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ABSTRACT
In contrast to most Indigenous people in Canada, Inuit appeared until recently to have been 
protected from type 2 diabetes (T2D) related to obesity. We assessed the associations of 
metabolites (amino acids, acylcarnitines) with adiposity and biomarkers of T2D in school- 
aged Inuit children of Nunavik (Canada). Concentrations of metabolite were measured in plasma 
samples from a cross-sectional analysis of 248 children (mean age = 10.8 years). We assessed 
associations of plasma metabolites with adiposity measures (BMI, skinfold thicknesses) and T2D 
markers (insulin, glucose, adiponectin). Plasma concentrations of valine and tyrosine were higher 
in obese and overweight children compared to those of normal weight children (P < 0.05). An 
increment of 1-SD in BMI (SD = 3.3 kg/m2) was statistically associated with an increment of 0.21 
(95% CI: 0.08, 0.33) for valine, 0.15 (95% CI: 0.02, 0.27) for isoleucine and 0.17 (95% CI: 0.04, 0.29) 
for tyrosine. Insulin concentration increased with concentrations of all amino acids (P < 0.05) 
except methionine. None of the acylcarnitines measured were statistically significantly associated 
with adiposity or T2D biomarkers A signature of metabolites, particularly higher levels of 
branched-chain amino acids, might allow for early detection of T2D among school-aged Inuit 
children.
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Introduction

Childhood adiposity carries a significant burden of 
chronic diseases [1,2], psychological disorders [3] and 
health-care costs [4]. The most prevalent approach of 
determining obesity – a crude index of adiposity – is to 
compare the body mass index (BMI) to a reference- 
standard that takes into accounts child age and sex [5]. 
The Inuit population of Nunavik (Northern Quebec, 
Canada) has experienced a low prevalence of obesity 
until the 1970s, when transition towards a western- 
style diet and sedentarity started taking its toll. We 
recently reported that the International Obesity Task 
Force (IOTF) BMI reference-standard is the most speci-
fic for identifying obesity accompanied by higher insu-
lin disturbances in school-aged Nunavik Inuit 
children [6].

Because T2D has a strong adiposity-dependent com-
ponent, authors have suggested the use of the term 
“diabesity” when referring to the common factors of 

diabetes and obesity [7]. The prevention of T2D, for 
which obesity is the major contributor, requires 
a better understanding of the pathophysiological 
changes that could lead to earlier diagnosis and inter-
vention. Tabák et al. [8] reported that changes in cur-
rent biomarkers of T2D (insulin-resistance, fasting and 
2 h post-load plasma glucose) appear two to four years 
before its diagnosis. Data from the emerging field of 
metabolomics – the study of the metabolome, i.e. small 
molecule chemicals within a biological sample – indi-
cate that circulating concentrations of certain metabo-
lites, in particular amino acids (AA) and acylcarnitines 
(AC), allow for early detection of diet-induced linking 
obesity and T2D [9,10].

Metabolomic research has identified branched- 
chain AA (BCAA: valine, isoleucine, leucine), aromatic 
AA (AAA: phenylalanine and tyrosine), and short- 
chain AC (C3 and C5) as the most promising meta-
bolites distinguishing individuals with insulin- 
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resistance or T2D, independently of BMI [9,11,12]. In 
addition, these metabolites allow differentiating 
between normal weight and obese individuals [9] 
and predicting insulin-resistance improvement, 
regardless of the amount of weight lost [13]. 
Increased plasma concentrations of BCAA and AAA 
are also predictive of T2D incidence [14]. Studies 
among children observed that BCAA are elevated in 
obese subjects and that this increase is associated 
with insulin resistance in longitudinal analyses, inde-
pendently of initial BMI [15–20].

Alongside being the constituents of proteins, AA can 
serve as energy fuel and give rise to several metabo-
lites; circulating AA levels vary according to different 
physiological states [21] and at high concentrations are 
known to modulate insulin resistance [9]. ACs are gen-
erated through fatty acid oxidation and AA catabolism 
that are used as complementary sources of energy in 
cardiac and skeletal muscle mitochondria [22]. AC pro-
files can help identify mitochondrial dysfunction [23], 
which is increasingly being linked to insulin resis-
tance [24].

In Canada, obesity and T2D prevalence are higher 
in non-Inuit Indigenous compared to non-Indigenous 
people [25,26]. The Nunavik Inuit Health Survey, 
Qanuippitaa? 2004, revealed high proportions of obe-
sity (W = 31.8%, M = 25.8%) [27,28] higher than the 
rest of Canada (2004: W = 23.2%, M = 22.9%) [29]. 
The prevalence of diabetes among Nunavimmiut 
(4.7%) [28] is similar to that of the Canadian adult 
population (2004: 4.8%) [30], despite the younger age 
structure of the Nunavik population. Among circum-
polar Inuit populations, although a low prevalence 
was reported in studies conducted before the 1980s 
compared with western populations, results from stu-
dies conducted over the last two decades indicate 
that the prevalence of diabetes is rising [31]. Until 
recently, no studies had assessed the metabolic pro-
files of Indigenous children. A recent study conducted 
in an American Indigenous community revealed that 
plasma concentrations of several AA are altered in 
adolescents with obesity and are associated with 
insulin sensitivity [32]. The present study aims at 
assessing if Inuit children with either adiposity or 
insulin resistance can be discriminated using plasma 
levels of AA and AC previously associated with obe-
sity-related T2D. We access data from the Nunavik 
Child Development Study (NCDS) to determine the 
associations between AA and AC in relation with 
adiposity measures and biomarkers of T2D in school- 
aged Inuit children.

