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Abstract: Zinc oxide (ZnO) nanorods incorporated activated carbon (AC) composite photocatalyst was
synthesized using a hydrothermal process. The AC was prepared from lapsi (Choerospondias axillaris)
seed stone, an agricultural waste product, found in Nepal by the chemical activation method.
An aqueous suspension of AC with ZnO precursor was subjected to the hydrothermal treatment at
140 ◦C for 2 h to decorate ZnO rods into the surface of AC. As-obtained ZnO nanorods decorated
activated carbon (ZnO/AC) photocatalyst was characterized by various techniques, such as scanning
electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) spectroscopy.
Results showed that highly crystalline hexagonal ZnO nanorods were effectively grown on the surface
of porous AC. The photocatalytic property of the as-prepared ZnO/AC composite was studied by
degrading methylene blue (MB) dye under UV-light irradiation. The ZnO/AC composite showed
better photocatalytic property than that of the pristine ZnO nanorods. The enhanced photocatalytic
performance in the case of the ZnO/AC composite is attributed to the combined effects of ZnO
nanorods and AC.

Keywords: ZnO nanorods; activated carbon; composite; hydrothermal; photocatalyst

1. Introduction

Dyes in the water body are the effluents from textile industries which are colored, toxic,
and carcinogenic to living organisms [1–3]. They decrease the dissolved oxygen levels and increase the
chemical oxygen demand in water and create an unfavorable condition for aquatic lives. Different
studies have shown that such effluents can be removed by using adsorptive or photocatalytic materials.
Therefore, designing effective adsorbent/photocatalyst is essential to meet the demand of removing
dye wastes created by textile industries. In recent years, various metal oxide-based semiconductors
such as TiO2, ZnO, Fe2O3, CuO, RuO2, NiO, CeO, Cr2O3, [1,4–7] etc., have been considered as an
effective photocatalyst for wastewater treatment. Among them, zinc oxide (ZnO) is inexpensive,
abundantly found, biocompatible, and a physically and chemically stable photocatalyst [8,9]. Although
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ZnO is the leading candidate in photocatalysis [10,11], low photon-to-electron conversion efficiency,
high electron-hole recombination rate, and poor adsorption capacity are the major limitations for
practical application [11–13]. Therefore, for the effective implementation of ZnO in photocatalysis,
these limitations should be overcome by improved designs and synthetic protocols.

Synthesizing nano-sized particles could be an effective strategy to enhance the photocatalytic
property of ZnO owing to their high surface area [14]; however, the nano-sized particles may cause
secondary pollution due to the difficulties in recovery in the reaction system [15,16]. In addition,
the nanostructured photocatalysts have a tendency to agglomerate, which is another disadvantage in
photocatalysis [17,18]. Immobilization of photocatalyst nanoparticles into the carbon source could be
considered an effective strategy to solve the aforementioned issues. For example, recently, our group
has developed various metal oxides nanoparticles incorporated carbon nanofibers photocatalysts
with good photocatalytic property and reusability [15,19–22]. In the carbon-supported photocatalytic
system, the carbon fiber provides support for the deposition of photocatalytic materials as well as
acts as a good adsorbent, leading to the overall enhancement in the photocatalytic performance of the
composite material [23,24].

Among the various forms of carbon, the activated carbons (ACs) have been considered for the
immobilization of photocatalytic materials due to their favorable properties such as large surface
area, porosity, good adsorptivity, and convenience in handling [25–27]. The composites of ZnO with
ACs have been synthesized in previous studies [28–30]; however, the high cost of commercial AC
limits its application worldwide [2]. Therefore, there is a growing interest in the economic production
of ACs. In recent years, the use of low-cost wastes and agricultural by-products has gained great
attention to produce porous AC economically. Different agricultural waste materials including peach
stones, apricot stones, lapsi seed stone, black stone cherries, guava seeds, orange peel, sugarcane
bagasse, peanut shell, and many more have been reported to produce AC [31–34]. Among the various
agro-based wastes, the hard lapsi (Choerospondias axillaris) seed stone (locally found in Nepal) can be
considered as an excellent source of AC. The AC with good porosity has been prepared from lapsi seed
stone by using phosphoric acid as an activating agent [35].

