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Abstract: For pancreatic islet transplantation, pancreas procurement, preservation, and islet isolation
destroy cellular and non-cellular components and activate components such as resident neutrophils,
which play an important role in the impairment of islet survival. It has been reported that inhibitors
of neutrophil elastase (NE), such as sivelestat and α1-antitrypsin, could contribute to improvement
of islet isolation and transplantation. In this study, we investigated whether pancreatic preservation
with alvelestat, a novel NE inhibitor, improves porcine islet yield and function. Porcine pancreata
were preserved with or without 5 µM alvelestat for 18 h, and islet isolation was performed. The islet
yields before and after purification were significantly higher in the alvelestat (+) group than in the
alvelestat (−) group. After islet transplantation into streptozotocin-induced diabetic mice, blood
glucose levels reached the normoglycemic range in 55% and 5% of diabetic mice in the alvelestat
(+) and alvelestat (−) groups, respectively. These results suggest that pancreas preservation with
alvelestat improves islet yield and graft function and could thus serve as a novel clinical strategy for
improving the outcome of islet transplantation.

Keywords: pancreas preservation; alvelestat (AZD9668; MPH966); neutrophil elastase (NE);
islet transplantation

1. Introduction

Pancreatic islet transplantation is a treatment option for patients with type 1 diabetes
mellitus [1–5]. Islet transplantation is a minimally invasive approach to β-cell replacement
compared with pancreas transplantation. However, the number of islets from one donor
pancreas is usually insufficient to achieve insulin independence [1,6–8]. The procedure
of islet isolation itself destroys cellular and non-cellular components of the pancreas and
activation of some components, including resident neutrophils, macrophages, and T cells,
which probably play an important role in the impairment of islet survival [6–10].

Some studies have shown that inhibitors of neutrophil elastase (NE), such as sivelestat
and α1-antitrypsin, could contribute to the improvement of islet isolation and transplan-
tation [11–14]. NE is a serine protease stored in azurophilic granules of neutrophils in its
inactive form [15–17]. When NE is released after neutrophil exposure to inflammatory
stimuli, it is fully active. Excessive release of NE degrades several extracellular matrix

J. Clin. Med. 2022, 11, 4290. https://doi.org/10.3390/jcm11154290 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm11154290
https://doi.org/10.3390/jcm11154290
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0003-0061-585X
https://orcid.org/0000-0002-0880-6805
https://doi.org/10.3390/jcm11154290
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm11154290?type=check_update&version=2


J. Clin. Med. 2022, 11, 4290 2 of 10

components, such as elastin, laminins, and collagens, resulting in subsequent tissue dam-
age [15–19]. NE activity reportedly increases during islet isolation, especially at the end of
warm digestion by collagenase [11]. Supplementation of preservation solutions with sivele-
stat, a serine protease inhibitor, significantly improves islet yield and viability. Furthermore,
treatment with sivelestat prolongs islet allograft survival in recipient mice [11]. In rats
with hyperketonaemia, treatment with sivelestat sodium reduces serum cytokines and
improves islet yields and functions in vitro [12]. α1-Antitrypsin is also a serine protease
inhibitor that inhibits NE [20–23], prolongs islet graft survival [13], and reduces expression
of proinflammatory mediators [14] in mice by binding to gp96 (a heat-shock protein) [24].

Alvelestat (AZD9668, MPH966) is another NE inhibitor that is reversible and highly
selective in biochemical and cellular assays. The inhibitory effect on NE induced by
alvelestat is higher than that induced by sivelestat. It has been reported that alvelestat
is effective in in vivo mouse and rat models of lung inflammation and degradation [25].
In rats, alvelestat reduces the diameters of abdominal aortic aneurysms (AAA) induced
by injection of Porphyromonas gingivalis and limits the formation of calcium phosphate
precipitation in AAA [26]. In mice with acute lung injury or acute respiratory distress
syndrome, alvelestat exhibits potent cytoprotective and anti-inflammatory properties in
human alveolar and bronchial epithelial cells by targeting neutrophil extracellular traps,
improves survival rates, and reduces lung inflammation [27]. In clinical trials, alvelestat
has been shown to reduce sputum inflammatory biomarkers in cystic fibrosis [28] and
bronchiectasis [29]. In this study, we investigate whether the addition of alvelestat to
preservation solution improves porcine islet yield and function.

