. Both enzymes play an integral role in the
pyrimidine salvage pathway [1,26]. The N-terminal half shows high sequence similarity to other UCKs contain-
ing an ATP/GTP binding site (Figure 1) [9]. The crystal structure of UCKL-1 suggests high homology to
UPRT in its C-terminal end. It was reported that UCKL-1 mRNA is ubiquitously expressed throughout the
body, including the brain, placenta, lung, liver, and pancreas, with higher levels found in skeletal muscle, heart,
and kidney [9]. Even higher levels of UCKL-1 are found in tumor cells, especially those with the most

Figure 9. Higher levels of apoptosis in UCKL-1 down-regulated K562 tumors in vivo.

(A) Tumors isolated from NSG mice were fixed, paraffin embedded, sectioned, and subjected to fluorescent TUNEL staining, which visualizes nicks

in the DNA and is reflective of apoptosis. A negative control and positive control (DNase treatment) were used for background and positive staining

determination, respectively. TUNEL staining is depicted in green. Representative images are shown. siUCKL-1-injected tumors had higher levels of

apoptosis than sicontrol-injected tumors. The two right panels are Hematoxylin and Eosin staining of the tumors. (B) Quantitative analyses of

TUNEL staining. The TUNEL positive pixel area of six fields was analyzed for each tumor sample and normalized to negative control background

staining. siUCKL-1-injected tumors had significantly more TUNEL fluorescent staining (mean ± SD, n = 8, * P≤ 0.05).
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aggressive phenotype [17-21]. To date, there have been no studies performed to characterize UCKL-1 kinase
function.
We expressed human UCKL-1 and UCK2 in bacteria to characterize and compare the pyrimidine kinase

activity of the two enzymes. We analyzed the phosphorylation of both uridine and cytidine with ATP as the
phosphate donor. The catalytic efficiency of UCK2 with cytidine was 5-fold higher than that observed for
UCKL-1. There was no difference in the catalytic efficiency of UCK2 and UCKL-1 with uridine (Table 1). The
observed KM and Vmax values for UCK2 were comparable to those reported previously [3,8,25]. Both uridine
and cytidine were determined to be more efficient substrates for UCK2 than UCK1 [3,8]. Based upon the previ-
ously published data comparing the kinase activity of UCK1 and UCK2, our results suggest that UCKL-1 is a
more efficient enzyme than UCK1. Further experiments are in progress to compare all three UCKs. We are
also examining whether UCKL-1 has UPRT activity.
UPRTs have mostly been characterized in lower organisms, including Mycobacterium tuberculosis and

Toxoplasma gondii, as well as in the plant species, Arabidopsis thaliana. [26–28]. Arabidopsis thaliana expresses
a dual-domain UK/UPRT (AtUK/UPRT) [28]. The N-terminal region contains a UK domain with an ATP
binding motif, and the C-terminal domain consists of a UPRT domain. Sequence analysis revealed 50% hom-
ology to human UCKL-1 for both domains [28]. AtUK/UPRT was transformed into E. coli and mutated in
Arabidopsis. In both cases, the protein was functional, displaying both UK and UPRT activity. These findings
indicate that UPRT and UK play a role in nucleotide metabolism in plants through the pyrimidine salvage
pathway [28].
There has been minimal research characterizing human UPRT. One study attempted to characterize human

UPRT isolated from fetal brain [29]. After purification, the yielded protein was catalytically inactive in vitro.
The authors suggested that other unknown factors might be necessary for human UPRT to function properly
in vivo [29]. They reported, during their first attempts at purifying human UPRT, the protein formed inclusion
bodies after IPTG induction at 37°C [29].
Recombinant UCKL-1 initially also formed inclusion bodies after IPTG induction at 37°C. We had to opti-

mize conditions to increase protein yield. Additionally, we had to optimize conditions for the enzymatic assays.
Previous studies of UCK2 used a reaction buffer containing 50 mM Tris, pH 7.5, 5 mM MgCl2, 2 mM DTT,
and 0.5 mg/ml BSA [25]. We utilized this reaction buffer for our UCK2 enzymatic reactions, and the results
correlated with those of a similar study [25]. However, we had to adjust the pH, salt concentration, and tem-
perature of the reaction to measure the kinase activity of UCKL-1. This indicates that these enzymes have dis-
tinctly different requirements for function.
Reports have shown endogenous expression of UCK1 and UCK2 in human tumor tissues, but there has

been no investigation into the endogenous expression of UCKL-1 across different tumor cell lines [8,22,23]. We
show UCKL-1 is expressed in multiple types of cancer cells (Figure 4). These results encourage further investi-
gation into UCKL-1 as a prognostic biomarker of cancer.
Our lab explored the effect of down-regulating UCKL-1 in K562 cells in vitro. This resulted in decreased

tumor cell proliferation and increased susceptibility to NK cell lysis [15]. We then questioned whether similar
effects of down-regulating UCKL-1 would occur in other tumor cell lines. We nucleofected YAC-1 cells, a
mouse lymphoma cell line, with either control (siGFP) or UCKL-1 siRNA. There were significantly lower
numbers of siUCKL-1-treated cells compared with siGFP-treated cells 24 h after nucleofection (Figure 5).
Down-regulation of UCKL-1 resulted in increased caspase activity at 20 h after treatment (Figure 5). These
results correspond with those observed previously in K562 cells [15], leading us to conclude that the effect of
UCKL-1 down-regulation is similar across species and cell lines. There is variation in the degree of response to
down-regulation of UCKL-1 among different cell lines, and this is most likely due to varying levels of UCKL-1
expression as well as variation in the expression of other UCKs.
We sought to examine the role of UCKL-1 in vivo. In this study, we used K562, a human erythroleukemia