In this study, we tried to exploit the photocatalytic property of ZnO and the adsorption property
of AC from lapsi seed stone by incorporating ZnO nanorods into the AC using the hydrothermal
technique. The functionalities present on AC due to the phosphoric acid activation can provide a
nucleation site for the growth of ZnO NPs over the surface of porous AC during the hydrothermal
treatment, leading to the formation of the ZnO decorated activated carbon (ZnO/AC) composite. In the
ZnO/AC composite photocatalyst, the conductive nature of AC can also help in the charge separation,
which can enhance the overall photocatalytic activity of the ZnO/AC composite. In addition to this,
the proper incorporation of ZnO nanorods into AC prevents the loss of photocatalyst during recovery.

2. Materials and Methods

2.1. Materials

The lapsi fruits (Choerospondias axillaris) were purchased from the local market (Kalimati) of
Kathmandu, Nepal. Zinc nitrate hexahydrate, phosphoric acid, methylene blue (MB) were purchased
from Sigma-Aldrich (Saint Louis, MO, USA). Bis-hexamethylenetetramine was obtained from the
Samchun Chemicals, Seoul, Korea. Ethanol was obtained from the Daejung Chemicals, Shiheung-city,
Gyeonggi-do, Korea. All chemicals were used without further purification.

2.2. Synthesis of AC from the Lapsi Seed

The fruits were boiled to separate stones from soft material. The seed stones were washed several
times with distilled water and alcohol to remove soft impurities. After drying at 110 ◦C for 12 h,
the seed stones were crushed with a mortar and electric grinder followed by sieving as reported in
our previous study [24]. Next, AC was prepared by chemical activation with 50% phosphoric acid
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(1:1 weight ratio) and carbonization for 4 h at 800 ◦C in a horizontal tubular furnace under a flow of
nitrogen gas (75 mL/min). The product was washed with NaHCO3 solution, followed by frequent
washing with distilled water. The as-obtained AC powder was kept in an oven at 110 ◦C for 12 h.
The final product was the mesoporous AC with carbon yield about 9.3%.

2.3. Synthesis of ZnO/AC Composite Photocatalyst

In the beginning, 50 mL of 1% aqueous bis-hexamethylene triamine solution was prepared. Next,
1 gm of zinc nitrate hexahydrate was dissolved in 50 mL of water separately. These two solutions
were mixed and stirred for 1 h. Then, 30 mg of AC was added into the above solution and stirred
for 2 h at room temperature. The mixture was poured into a Teflon crucible and kept inside an
autoclave at 140 ◦C for 2 h. After the hydrothermal treatment, the autoclave was allowed to cool
naturally. The product was filtered and washed several times with distilled water and ethanol. Finally,
as-synthesized ZnO/AC composite was dried at 120 ◦C for 12 h to improve the crystallinity of ZnO
particles. For comparison, pristine ZnO nanorods were also prepared under identical conditions
without using AC as reported in our previous work [36]. The fabrication procedure of ZnO nanorods
decorated AC derived from lapsi seed stone is schematically depicted in Figure 1.
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Figure 1. Schematic diagram showing the preparation of ZnO/AC composite photocatalyst.

2.4. Characterization

The surface morphology and elemental composition of the samples were studied from field
emission scanning electron microscopy (FESEM Hitachi S-7400, Hitachi, Tokyo, Japan) and energy
dispersive X-ray spectroscopy. High resolution images were recorded using a transmission electron
microscope (TEM, JEOL Ltd., Tokyo, Japan). The crystallographic structure of the synthesized ZnO
nanorods on the surface of AC was analyzed by X-ray diffractometer (Rigaku, Japan) with radiation
over Bragg angles, ranging from 5 to 90◦. The steady-state PL spectroscopy measurement was carried
out using a luminescence spectrometer (LS55; Perkin-Elmer Inc., Woodbridge, ON, USA) with a Xe
lamp. The N2 adsorption–desorption measurements were performed by using the ASAP 2020 Plus
system (Micromeritics Instrument Corporation, Norcross, GA, USA).
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2.5. Photocatalytic Activity Measurement

The photocatalytic activity of the ZnO/AC composite was evaluated by observing the photo-
degradation of methylene blue (MB) solution (a typical pollutant in the textile industry) under a mild
UV radiation at room temperature. Here, the testing solution into a 100 mL beaker equipped with a
light guide (tip of 5 mm diameter) connected to a mercury vapor lamp (OmniCure, EXFO, Richardson,
TX, USA) was used for photocatalytic study. The distance between the solution system and the light
guide tip was maintained at 5 cm. Then, 20 mg of the photocatalyst was mixed with 20 mL of MB
solution which was irradiated under the UV lamp with continuous stirring. During this process, 1 mL
of the solution was taken at regular intervals followed by centrifugation to separate the residual catalyst
from the solution. Finally, the concentration of MB was observed using a UV-visible spectrophotometer
(HP8453, Agilent Technologies, Santa Clara, CA, USA).