Materials and methods

Ethics statement

Written informed consent was obtained from the 
mother of each participating child, and oral consent 
was obtained from the child. Consent and assent 
forms were approved by the Nunavik Nutrition and 
Health Committee and the research ethics review 
board of Laval and Wayne State Universities.

Study design and participants

The cross-sectional analysis of the NCDS study included 
294 school-aged Inuit children from the 14 villages of 
Nunavik, a region north of the 55th parallel in Arctic 
Quebec (Canada), who were recruited between 
September 2005 and February 2010. The design and 
recruitment have been described in detail elsewhere 
[33]. Briefly, inclusion criteria were age between 8.5 
and 14.5 years, birth weight ≥2.5 kg, gestation duration 
≥35 weeks, no major birth defects, and no major neu-
rological or chronic health problems affecting growth.

Anthropometric parameters

Anthropometric parameters were measured by research 
nurses trained to use standard measurement proce-
dures. Weight was quantified on a digital balance, and 
height was recorded using a stadiometer. Two mea-
surements were taken for each parameter, and a third 
was obtained if a discrepancy was noted between the 
initial measurements for weight (>500 g) and height 
(>0.5 cm). Final growth parameter values were based 
on the average of the two closest measurements. BMI 
was calculated as the ratio of weight (kg) to squared 
height (m2). The body weight status (normal weight, 
overweight or obese) of each participant was deter-
mined using the IOTF BMI reference-standard [34]. The 
IOTF system (widely used internationally) is based on 
data from six large, nationally-representative, cross- 
sectional surveys on child growth – in Brazil, Great 
Britain, Hong Kong, the Netherlands, Singapore, and 
the USA. The cut-off values (for age and sex) are extra-
polations of adult BMI cut-off points for overweight 
(25 kg/m2) and obesity (30 kg/m2).

Triceps skinfold thickness (TST, right arm) and sub-
scapular skinfold thickness (SST) were measured in mm 
with a skinfold calliper by a research nurse. TST was 
measured on relaxed right arm, at mid-distance 
between the hood and the tip of the elbow, and SST 
from the back at about 1 inch below the lower border 
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of the shoulder blade. Two measurements were per-
formed for each skinfold thickness parameter, and 
a third was obtained in case of a discrepancy >3 mm 
between the two initial measurements. The final values 
were the average of the two closest measurements.

Blood sampling

A non-fasting venous blood sample (20 mL) was col-
lected from each child. Following centrifugation, the 
plasma was transferred in plastic tubes and kept frozen 
at −80°C until time of analysis. Samples were shipped 
on dry ice to the Centre de Toxicologie du Québec (CTQ) 
for AA and AC analysis and to the Centre de recherche de 
l’Institut universitaire de cardiologie et de pneumologie de 
Québec for T2D biomarkers measurements.

Laboratory analyses

Plasma concentrations of insulin and adiponectin were 
determined using Milliplex kits (Millipore, Billerica, MA) 
and a Luminex reader (Bio-Rad Lab, Hercules, CA). 
Glucose concentration was measured with the Amplex- 
Red Glucose assay kit accordingly to the manufacturer’s 
instructions (Life Technologies).

Plasma concentrations of AA [arginine (Arg), glutamic 
acid (Glu), isoleucine (Ile), leucine (Leu), methionine 
(Met), phenylalanine (Phe), tyrosine (Tyr), valine (Val)] 
and AC [carnitine (C0), acetyl- (C2), propionyl- (C3), 
butyryl- (C4), isobutyryl- (IsoC4), glutaryl- (C5-DC), hexa-
noyl- (C6) and octanoylcarnitine (C8)] were determined 
by isotope-dilution liquid chromatography/hybrid quad-
rupole-time-of-flight (QTof) mass spectrometry using the 
method described by Roy et al. [35]. Inter-day coeffi-
cients of variation ranged from 5.2% to 10.9% for AA 
and 5.0% to 9.8% for AC. Accuracy ranged from −7.3% to 
12.8% for amino acids as assessed against SRM 1950 
certified values (National Institute of Standards and 
Technology, Gaithersburg, MD, USA). We substituted 
plasma metabolite concentrations below the limit of 
detection (LOD) by a value equal to half the LOD.