cell line, to determine the effect of UCKL-1 down-regulation. We injected either control or UCKL-1 siRNA dir-
ectly into K562 tumors established in NSG mice every other day to enhance effectiveness of the siRNA and
maintain UCKL-1 knockdown. Some of the studies in NSG mice were conducted with mice bearing double
tumors; one tumor was injected with control siRNA, while the other was injected with UCKL-1 siRNA. In
mice bearing double tumors, we observed a significant difference in primary tumor size between the
siUCKL-1-treated tumors and the control-treated tumors (Figure 6). The UCKL-1 down-regulated tumors grew
slower, were smaller, and weighed less than the sicontrol-treated tumors (Figure 6). Another study was per-
formed with mice bearing single tumors; each tumor was injected with either control or UCKL-1 siRNA. We
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also observed a decrease in primary tumor growth, as well as less lung metastasis and fewer circulating tumor
cells (Figure 8).
Down-regulation of UCKL-1 in K562 cells in vitro enhanced their susceptibility to apoptosis [15]. Greater

apoptotic activity in UCKL-1 down-regulated cells was also evidenced in vivo by TUNEL staining of
siUCKL-1-treated tumors (Figure 9). To eliminate the possibility that the smaller tumor size was the reason for
higher levels of apoptosis, similarly sized control and siUCKL-1-injected tumors underwent TUNEL staining.
Despite the tumors being the same size, UCKL-1 down-regulated tumors had higher levels of apoptosis than
control tumors. It is likely that the high level of apoptosis in cells with decreased UCKL-1 expression was, in
part, responsible for the lower primary tumor growth rate and less lung metastasis and tumor dissemination.
We plan to conduct further in vitro and in vivo experiments down-regulating and overexpressing UCKL-1 in
other tumor models to assess tumor growth rates and dissemination. We also want to compare the functional
activity of UCKL-1 with UCK2 in tumor cells. We plan to investigate whether the down-regulation of both
UCKL-1 and UCK2 would have a greater effect on tumor growth and survival than either alone.
Studies have highlighted UCKL-1’s potential as a biomarker in numerous cancer cell types [17–21]. Greater

than 80% of cancers demonstrate significantly increased expression of pyrimidine metabolism-related genes
compared with normal tissues [30]. This includes genes that regulate both the pyrimidine de novo and salvage
pathways. More than two decades ago, inhibitors of de novo pyrimidine synthesis were developed for potential
use in cancer therapy [31]. Pharmacological inhibition of dihydroorotate dehydrogenase (DHODH), which is
the fourth of six universally conserved enzymatic reactions in the pyrimidine de novo synthetic pathway, was
reported to reduce liver metastasis in colorectal cancer and small cell lung cancer models [32–34]. DHODH
inhibitors significantly decreased levels of leukemia-initiating cells, and improved survival of leukemia-bearing
mice [35]. It was soon discovered that cancer cells could escape the de novo synthesis pathway and adapt the
nucleotide salvage pathway for DNA replication and cell proliferation [31]. Researchers turned their focus to
the salvage pathway for targeted cancer treatment, but eventually this was set aside because of limitations trans-
lating in vitro studies into in vivo and clinical studies [31]. In the last few years, there has been a reemergence
of interest in targeting the pyrimidine salvage pathway due to the development of new inhibitors [31].
Sarkisjan et al. found that the novel cytidine analog fluorocyclopentenylcytosine (RX-3117) is activated by
UCK2 only. UCK1 does not play a role in this process [36]. Once activated, RX-3117 is incorporated into the
DNA or RNA of cancer cells and induces apoptosis [37]. In our studies, down-regulation of UCKL-1 in K562
leukemia cells in vivo resulted in less tumor dissemination and metastasis. These findings suggest that inhibit-
ing the pyrimidine salvage pathway in tumors may be another therapeutic strategy to treat cancer patients and
encourage a fresh look into targeting the salvage pathway, including developing agents that inhibit UCKL-1.
Another emerging area of interest for pyrimidine biosynthesis is its potential as a target for antiviral therapy.

Liu et al. reported a combination treatment of GSK983, a broad-spectrum antiviral agent, and cyclopentenyl
uracil (CPU), an inhibitor of uridine salvage, suppressed dengue virus replication in the presence of physio-
logical uridine concentrations. These findings are intensifying studies to develop specific inhibitors against
UCKs [38]. In summary, our data demonstrate that UCKL-1 is a pyrimidine kinase. It is expressed in multiple
tumor cell lines and plays a role in tumor cell survival in vitro and in vivo. Targeting UCKL-1 and decreasing
its expression in tumor cells may be an effective method to decrease tumor survival and inhibit metastasis. Our
study characterizing UCKL-1 as a uridine-cytidine kinase opens the door for the targeted manipulation of
UCKL-1 as a cancer therapeutic and additional target for pyrimidine salvage inhibition.