3. Results and Discussions

The morphology of the as-synthesized AC, ZnO, and ZnO/AC composites is shown in Figure 2.
The FE-SEM image shows that AC particles are micro-sized flat structures with rough and porous
surfaces (Figure 2A). Pristine ZnO particles consist of hexagonal micro-rods, arranged in a bundle-like
structure, having an almost equal length and diameter (Figure 2B), whereas the ZnO/AC composite
reveals that single hexagonal ZnO nanorods are well developed on the surface of porous AC (Figure 2C).
The size of ZnO rods is sufficiently decreased on the surface of AC compared to the pristine ZnO
particles. We found that the diameter of the rod in pristine ZnO particles is about 1.2 to 2.1 µm, whereas
in composite, the diameter of the rod is reduced to 400–925 nm. Hexagonal heads of micro-rods
grown from the center of nuclei in all directions is observed from the FE-SEM image of pristine ZnO
particles (Figure 2B), whereas in the ZnO/AC composite, individual rods are grown from the surface
of AC. Moreover, the nanosized ZnO rods in the composite still preserved their hexagonal shape.
It has been reported that the size and shape of ZnO particles are highly affected by the different
physicochemical conditions of the hydrothermal system [37–39]. Here, we can consider that the growth
of ZnO rods were originated from the center of nuclei [40]. The presence of functionalities on the
surface of AC can serve as a nucleation site to grow the ZnO nanorod. When AC was impregnated and
stirred in the ZnO precursor solution, the metal ions were uniformly adsorbed on the surface of AC,
which acted as nucleation centers for the growth of ZnO nanorods. Therefore, individual rods were
independently grown from the surface of AC. Moreover, the dispersion of AC in the same volume of
ZnO precursor solution, and nucleation of ZnO at the surface of AC can decrease the concentration of
ZnO precursor per unit volume, which consequently decreased the size of the ZnO rods during the
hydrothermal process [4,21,22]. Energy dispersive X-ray analysis (EDX) of the as-prepared composite
photocatalyst is shown in Figure 2D which further reveals the formation of ZnO particles on the
surface of AC. To further incite the morphology of the ZnO rods grown on AC, a TEM analysis
was carried out. As given in Figure 3A, a clear rod-like morphology was observed. The observed
lattice spacing in HRTEM (Figure 3B) exhibited that the growth of ZnO took place along the [0001]
direction, thereby resulting in the formation of hexagonal ZnO nanorods at the surface of AC [41–43].
The nitrogen adsorption–desorption isotherm curve and pore size distribution graph (inset) are given
in Figure 3C. The surface area of the ZnO/AC composite photocatalyst was 79.86 m2g−1. The BJH pore
size distribution curve showed the mesoporous nature of the AC/ZnO composite.
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Figure 3. TEM (A) and HR-TEM (B) of ZnO nanorods grown on AC. Nitrogen adsorption–desorption
isotherm and pore size distribution (Inset) of the ZnO/AC composite photocatalyst (C).