2. Materials and Methods
2.1. Inhibitory Effects of Alvelestat against the Cytotoxicity of NE

Isolated porcine islets from pancreas preservation solution without alvelestat were
cultured with Connaught Medical Research Laboratories 1066 medium (CMRL 1066; Sigma-
Aldrich Japan, Tokyo, Japan) supplemented with 0.5% human serum albumin (HSA; Sigma-
Aldrich Japan) with or without 1 µg/mL NE (Sigma-Aldrich Japan) and 0–25 µM alvelestat
(AdooQ Bioscience, Irvine, CA, USA) for 24 h at 37 ◦C in 5% CO2. The islets were evaluated
by double fluorescein diacetate/propidium iodide (FDA/PI; Sigma-Aldrich Japan) staining
as described previously [30–33].

2.2. Pancreas Preservation Solution

A commercially available extracellular-type trehalose-containing Kyoto (ETK) solution
(Otsuka Pharmaceutical Factory, Naruto, Japan) supplemented with 5 µM alvelestat was
used as preservation solution. Dimethyl sulfoxide (DMSO; Sigma-Aldrich Japan) plus
phosphate-buffered saline (PBS; Sigma-Aldrich Japan) was used to dissolve alvelestat
(alelestat(+)), and DMSO plus PBS without alvelestat (alvelestat(−)) was used as the vehicle
control.

2.3. Procurement, Preservation, and Islet Isolation of Porcine Pancreata

We obtained 20 porcine pancreata (female; three years) from a local slaughterhouse.
The operation was started approximately 10 min after the animal’s heartbeat stopped.
All pancreata were removed using a standardised technique to minimise warm ischemic
time (WIT). We inserted a catheter into the main pancreatic duct and infused preservation
solution through the intraductal cannula (1 mL/g of pancreas) [34,35]. The pancreata
were then stored in preservation solution at 4 ◦C for approximately 18 h. The “operation
time” was defined as the time from the start of the operation until the removal of the
pancreas. The WIT was defined as the time from the cessation of the animal’s heartbeat
until placement of the pancreas into the preservation solution. The cold ischemic time,
phase I period, and phase II period were defined as described previously [5,35]

To isolate the islets, the ducts were perfused in a controlled fashion with a cold enzyme
blend of Liberase T-Flex (1.0 mg/mL) with thermolysin (0.075 mg/mL) (Roche Diagnostics
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Corporation, Indianapolis, IN, USA). The islets were then separated by gentle mechanical
dissociation [5,35–39] and purified using a continuous gradient of purification solution [40].
To generate purification solutions, iodixanol was combined with preservation solution. We
adopted bottle purification (size 500 mL; Nalgene, Rochester, NY, USA) in this step [35,40].
The digested tissue was divided in half so that equal amounts of tissue were used for each
bottle. A gradient was generated using a gradient marker (Biorep Technologies, Miami
Lakes, FL, USA), and candy-cane-shaped stainless steel pipes (length, 30 cm; UMIHIRA,
Kyoto, Japan) to enable loading from the low-density solution to high-density solution,
leaving the stainless steel pipe in place. After generating a continuous gradient, the digested
tissue was loaded as the top layer [40]. The bottles were centrifuged at 1000 rpm (235× g)
for 5 min at 4 ◦C. After centrifugation, about 9 fractions (50 mL each) were collected and
examined for purity.

2.4. Assessment of Islet Function

Dithizone (DTZ; Sigma-Aldrich) staining, scoring of gross morphology (score), and
double FDA/PI staining were performed as described previously [1,30–33,35]. The crude
number of islets in each diameter class was determined by counting islets after DTZ
staining using an optical graticule. The crude number of islets was then converted to the
standard number of islet equivalents (IE; diameter standardized to 150 µm) [1,30–33,35].
Islet function was assessed by monitoring the insulin secretory response of the purified
islets during glucose stimulation using the procedure described previously [1,2,35,41–43].
The data were expressed as the mean ± standard error of the mean (SE).