Materials and methods
Cell cultures and protein extraction
The human glioblastoma U-87 cell line, human erythroleukemia K562 cell line, human T cell leukemia Jurkat
cell line, and mouse lymphoma YAC-1 cell line were all purchased from American Type Culture Collection
(ATCC). Additional cell lines were graciously provided by the following individuals: the two human breast
cancer cell lines, MDA-MB-231 and MCF-7, were provided by Dr. Ratna Ray of Saint Louis University (Saint
Louis, MO); the human liver carcinoma cell line, Huh-7, was provided by Dr. John Tavis of Saint Louis
University; and the human bone osteosarcoma cell line, U-2 OS, was provided by Dr. Susana Gonzalo-Hervas
of Saint Louis University.
K562, Jurkat, and YAC-1 were cultured in RPMI-1640 media supplemented with 7.5% heat-inactivated fetal

bovine serum (FBS), 1% L-glutamine and 1% penicillin-streptomycin. All other cell lines were cultured in
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DMEM high glucose supplemented with 10% FBS, 1% L-glutamine, and 1% penicillin-streptomycin. All cells
were maintained in an atmosphere of 5% CO2 at 37°C with 5% relative humidity. Cell counts were determined
using a hemocytometer. Cell viability was determined using trypan blue dye exclusion (MilliporeSigma,
Burlington, MA). Whole cell lysates were prepared using RIPA buffer (MilliporeSigma) with protease inhibitors
and centrifuged at 12 000g for 10 min. Protein concentration was determined using Pierce™ bicinchoninic acid
(BCA) Protein Assay (Thermo Fisher Scientific).
K562 cells expressing GFP were generated for in vivo studies. The cells were transfected with a pcDNA3

vector (Invitrogen, Carlsbad, CA) containing the GFP gene cloned from the pEGFP-N1 vector (Clontech,
Mountain View, CA) as previously described [15]. GFP expression was verified by fluorescence microscopy,
flow cytometry, and polymerase chain reaction (PCR).

Cloning and expression of human UCKL-1 and UCK2 in bacteria
The UCKL-1 construct was designed using cDNA from the pFlag-UCKL1 plasmid previously created by our
lab [10]. The UCK2 construct was designed from cDNA generously provided by Dr. A.B.P. Van Kuilenburg of
the Academisch Medisch Centrum (Amsterdam, The Netherlands). The targeted genes were amplified using
PCR. Oligonucleotide primers flanking UCKL-1 and UCK2 (Table 2) were designed with BamHI and XhoI
restriction enzyme sites synthesized by Integrated DNA Technologies (Coralville, IA). The cDNAs were
expressed with both an N-terminal and C-terminal polyhistidine (His) tag and cloned into the restriction
enzyme sites of BamHI and XhoI in pET32b plasmid vector.
The plasmids were transformed into Escherichia coli XL-10 Ultracompetent cells (Agilent Technologies,

Santa Clara, CA). Plasmids from multiple colonies were sent for sequencing (Retrogen, San Diego, CA). The
correct plasmids were then transformed into E. coli BL21-DE3 competent cells (New England Biolabs, Ipswich,
MA), and colonies inoculated in 10 ml LB media supplemented with 100 mg/ml ampicillin. Bacteria were
diluted in 50% glycerol and stored at -80°C.

Protein purification
Liquid bacterial cultures (10 ml) with 100 mg/ml ampicillin were inoculated using glycerol stocks of bacteria
expressing either UCKL-1 or UCK2 and incubated at 37°C with shaking, overnight. The following day, over-
night cultures were diluted 10-fold and maintained at 37°C until an optical density (OD600) of 0.5–0.6 was
reached. The cultures were then induced with isopropyl-β-D-1-thiogalactopyranoside (IPTG) at 20°C overnight
(UCKL-1 = 100 mM IPTG; UCK2 = 50 mM IPTG). Cell pellets were harvested and stored at −80°C for later
purification.
Bacteria expressing UCK2 were lysed using B-PER™, Complete Bacterial Protein Extraction Reagent,

(Thermo Fisher Scientific) 5 ml per gram of biomass. The pellet was vortexed and incubated at room tempera-
ture for 15 min. Protein was extracted via sonication; the soluble fraction was obtained after high-speed centri-
fugation of the lysate. Bacteria expressing UCKL-1 were lysed using 5 ml urea lysis buffer per gram of biomass.
The urea lysis buffer contained 4 M urea, 2 M thiourea, 4% CHAPS, 1% DTT, and 50 mM Tris, pH 8.0. The
cell pellet was vortexed and incubated at room temperature for 15 min. Protein was extracted by sonication; the
soluble fraction was collected after high-speed centrifugation of the lysate.
Purification of His-tagged UCKL-1 and UCK2 was accomplished using the ÄKTA pure chromatography

system (Cytiva Life Sciences, Marlborough, MA). The cleared lysate was loaded onto a nickel affinity column
and washed with 0.5 M sodium chloride (NaCl), 5 mM imidazole, and 20 mM monosodium phosphate
(NaH2PO4), pH 7.4. After washing, the bound protein was eluted with a linear gradient of 100 mM–500 mM
imidazole. The fractions containing the targeted protein were pooled, concentrated, and buffer exchanged to

Table 2 PCR primers

Primers Sequences 50→30, restriction enzyme site (underlined)

UCKL-1 (+)
UCKL-1 (−)

AGTCAGGGATCCAATGGCTGCGCCCCCGGC, BamHI
AGTCAGCTCGAGACCCGTGTAGGCCAXTTCCTCC, XhoI

UCK2 (+)
UCK2 (−)

AGTCAGGGATCCAATGGCCGGGGACAGCGAG, BamHI
AGTCAGCTCGAGATGCGGCCTGCTGCTGG, XhoI
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150 mM NaCl and 20 mM NaH2PO4, pH 7.4 using Amicon® Ultra-15 10K centrifugal filter device (Millipore
Sigma). The purity of the fractions was assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis.
Protein concentrations were determined with Pierce™ BCA Protein Assay. The purified proteins were diluted
1:1 in buffer containing: 40% glycerol (v/v), 200 mM NaCl, 200 mM phenylmethylsulfonyl fluoride (PMSF),
and 20 mM NaH2PO4, pH 7.4, aliquoted and stored at −80°C.