Figure 4A shows the X-ray diffraction (XRD) spectra of the pristine ZnO and ZnO/AC composite
photocatalyst. The XRD patterns show the formation of the wurtzite (hexagonal) structure (JCPDS card
no. 70-2205) in both the pristine ZnO and ZnO/AC composite. The peaks have been observed at the 2θ
angles of 31.9, 34.5, 36.4, 47.7, 56.7, 62.9, 66.5, 68.1, and 69.21◦, which are corresponding to the (100),
(002), (101), (102), (110), (103), (200), (112), and (201) crystalline planes of ZnO, respectively [22,44].
Furthermore, it can be observed that the XRD intensities of all crystalline planes are stronger in the
pristine ZnO nanorods as compared to that of the ZnO/AC composite. The suppression in the intensity
of ZnO peaks in the ZnO/AC composite as compared to the pristine ZnO suggests the formation of the
composite of ZnO with AC. The carbon peak was not observed in the ZnO/AC composite which might
be due to the presence of the high instance peak of ZnO in it. Therefore, the Raman spectra were taken
to confirm the presence of carbon. The Raman spectrum showed two peaks at 1347 and 1569 cm−1,
which can be assigned to the D and G band of carbon (Figure 4B) [32,45].
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Photoluminescence (PL) spectra of pristine ZnO and composite photocatalyst are shown in
Figure 5. The instance band is observed at the wavelength of ~415 nm, which represents the UV
near-band-edge (NBE) emission in pristine ZnO rods [46,47]. This sharp NBE emission peak is due to
the recombination of photogenerated electron-hole (e-h) pairs [48]. The ZnO/AC composite showed a
decrement in intensity without any shifting of the peak’s position. The rate of recombination between
the photogenerated electron-hole pair has thus been lowered in the ZnO/AC composite photocatalyst.
This is due to the suppression of the e−-h+ recombination by the synergistic effect of ZnO/AC. Here,
ZnO can act as a good electron donor, whereas carbon materials can act as good electron acceptor.
Therefore, the synergistic effect of these two components can reduce the recombination rate and
lead to an increase in charge carrier separation. This should enhance the photocatalytic activity of
the photocatalyst.
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The photocatalytic performance of the as-synthesized photocatalyst was evaluated by observing
the degradation of an aqueous solution of MB. The resulting graph of decreasing in the concentration
of MB due to various photocatalysts is shown in Figure 6. The MB may undergo self-degradation
under UV-light irradiation. To confirm this, a blank test was performed under UV-light irradiation
without using a catalyst. The blank test showed ~2% degradation of MB, which is a negligible
amount. The photocatalytic degradation of MB by the pristine ZnO rods was also tested under
identical experimental conditions for comparison. We also studied the photocatalytic degradation
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of MB by using commercially available TiO2 NPs (P25). We observed that the ZnO/AC composite
exhibited the best photocatalytic performance among the three samples. The photocatalytic results
showed that about 95% MB was removed by the ZnO/AC photocatalyst, whereas the pristine ZnO
nanorods and P25 showed about 55% and 32% degradation of MB, respectively, after 180 min of
UV-light irradiation. This enhanced photocatalytic activity of ZnO/AC compared to pristine ZnO can
be attributed to; (i) synergistic effect of ZnO and AC, which can decrease the rate of recombination of
electron–hole pairs caused by the trapping of excited electrons from the conduction band of ZnO [23],
and (ii) the adsorption of MB molecules by highly porous AC [49,50]. During the first 30 min (dark
adsorption test), the ZnO/AC composite showed a steeper slope of the curve compared to the ZnO
nanoparticles. It is due to the adsorption property of the ZnO/AC composite. As in the figure, ~33% of
the MB dye was adsorbed by AC in the ZnO/AC composite. This finding confirms that in the ZnO/AC,
the adsorption and degradation processes take place simultaneously (Figure 7). It is well-known that
the photocatalytic activity depends upon the phase structure, particle size, adsorption ability, and e−-h+

recombination rate [51,52]. From XRD patterns, it is seen that there is no change in the crystal phase
of ZnO after loading on the surface of AC. FE-SEM images also show that the size of the ZnO rod is
sufficiently decreased without changing their hexagonal structure in ZnO/AC composite. Additionally,
it has been reported that the photocatalytic property of the (101) expose crystal plane in ZnO is better
than that of the other crystal planes [53]. Therefore, the enhancement in photocatalytic activity of the
as-synthesized composite photocatalyst is due to the decreased size of ZnO rods, adsorptive properties
of porous AC support, and synergistic effect of ZnO and AC, which led to effective separation of the
photo induced e–h pairs.
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4. Conclusions

In summary, the ZnO nanorods decorated activated carbon composite was prepared for
photocatalytic applications. Locally available agricultural waste (lapsi seed stone from Nepal),
which also may cause environmental pollution if not disposed of properly, was converted to AC.
An effective ZnO/AC composite photocatalyst was prepared by a facile hydrothermal process. Results
showed that crystalline ZnO nanorods were well decorated on the AC substrate which reduced the e−-h+

recombination rate and improved the photocatalytic activity of ZnO/CA composite. The advantages of
ZnO/AC in a dye removal system lies in its ability of simultaneous adsorption and dye degradation
under UV light irradiation. We believe that the synthetic protocol in this study can be applied for the
preparation of AC-based photocatalytic materials from other agricultural wastes.
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