2.5. Measurement of ATP Production

To measure the production of ATP, isolated islets in each group were cultured overnight
with CMRL-1066 medium supplemented with 0.5%HSA, washed twice with ice-cold PBS,
and solubilized. The amount of ATP was measured using an ATP assay system (Toyo
Inki, Tokyo, Japan) according to the manufacturer’s instructions. Briefly, after allowing the
reagents to equilibrate to room temperature, 10 µL of cell extract was added to 100 µL of
reagent. The samples were measured using a luminometer [35].

2.6. In Vivo Assessment

For in vivo assessment of the islet function, nude mice (six-week-old, male; Charles
River Laboratories Japan, Inc., Kanagawa, Japan) rendered diabetic by a single injection
of streptozotocin (STZ) at a dose of 120 mg/kg were used. When the non-fasting blood
glucose level exceeded 350 mg/dL for 2 consecutive days, the mice were considered to
be diabetic. Marginal numbered porcine islets (1500 IEs) obtained from each group were
transplanted into the renal subcapsular space of the left kidney of an immunodeficient dia-
betic mouse immediately after isolation [33,34,39,41]. Normoglycemia was defined as two
consecutive blood glucose level measurements of less than 200 mg/dL. All animal studies
were approved by the Institutional Animal Care and Use Committee of the University of
the Ryukyus.

2.7. Statistical Analysis

All data are expressed as mean ± standard error. Student’s t-test was performed to
compare two samples from independent groups using Microsoft Excel. The differences in
the duration of graft survival between the groups were evaluated using the Kaplan–Meier
log-rank test, which was performed using StatView software. Statistical significance was
set at p < 0.05.

3. Results
3.1. Inhibitory Effects of Alvelestat against the Cytotoxicity of NE

To evaluate the inhibitory effect of alvelestat against the cytotoxicity of NE, isolated
porcine islets from pancreas preservation solution without alvelestat were cultured with or
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without 1 µg/mL NE and 0–25 µM alvelestat for 24 h. Islet viability was decreased as a
result of treatment with NE and was recovered by treatment with 5 and 25 µM alvelestat
but not by treatment with 1 µM alvelestat (Figure 1). The following experiments were
performed using 5 µM alvelestat.
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Figure 1. Inhibitory effect of alvelestat against the cytotoxicity of neutrophil elastase. Isolated porcine
islets were cultured with or without 1 µg/mL neutrophil elastase and 0–25 µM alvelestat for 24 h.
The islets were evaluated using double fluorescein diacetate/propidium iodide (FDA/PI) staining.

3.2. Effect of Alvelestat on Porcine Islet Isolation

To assess the effect of alvelestat on islet isolation, we performed 20 porcine islet
isolations from 21 November 2020 to 6 November 2021. Porcine pancreata were preserved
with or without 5 µM alvelestat for approximately 18 h, and islet isolations were performed.
The characteristics of porcine pancreata and islets before purification are summarized in
Table 1. There were no significant differences in pancreas size, the operation time (the time
elapsed between the start of the operation and removal of the pancreas), warm ischemic
time (the time elapsed between the removal of the animal’s blood and placement of the
pancreas into the preservation solution), cold ischemic time (the time elapsed between the
placement of the pancreas into the preservation solution and the start of islet isolation),
phase I (digestion time), or phase II (collection time) between the two groups. In contrast,
the islet yield before purification of the alvelestat (+) group (n = 10) was significantly higher
than that of the alvelestat (−) group (n = 10) (p < 0.05; Figure 2a,b).
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Table 1. Characteristics of the pancreatic tissue and isolated islets in the alvelestat (−) group and the
alvelestat (+) group.