Immunoblotting
Purified UCKL-1 and UCK2 proteins (100 ng) and whole cell lysates from various tumor cell lines (30 mg)
were run on 10% SDS-polyacrylamide gels, then transferred to polyvinylidene difluoride (PVDF) membranes.
Membranes were blocked with 5% milk blocking buffer for 30 min, then incubated with primary antibodies
overnight at 4°C. After overnight incubation, membranes were washed three times for 10 min each in 0.1%
Tris-buffered saline with Tween 20 (TBST) followed by 1 h incubation with horseradish peroxidase
(HRP)-conjugated secondary antibodies at room temperature. Membranes were washed an additional three
times for 10 min each in TBST and then protein bands detected using Clarity™ Western ECL substrate
(Bio-Rad, Hercules, CA). Blots were imaged on ChemiDoc imaging system (Bio-Rad). Additionally, a 10%
SDS-polyacrylamide gel with 100 ng of purified UCKL-1 and UCK2 was treated with Coomassie blue stain for
10 min and then rinsed with Destain solution overnight.
The following antibodies were used for immunoblotting: UCKL-1 (B-11) mouse monoclonal (1: 1000 dilu-

tion, Santa Cruz); UCKL1 [EPR7384] rabbit monoclonal (1: 1000 dilution, Abcam); UCK2 rabbit polyclonal (1:
1000 dilution, Thermo Fisher Scientific); UCK1 rabbit polyclonal (1: 1000 dilution, Thermo Fisher Scientific);
6x-His tag mouse monoclonal (HIS.H8), HRP (1: 10 000 dilution, Thermo Fisher Scientific); and β-actin
mouse monoclonal (1: 5000 dilution, Millipore Sigma). The following secondary antibodies were used for
western blotting: HRP-conjugated goat anti-mouse IgG (1: 10 000 dilution) and HRP-conjugated goat anti-
rabbit IgG (1: 10 000 dilution, Cell Signaling Technology).

Enzymatic assays
UCKL-1 and UCK2 kinase activity was measured using the ADP-Glo™ Kinase Assay system from Promega
(Madison, WI). UCK2 assays were performed in 10 ml containing 50 mM Tris, pH 7.5, 5 mM MgCl2, 2 mM
DTT, and 0.5 mg/ml bovine serum albumin (BSA). The final concentration of UCK2 was 1 ng, ATP concentra-
tion was 100 mM, and substrate concentration began at 50 mM. Assays were initiated by addition of substrate to
enzyme, and reactions allowed to proceed for up to 3 h at room temperature.
UCKL-1 assays were performed in 10 ml containing 50 mM Tris, pH 6.0, 5 mM MgCl2, 2 mM DTT, 0.5 mg/

ml BSA, 12 mM NaCl, and 100 nM CaCl2. UCKL-1 final concentration was 500 ng, ATP concentration was
100 mM, and substrate concentration began at 8 mM. Assays were initiated by addition of substrate to enzyme,
and reactions incubated for up to 3 h at 37°C.
All reactions were terminated by addition of ADP-Glo Reagent (10 ml) and incubated at room temperature

for 40 min. Then 20 ml Kinase Detection Reagent was added to elicit luminescence. After 45 min incubation at
room temperature, luminescence was measured on a BioTek Synergy 2 microplate reader (BioTek, Winooski,
VT). ADP formation was calculated using an ATP-to-ADP conversion curve. All assays were replicated a
minimum of three times.

Nucleofection (transfection) with siRNA
Nucleofection was performed with a Lonza Nucleofection I device and an optimized kit, Cell Line Nucleofector
Kit V (Lonza, Germany), using programs T-16 (K562) and X-5 (YAC-1). The UCKL-1 siRNA duplexes were
obtained from Invitrogen and resuspended per manufacturer’s protocol. The UCKL-1 siRNA generated for in
vitro experiments was targeted to region 1553 of mouse UCKL-1. YAC-1 cells were nucleofected with 2 mM of
either siUCKL-1 or siGFP control. Down-regulation of UCKL-1 gene expression was confirmed by quantitative
PCR at various times post-nucleofection.
In vivo siRNA from Invitrogen targeted region 1305 of UCKL-1, which is conserved in all UCKL-1 splice

variants. The ability of the in vivo siRNA to diminish UCKL-1 expression was tested in vitro before use [15].
Scrambled siRNA was prepared as a negative control. The in vivo siRNA was provided in the 20-deprotected
form, and along with other processing, is formulated for increased stability in vivo.
Cell and tissue RNA was isolated using Qiagen RNeasy Kit (Qiagen, Valencia CA) and cDNA prepared

using the Superscript II Kit (Invitrogen). Expression of UCKL-1 was determined by qPCR using UCKL-1
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primers (forward primer GTCGCGACGAGTTCATCTC and reverse primer GTCCTCAGGCACGTCGTGGT)
that are homologous to both mouse and human UCKL-1. Expression levels were normalized to 18s rRNA. The
Taqman Gene Expression Master Mix (Applied Biosystems, Foster City, CA) along with Applied Biosystems
7500 system was utilized for real-time PCR analysis.

Caspase assay
Caspase activity was assessed using the Caspase-Glo 3/7 Luminescence Assay Kit (Promega). One day after
nucleofection with either siUCKL-1 or siGFP control, YAC-1 cells (0.15 × 105) were spun down and resus-
pended in 75 ml RPMI media containing 3.75% serum. The cells were then aliquoted into three wells of a white
walled 96-well plate. Caspase-Glo (25 ml) was added to all wells and mixed. Samples were incubated for 30 min
at room temperature and analyzed for luminescence using a Victor 1420 Multilabel Counter (Wallac/
PerkinElmer, Waltham, MA). Samples were analyzed in triplicate, along with a media control. Luminescence
values obtained were averaged and the media control subtracted. The percent fold increase in caspase activity
over time was calculated relative to the control group.

Treatment of tumor-bearing NOD-scid IL2Rγnull (NSG) mice with siRNA
Immunodeficient NSG mice were acquired from Dr. Guangyong Peng of Saint Louis University and were ori-
ginally obtained from Jackson Laboratories (stock number: 005557, NOD.Cg-PrkdcscidIL2rgtmWjl/SzJ). All
animal experiments were carried out in the animal care facilities at Saint Louis University School of Medicine.
Mice were injected subcutaneously in the rear flank, either unilaterally or bilaterally, with 106 K562-GFP cells
suspended in 50 ml PBS + 50 ml Matrigel. The unilateral model was used for the metastasis and dissemination
study, whereas the bilateral model was used for the primary tumor growth study. Tattoo ink was used to iden-
tify the site of injection to aid in proper injection of the siRNA.
Once tumors were established (day 8), mice were briefly anesthetized with isoflurane (1–3%) via a precision

vaporizer with waste gas scavenging system prior to injection with siRNA. Mice were injected with either 8 mg
sicontrol or siUCKL-1 in 50 ml PBS at two separate sites within the tumor. For mice with bilateral tumors, one
tumor was injected with control siRNA, while the other tumor was injected with UCKL-1 siRNA. Tumors
were measured and injected every other day for one week. Fifteen days post-tumor inoculation, mice were
sacrificed by asphyxiation via CO2 inhalation using a gas compressed source with a displacement rate of
30–70% of the chamber volume per minute until breathing stopped, followed by cervical dislocation. Blood was
obtained from the heart immediately after sacrifice. Fluorescence within each mouse was measured via the IVIS
Spectrum in vivo imaging system. Fluorescence intensity of isolated tumors was also evaluated using IVIS. The
level of GFP expression was calculated above background fluorescence. After visualization, tumors and add-
itional organs were collected to measure levels of GFP by qPCR.
Lung metastasis and tumor dissemination in the blood was evaluated by RT-qPCR using GFP-specific

Taqman primer/probes. Samples were run on a 7500 Applied Biosystems real-time PCR system. Change in Ct

was calculated using 18s as a housekeeping control.

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)
staining of tumor sections
Primary tumors were isolated from NSG mice on day of sacrifice (day 15). Tumors were weighed, measured,
and placed in 10% formalin. Tumors were dehydrated overnight and paraffin embedded. The tumors were sec-
tioned and placed on glass slides. Slide sections were dewaxed and rehydrated with xylene and ethanol in
decreasing percentages. The tumor sections then underwent antigen retrieval. 1X Diva DeCloaker (Biocare
Medical, Concord, CA) was added to the sections and rapidly heated in a pressure cooker. Slides were then
cooled and washed twice in dH2O. Roche In Situ Cell Death Detection Kit (Indianapolis, IN) was used for
TUNEL staining to measure apoptosis. Samples treated with DNAse served as positive controls, while negative
controls contained the label solution only. Six fields were fluorescently imaged for each sample on an Olympus
BX41 microscope with a DP72 Olympus digital camera. All samples were normalized to each negative control
threshold and analyzed using Metamorph software (Molecular Devices, Sunnyvale, CA) and Image J (NIH).
Hematoxylin and Eosin staining was performed on an additional section of primary tumors.
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Statistical analysis
All data were analyzed using GraphPad Prism software (San Diego, CA) or Microsoft Excel (Redmond, WA). A
Student’s t-test and a one-way analysis of variance (ANOVA) were used for statistical analysis with a P value
≤0.05 considered statistically significant.
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Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
This material is based upon work supported by the Department of Veterans Affairs, Biomedical Laboratory
Research and Development Service (VA Merit Grant I01 BX000705) and Saint Louis University.

CRediT Author Contribution
Jacki Kornbluth: Conceptualization, Resources, Data curation, Supervision, Funding acquisition, Validation,
Methodology, Writing — review and editing. Emily Matchett: Investigation, Methodology, Writing — original
draft. Elise C. Ambrose: Formal analysis, Investigation, Writing — original draft.

Ethics Approval
This study was carried out in strict accordance with the provisions of the USDA Animal Welfare Act Regulations
and Standards, PHS policy, recommendations in the Guide for the Care and Use of Laboratory Animals, and VA
policy. All in vivo studies performed in mice were approved by both the Saint Louis University and the VA
St. Louis Health Care System Institutional Animal Care and Use Committees (SLU IACUC Protocol #1287; VA
ACORP Protocol #1166443).

Acknowledgements
The authors would like to thank Paul Willard and Donald Lawrence for their technical support and input, the
Research Microscopy Core, and the Comparative Medicine staff at Saint Louis University for their expertise and
support.

Abbreviations
GFP, green fluorescent protein; His, polyhistidine; IMAC, immobilized metal affinity chromatography; IPTG,
isopropyl-β-D-1-thiogalactopyranoside; NK, natural killer; NKLAM, natural killer lytic-associated molecule; NSG,
NOD-scid-IL2Rγnull; siRNA, small interfering RNA; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end
labeling; UCK, uridine/cytidine kinase; UCKL, uridine/cytidine kinase-like; UPRT, uracil
phosphoribosyltransferase.