Characteristic Alvelestat (−)
(n = 10)

Alvelestat (+)
(n = 10)

Pancreas size (g) 120.1 ± 8.9 107.9 ± 5.6
Operation time (min) 4.9 ± 0.4 5.2 ± 0.2

Warm ischemic time (min) 27.1 ± 1.2 27.2 ± 0.8
Cold ischemic time (min) 1116.3 ± 9.4 1087.0 ± 12.7

Phase I period (min) 11.1 ± 0.5 11.6 ± 0.5
Phase II period (min) 38.9 ± 0.8 40.5 ± 0.7
Embedded islets (%) 12.0 ± 1.9 12.0 ± 1.3

Viability (%) 96.7 ± 0.5 96.5 ± 0.6
Purity (%) 64.2 ± 2.4 59.8 ± 3.7

Post-purification recovery (%) 1 76.3 ± 3.2 67.4 ± 3.1
Score 9.5 ± 0.2 9.7 ± 0.1

The data are expressed as the mean ± SE. 1 Post-purification recovery (%) = IE after purification/IE before
purification × 100.
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Figure 2. Effect of alvelestat on islet isolation. Porcine pancreata were preserved with or without
5 µM alvelestat for approximately 18 h, and islet isolation was performed. (a) Islet yield before
purification. (b) Islet yield per gram of pancreas before purification. (c) Islet yield after purification.
(d) Islet yield per gram of pancreas after purification. Alvelestat (−) group: n = 10; alvelestat (+)
group: n = 10. Data are expressed as the mean ± SE.

The islet characteristics after purification are presented in Table 1. The yield of islets
after islet purification of the alvelestat (+) group was significantly higher than that of the
alvelestat (−) group (p < 0.05; Figure 2c,d). No other characteristics were significantly
different between the two groups.

3.3. In Vitro Assessment of Isolated Islets from Porcine Pancreata Preserved with or
without Alvelestat

To investigate whether the addition of alvelestat to preservation solution can prevent
the reduction in the number of islets during culturing, the IE was compared between
the two groups after culturing for 6, 24, 48, and 72 h. The IE in the alvelestat (−) group
(n = 3) were significantly lower than the alvelestat (+) group (n = 3) (Figure 3a). These data
show that the addition of alvelestat to the preservation solution prevents a reduction in the
number of islets during culture.
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To evaluate islet function in vitro, the ATP content in each group was measured. The
ATP content in the alvelestat (−) group (n = 10) was significantly lower than that in the
alvelestat (+) group (n = 10) (Figure 3b). The stimulation index of isolated islets was also
measured. The insulin production according to high glucose and stimulation index values
in the alvelestat (+) group (n = 10) were significantly higher than those in the alvelestat (−)
group (n = 10) (Figure 3c).
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Figure 3. In vitro effect of alvelestat on isolated porcine islet function. (a) Number of islets after
culturing. Immediately after islet isolation, 2000 IE from each group (n = 3 each) were cultured for
72 h. The islets were counted to calculate the IE for each group after 6, 24, 48, and 72 h of culturing.
** p < 0.01. (b) The adenosine triphosphate (ATP) content in each group was measured using an ATP
assay system. Alvelestat (−) group: n = 10; alvelestat (+) group: n = 10. (c) The stimulation index
was measured in each group. Alvelestat (−) group: n = 10; alvelestat (+) group: n = 10. Data are
expressed as the mean ± SE.

3.4. In Vivo Assessment of Porcine Islets from Alvelestat (+) and Alvelestat (−) Groups

To assess the islet graft function in vivo, marginal numbered porcine islets (1500 IEs)
from each group (n = 20 from 10 islet isolations, n = 2 per isolation) were transplanted
immediately after isolation under the kidney capsule of STZ-induced diabetic nude mice.
The blood glucose levels in 11 of 20 mice (55%) from the alvelestat (+) group decreased and
reached normoglycaemia. In contrast, 19 of 20 mice (95%) from the alvelestat (−) group
were hyperglycaemic (Table 2). Thus, the number of mice that became normoglycemic
after islet transplantation differed significantly between the alvelestat (+) and alvelestat
(−) groups (p < 0.01). These results revealed that pancreatic preservation with alvelestat
improved islet graft function.
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Table 2. In vivo functional assay.

Alvelestat (−) Alvelestat (+)

No. of Transplanted Mice 20 20
No. of Cured Mice 1 11

% 5 55
p-Value vs. alvelestat (−) <0.01

Marginal numbered porcine islets (1500 IEs) from each group were transplanted immediately after isolation into
immunodeficient diabetic mice. Normoglycaemia was defined as <200 mg/dL under non-fasting conditions for
more than 2 consecutive days.