References
1 Qian, Y., Ding, Q., Li, Y., Zou, Z., Yan, B. and Ou, L. (2014) Phosphorylation of uridine and cytidine by uridine-cytidine kinase. J. Biotechnol. 188,

81–87 https://doi.org/10.1016/j.jbiotec.2014.08.018
2 Cheng, N., Payne, R.C. and Traut, T.W. (1986) Regulation of uridine kinase: evidence for a regulatory site. J. Biol. Chem. 261, 13006–13012

https://doi.org/10.1016/S0021-9258(18)69262-2
3 Van Rompay, A.R., Norda, A., Lindén, K., Johansson, M. and Karlsson, A. (2001) Phosphorylation of uridine and cytidine nucleoside analogs by two

human uridine-cytidine kinases. Mol. Pharmacol. 59, 1181–1186 https://doi.org/10.1124/mol.59.5.1181
4 Suzuki, N.N., Koizumi, K., Fukushima, M., Matsuda, A. and Inagaki, F. (2004) Structural basis for the specificity, catalysis, and regulation of human

uridine-cytidine kinase. Structure 12, 751–764 https://doi.org/10.1016/j.str.2004.02.038
5 Van Rompay, A.R., Johansson, M. and Karlsson, A. (1999) Phosphorylation of deoxycytidine analog monophosphates by UMP-CMP kinase: molecular

characterization of the human enzyme. Mol. Pharmacol. 56, 562–569 https://doi.org/10.1124/mol.56.3.562
6 Van Kuilenburg, A.B.P. and Meinsma, R. (2016) The pivotal role of uridine-cytidine kinases in pyrimidine metabolism and activation of cytotoxic

nucleoside analogues in neuroblastoma. Biochim. Biophys. Acta 1862, 1504–1512 https://doi.org/10.1016/j.bbadis.2016.05.012
7 Murata, D., Endo, Y., Obata, T., Sakamoto, K., Syouji, Y., Kadohira, M. et al. (2004) A crucial role of uridine/cytidine kinase 2 in antitumor activity of

3’ethynyl nucleosides. Drug Metab. Disp. 32, 1178–1182 https://doi.org/10.1124/dmd.104.000737
8 Meinsma, R. and Van Kuilenburg, A.B.P. (2016) Purification, activity, and expression levels of two uridine-cytidine kinase isoforms in neuroblastoma cell

lines. Nucleosides Nucleotides Nucleic Acids 35, 613–618 https://doi.org/10.1080/15257770.2015.1124998

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-

ND).

1163

Biochemical Journal (2022) 479 1149–1164
https://doi.org/10.1042/BCJ20210770

https://doi.org/10.1016/j.jbiotec.2014.08.018
https://doi.org/10.1016/S0021-9258(18)69262-2
https://doi.org/10.1016/S0021-9258(18)69262-2
https://doi.org/10.1016/S0021-9258(18)69262-2
https://doi.org/10.1124/mol.59.5.1181
https://doi.org/10.1016/j.str.2004.02.038
https://doi.org/10.1124/mol.56.3.562
https://doi.org/10.1016/j.bbadis.2016.05.012
https://doi.org/10.1124/dmd.104.000737
https://doi.org/10.1080/15257770.2015.1124998
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


9 Kashuba, E., Kashuba, V., Sandalova, T., Klein, G. and Szekely, L. (2002) Epstein-barr virus encoded nuclear protein EBNA-3 binds a novel human
uridine kinase/uracil phosphoribosyltransferase. BMC Cell Biol. 3, 23 https://doi.org/10.1186/1471-2121-3-23

10 Fortier, J.M. and Kornbluth, J. (2006) NK lytic-associated molecule, involved in NK cytotoxic function, is an E3 ligase. J. Immunol. 176, 6454–6463
https://doi.org/10.4049/jimmunol.176.11.6454

11 Hoover, R.G., Gullickson, G. and Kornbluth, J. (2012) Natural killer lytic-associated molecule plays a role in controlling tumor dissemination and
metastasis. Front. Immunol. 3, 393 https://doi.org/10.3389/fimmu.2012.00393

12 Mukhopadhyay, D. and Riezma, H. (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201–205
https://doi.org/10.1126/science.1127085

13 Lawrence, D.W., Willard, P.A., Cochran, A.M., Matchett, E.C. and Kornbluth, J. (2020) Natural killer lytic-associated molecule (NKLAM): an E3 ubiquitin
ligase with an integral role in innate immunity. Front. Physiol. 11, 573372 https://doi.org/10.3389/fphys.2020.573372

14 Glickman, M.H. and Ciechanover, A. (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82,
373–428 https://doi.org/10.1152/physrev.00027.2001

15 Ambrose, E.C. and Kornbluth, J. (2009) Downregulation of uridine-cytidine kinase like-1 decreases proliferation and enhances tumor susceptibility to
lysis by apoptotic agents and natural killer cells. Apoptosis 14, 1227–1236 https://doi.org/10.1007/s10495-009-0385-z

16 Gullickson, G., Ambrose, E.C., Hoover, R.G. and Kornbluth, J. (2016) Uridine cytidine kinase like-1 enhances tumor cell proliferation and mediates
protection from natural killer-mediated killing. Int. J. Immunol. Immunother. 3, 018 https://doi.org/10.23937/2378-3672/1410018

17 Cheng, W.S., Tao, H., Hu, E.P., Liu, S., Cai, H.R., Tao, X.L. et al. (2014) Both genes and IncRNAs can be used as biomarkers of prostate cancer by
using high throughput sequencing data. Eur. Rev. Med. Pharm. Sci. 18, 3504–3510 PMID: 25491628

18 Geiger, T., Madden, S.F., Gallagher, W.M., Cox, J. and Mann, M. (2012) Proteomic portrait of human breast cancer progression identifies novel
prognostic markers. Cancer Res. 72, 2428–2439 https://doi.org/10.1158/0008-5472.CAN-11-3711

19 Long, N.P., Lee, W.J., Huy, N.T., Lee, S.J., Park, J.H. and Kwon, S.W. (2016) Novel biomarker candidates for colorectal cancer metastasis: a
meta-analysis of in vitro studies. Cancer Informatics 15, 11–17 https://doi.org/10.4137/CIN.S40301

20 Buivydiene, A., Liakina, V., Valantinas, J., Norkuniene, J., Mockiene, E., Jokubauskiene, S. et al. (2017) Expression levels of the uridine-cytidine kinase
like-1 protein as a novel prognostic factor for hepatitis C virus-associated hepatocellular carcinomas. Acta Naturae 9, 34 https://doi.org/10.32607/
20758251-2017-9-3-108-114

21 Wang, H., Wang, X., Xu, L., Zhang, J. and Cao, H. (2020) High expression levels of pyrimidine metabolic rate-limiting enzymes are adverse prognostic
factors in lung adenocarcinoma: a study based on The Cancer Genome Atlas and Gene Expression Omnibus datasets. Purinergic Signal. 16, 347–366
https://doi.org/10.1007/s11302-020-09711-4

22 Shen, G., He, P., Mao, Y., Li, P., Luh, F., Ding, G. et al. (2017) Overexpression of uridine-cytidine kinase 2 correlates with breast cancer progression
and poor prognosis. J. Breast Cancer 20, 132–141 https://doi.org/10.4048/jbc.2017.20.2.132

23 Zhou, Q., Jiang, H., Zhang, J., Yu, W., Zhou, Z., Huang, P. et al. (2018) Uridine-cytidine kinase 2 promotes metastasis of hepatocellular carcinoma cells
via the Stat3 pathway. Cancer Manag. Res. 10, 6339–6355 https://doi.org/10.2147/cmar.s182859

24 Zegzouti, H., Zdanovskaia, M., Hsiao, K. and Goueli, S.A. (2009) ADP-Glo: a bioluminescent and homogeneous ADP monitoring assay for kinases. Assay
Drug Dev. Tech. 7, 560–572 https://doi.org/10.1089/adt.2009.0222

25 Okesli-Armlovich, A., Gupta, A., Jimenez, M., Auld, D., Liu, Q., Bassik, M.C. et al. (2019) Discovery of small molecule inhibitors of human
uridine-cytidine kinase 2 by high-throughput screening. Bioorg. Med. Chem. Lett. 29, 2559–2564 https://doi.org/10.1016/j.bmcl.2019.08.010

26 Villela, A.D., Ducati, R.G., Rosado, L.A., Bloch, C.J., Prates, M.V., Gonçalves, D.C. et al. (2013) Biochemical characterization of uracil
phosphoribosyltransferase from Mycobacterium tuberculosis. PLoS ONE 8, e56445 https://doi.org/10.1371/journal.pone.0056445

27 Carter, D., Donald, R.G.K., Roos, D. and Ullman, B. (1997) Expression, purification, and characterization of uracil phosphoribosyltransferase from
Toxoplasma gondii. Mol. Biochem. Parasitol. 87, 137–144 https://doi.org/10.1016/S0166-6851(97)00058-3

28 Rafiqul Islam, M., Kim, H., Kang, S.W., Kim, J.S., Jeong, Y.M., Hwang, H.J. et al. (2007) Functional characterization of a gene encoding a dual domain
for uridine kinase and uracil phosphoribosyltransferase in Arabidopsis thaliana. Plant Mol. Biol. 63, 465–477 https://doi.org/10.1007/
s11103-006-9101-3

29 Li, J., Huang, S., Chen, J., Yang, Z., Fei, X., Zheng, M. et al. (2007) Identification and characterization of human uracil phosphoribosyltransferase
(UPRTase). J. Hum. Genet. 52, 415–422 https://doi.org/10.1007/s10038-007-0129-2

30 Wang, W., Cui, J., Ma, H., Lu, W. and Huang, J. (2021) Targeting pyrimidine metabolism in the era of precision cancer medicine. Front. Oncol. 11,
684961 https://doi.org/10.3389/fonc.2021.684961

31 Walter, M. and Herr, P. (2022) Rediscovery of pyrimidine salvage as target in cancer therapy. Cells 11, 739 https://doi.org/10.3390/cells11040739
32 Yamaguchi, N., Weinberg, E.M., Nguyen, A., Liberti, M.V., Goodarzi, H., Janjigian, Y.Y. et al. (2019) PCK1 and DHODH drive colorectal cancer liver

metastatic colonization and hypoxic growth by promoting nucleotide synthesis. Elife 8, e52135 https://doi.org/10.7554/eLife.52135
33 Xiang, J., Chen, C., Liu, R., Gou, D., Chang, L., Deng, H. et al. (2021) Gluconeogenic enzyme PCK1 deficiency promotes CHK2 O-GlcNAcylation and

hepatocellular carcinoma growth upon glucose deprivation. J. Clin. Invest. 13, e144703 https://doi.org/10.1172/JCI144703
34 Zhou, Y., Tao, L., Zhou, X., Zuo, Z., Gong, J., Liu, X. et al. (2021) DHODH and cancer: promising prospects to be explored. Cancer Metab. 9, 22

https://doi.org/10.1186/s40170-021-00250-z
35 Sykes, D.B., Kfoury, Y.S., Mercier, F.E., Wawer, M.J., Law, J.M., Haynes, M.K. et al. (2016) Inhibition of dihydroorotate dehydrogenase overcomes

differentiation blockade in acute myeloid leukemia. Cell 167, 171–186 https://doi.org/10.1016/j.cell.2016.08.057
36 Sarkisjan, D., Julsin, J.R., Smid, K., De Klerk, D., Van Kuilenberg, A.B.P., Meinsma, R. et al. (2016) The cytidine analog fluorocyclopentenylcytosine