4. Discussion

In this study, we showed that the addition of alvelestat to the preservation solution
increased islet yield and improved the function of isolated islets both in vitro and in vivo.
These findings imply that alvelestat has protective effects on the preservation of the pan-
creas and islets. Donor pancreata are damaged by hypotension, tissue ischemia due to
peripheral vasoconstriction, and release of stress hormones and inflammatory cytokines [44–47].
Donor pancreata are then exposed to warm/cold ischemia during procurement and organ
preservation [48,49]. Furthermore, islet isolation, which includes warm digestion, tissue
shaking, and cold purification/washing with hypoxia, causes cell damage [44]. It has been
reported that NE activity increases during islet isolation, especially at the end of warm
digestion by collagenase, with cytotoxic effects against isolated islets [11]. NE injures the
membrane of macrophages, acinar cells, and islets [11]. NE also causes the activation of
macrophages and acinar cells, leading to proinflammatory cytokines, such as TNF-α and
IL-1β [50]. Therefore, alvelestat, sivelestat, and α1-antitrypsin can improve the outcome of
islet isolation and transplantation.

ETK solution was used as the preservation solution in this study. We previously re-
ported that a modified ETK solution containing a trypsin inhibitor (ulinastatin) significantly
improved the islet yield compared with preservation in the University of Wisconsin (UW)
solution for islet isolation [39,51]. ETK solution is advantageous for islet transplantation
because the inhibitory effect of collagenase activity by ETK solution is weaker than that of
UW solution [39]. Moreover, ETK solution has a high-sodium/low-potassium composition,
whereas UW solution has a low-sodium/high-potassium composition, and it is well-known
that a high potassium concentration induces insulin release from islets [39]. It has also
been reported that the number of neutrophils in the preserved pancreas is significantly
reduced by ETK solution with sivelestat compared with UW solution with sivelestat and
that the NE activity is significantly suppressed in ETK solution with sivelestat compared
with UW solution with sivelestat [11]. Therefore, we chose to use ETK solution and not
UW solution. We also reported that ETK solution with ulinastatin is better for pancreas
preservation before islet isolation than HTK solution with ulinastatin due to the differences
in terms of energy sources of the solutions [52]. Based on these data, we used ETK solution
with ulinastatin for clinical islet transplantation from donation after brain death, donation
after circulatory death, and living donation [53].

In this study, 5 µM alvelestat was added to the preservation solution based on the data
shown in Figure 1. It has been reported that 20 µM sivelestat is a suitable concentration
for preservation solutions [11]. The IC50 of sivelestat is 44 nM, and the IC50 of alvelestat
is 12 nM [54], suggesting that the inhibitory effect on NE induced by alvelestat is higher
than that induced by sivelestat. Moreover, alvelestat is at least 600-fold more selective than
other serin proteases [54].

Inhibition of NE leads to effective treatment, as observed in various preclinical stud-
ies including skin, bowel, and lung inflammation, as well as ischemia-reperfusion injury
relevant to stroke, myocardial infarction, and transplantation [55]. Clinical trials in car-
diovascular and lung disease with NE inhibitors, such as sivelestat and alvelestat, are
ongoing. It has been reported that there is a trend towards reduction in sputum inflam-
matory biomarkers with statistically significant changes in interleukin(IL)-6, regulated
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on activation, normal t-cell expressed and secreted (RANTES) and urinary desmosine
in alvelestat-treated patients with cystic fibrosis [28] and that significant changes were
observed in forced expiratory volume, slow vital capacity, plasma IL-8, and post-waking
sputum IL-6 and RANTES levels in alvelestat-treated patients with bronchiectasis [29].
Alvelestat is currently being explored as a potential treatment for α1-antitrypsin deficiency-
related lung disease [56].

5. Conclusions

Supplementation of alvelestat in preservation solutions could improve islet isola-
tion and transplantation. Our results imply that alvelestat has cytoprotective and anti-
inflammatory effects through the inhibition of NE activity in the pancreas. Because alve-
lestat has now been used in a clinical trial, further studies, including the verification of
safety and efficacy of alvelestat, are expected. Moreover, experiments with the human
pancreas are required before clinical islet transplantation can be applied to treat people
with type 1 diabetes.
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