(RX-3117) is activated by uridine-cytidine kinase 2. PLoS ONE 11, e0162901 https://doi.org/10.1371/journal.pone.0162901
37 Balboni, B., Hassouni, B.E., Honeywell, R.J., Sarkisjan, D., Giovannetti, E., Poore, J. et al. (2019) RX-3117 (fluorocyclopentenyl cytosine): a novel

specific antimetabolite for selective cancer treatment. Expert Opin. Investig. Drugs 28, 311–322 https://doi.org/10.1080/13543784.2019.1583742
38 Liu, Q., Gupta, A., Okesli-Armlovich, A., Qiao, W., Fischer, C.R., Smith, M. et al. (2020) Enhancing the antiviral efficacy of RNA-dependent RNA

polymerase inhibition by combination with modulators of pyrimidine metabolism. Cell Chem. Biol. 27, 668–677 https://doi.org/10.1016/j.chembiol.2020.
05.002

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-

ND).

1164

Biochemical Journal (2022) 479 1149–1164
https://doi.org/10.1042/BCJ20210770

https://doi.org/10.1186/1471-2121-3-23
https://doi.org/10.1186/1471-2121-3-23
https://doi.org/10.1186/1471-2121-3-23
https://doi.org/10.1186/1471-2121-3-23
https://doi.org/10.4049/jimmunol.176.11.6454
https://doi.org/10.3389/fimmu.2012.00393
https://doi.org/10.1126/science.1127085
https://doi.org/10.3389/fphys.2020.573372
https://doi.org/10.1152/physrev.00027.2001
https://doi.org/10.1007/s10495-009-0385-z
https://doi.org/10.1007/s10495-009-0385-z
https://doi.org/10.1007/s10495-009-0385-z
https://doi.org/10.1007/s10495-009-0385-z
https://doi.org/10.23937/2378-3672/1410018
https://doi.org/10.23937/2378-3672/1410018
http://www.ncbi.nlm.nih.gov/pubmed/25491628
https://doi.org/10.1158/0008-5472.CAN-11-3711
https://doi.org/10.1158/0008-5472.CAN-11-3711
https://doi.org/10.1158/0008-5472.CAN-11-3711
https://doi.org/10.1158/0008-5472.CAN-11-3711
https://doi.org/10.4137/CIN.S40301 
https://doi.org/10.32607/20758251-2017-9-3-108-114
https://doi.org/10.32607/20758251-2017-9-3-108-114
https://doi.org/10.32607/20758251-2017-9-3-108-114
https://doi.org/10.32607/20758251-2017-9-3-108-114
https://doi.org/10.32607/20758251-2017-9-3-108-114
https://doi.org/10.32607/20758251-2017-9-3-108-114
https://doi.org/10.32607/20758251-2017-9-3-108-114
https://doi.org/10.1007/s11302-020-09711-4
https://doi.org/10.1007/s11302-020-09711-4
https://doi.org/10.1007/s11302-020-09711-4
https://doi.org/10.1007/s11302-020-09711-4
https://doi.org/10.4048/jbc.2017.20.2.132
https://doi.org/10.2147/cmar.s182859
https://doi.org/10.1089/adt.2009.0222
https://doi.org/10.1016/j.bmcl.2019.08.010
https://doi.org/10.1371/journal.pone.0056445
https://doi.org/10.1016/S0166-6851(97)00058-3
https://doi.org/10.1016/S0166-6851(97)00058-3
https://doi.org/10.1016/S0166-6851(97)00058-3
https://doi.org/10.1007/s11103-006-9101-3
https://doi.org/10.1007/s11103-006-9101-3
https://doi.org/10.1007/s11103-006-9101-3
https://doi.org/10.1007/s11103-006-9101-3
https://doi.org/10.1007/s11103-006-9101-3
https://doi.org/10.1007/s10038-007-0129-2
https://doi.org/10.1007/s10038-007-0129-2
https://doi.org/10.1007/s10038-007-0129-2
https://doi.org/10.1007/s10038-007-0129-2
https://doi.org/10.3389/fonc.2021.684961
https://doi.org/10.3390/cells11040739
https://doi.org/10.7554/eLife.52135
https://doi.org/10.1172/JCI144703
https://doi.org/10.1186/s40170-021-00250-z
https://doi.org/10.1186/s40170-021-00250-z
https://doi.org/10.1186/s40170-021-00250-z
https://doi.org/10.1186/s40170-021-00250-z
https://doi.org/10.1016/j.cell.2016.08.057
https://doi.org/10.1371/journal.pone.0162901
https://doi.org/10.1080/13543784.2019.1583742
https://doi.org/10.1016/j.chembiol.2020.05.002
https://doi.org/10.1016/j.chembiol.2020.05.002
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	Characterization of uridine-cytidine kinase like-1 nucleoside kinase activity and its role in tumor growth
	Abstract
	Introduction
	Results
	Comparison of UCKL-1 with UCK1 and UCK2
	Purification of UCKL-1 and UCK2
	Enzymatic activity of UCKL-1
	Expression of UCKL-1, UCK1, and UCK2 in tumor cells
	Decreased growth of siUCKL-1 treated cells
	Effect of UCKL-1 down-regulation on primary tumor growth and metastasis in vivo

	Discussion
	Materials and methods
	Cell cultures and protein extraction
	Cloning and expression of human UCKL-1 and UCK2 in bacteria
	Protein purification
	Immunoblotting
	Enzymatic assays
	Nucleofection (transfection) with siRNA
	Caspase assay
	Treatment of tumor-bearing NOD-scid IL2RΓnull (NSG) mice with siRNA
	Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining of tumor sections
	Statistical analysis

	Data Availability
	Competing Interests
	Funding
	CRediT Author Contribution
	Ethics Approval
	References