Statistical analysis

Characteristics of children according to IOTF weight 
status were compared using chi-square test for catego-
rical variable (sex) and compared using analysis of var-
iance (ANOVA) for continuous variables. Firstly, 
arithmetic means (±SEM) of metabolites concentrations 
according to IOTF weight status were compared using 
a one-way analysis of variance (ANCOVA) with Tukey’s 
post-test for continuous variables and adjusted for age 
(continuous) and sex. Tests for trend across IOTF weight 

status were assessed using the SAS software PROC GLM 
CONTRAST. Secondly, we performed adjusted linear 
regression analyses to assess the association of each 
metabolite (dependent variables) with different sets of 
independent variables: measurements of adiposity (BMI, 
triceps skinfold thickness and subscapular skinfold 
thickness) as well as biomarkers of obesity (adiponectin) 
and T2D (insulin, glucose). Age- and sex-adjusted stan-
dardised estimates (95% CI) of metabolite concentra-
tions according to a 1-SD increase of each independent 
variable were plotted on a graph. In order to visually 
compare metabolite concentrations with independent 
variables, all plasma metabolite concentrations were 
standardised (mean = 0, SD = 1) and the standardised 
mean-difference with 95% confidence interval (CI) was 
calculated for each metabolite and plotted on a graph. 
All analyses were performed with SAS software version 
9.1.3 (SAS Institute, Cary, NC). P values reported are 
2-sided (P < 0.05).

Results

Samples for analysis

Of the 294 available participants, 4 had missing data on 
height and were excluded. Metabolite concentrations 
were quantified in plasma samples of 248 participants, 
due to missing or insufficient volume sample. 
Therefore, the present cross-sectional analysis com-
prised 248 children aged 8 to 14 years.

Characteristics of the study participants

Sample characteristics are summarised in Table 1. Of 
the 248 children, 75 (30.3%) were classified as either 
overweight (22.6%) or obese (7.7%) according to the 
IOTF criteria. Normal weight, overweight and obese 
children did not differ significantly in terms of sex, 
age, non-fasting plasma glucose and adiponectin con-
centrations. In contrast, height, weight, BMI, BMI 
z-score, triceps skinfold thickness, and subscapular skin-
fold thickness as well as non-fasting plasma insulin 
concentrations were significantly higher in children 
exhibiting obesity compared to those with overweight, 
who themselves had higher values than their normal 
weight peers (all ptrend-values < 0.001).

AA and AC concentrations according to body 
weight status

AA and AC concentrations according to IOTF BMI status 
are provided in Table 2. None of the AC measured were 
statistically significantly associated with IOTF BMI status. 
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Among children with obesity and overweight, plasma 
valine (P = 0.01) and tyrosine (P = 0.03) concentrations 
were higher than those of their normal weight counter-
parts. Standardised mean (95% CIs) differences in 
plasma AA (Figure 1) and AC (supplemental Figure 1S) 
concentrations were also calculated and presented for 
obese or overweight children and their normal weight 
counterparts. Standardised mean differences were sta-
tistically significant for valine (overweight vs. normal 
weight: 0.35, 95% CI = 0.05 to 0.65; obese vs. normal 
weight: 0.60, 95% CI = 0.12 to 1.07) and tyrosine (obese 
vs. normal weight: 0.54, 95% CI = 0.07 to 1.01). No other 

significant differences were observed between weight 
status categories.

AA and AC concentrations in relation to adiposity 
and metabolic markers

Plasma AC levels did not vary according to adiposity or 
T2D biomarkers (see supplemental figures). Figure 2 
depicts the age- and sex-adjusted standardised esti-
mates of plasma AA concentrations (95% CI) according 
to 1-SD increment in markers of adiposity. An incre-
ment of 1 SD in BMI (SD = 3.3 kg/m2) was statistically 

Table 1. Baseline characteristics of Inuit children according to their IOTF weight status.

All 
(n = 248)

IOTF weight status

Normal weight 
(n = 173)

Overweight 
(n = 56)

Obese 
(n = 19) Ptrend

Age, yr 10.8 ± 0.8 10.8 ± 0.8 10.7 ± 0.9 10.8 ± 0.9 0.65
Girls, n (%) 123 (49.6) 86 (49.7) 25 (44.6) 12 (63.2) 0.25
Anthropometric data
Height, cm 142 ± 7.6 140 ± 6.51 145 ± 7.82 151 ± 7.43 <0.001
Weight, kg 40.8 ± 10 36.1 ± 5.11 47.0 ± 6.92 64.6 ± 123 <0.001
BMI, kg/m2 20.0 ± 3.3 18.4 ± 1.41 22.3 ± 1.62 28.1 ± 4.03 <0.001
BMI z-score 0.68 ± 0.7 0.31 ± 0.471 1.37 ± 0.32 2.05 ± 0.33 <0.001
TST, mm 11.5 ± 5.8 8.98 ± 3.01 15.4 ± 4.72 23.4 ± 7.33 <0.001
SST, mm 8.74 ± 6.5 6.01 ± 2.61 12.1 ± 5.42 23.5 ± 9.13 <0.001
Metabolic biomarkers
Non-fasting plasma insulin, pmol/L 136 ± 143 109 ± 1061 159 ± 1402 312 ± 2683 <0.001
Non-fasting plasma glucose, mmol/L 6.31 ± 1.6 6.20 ± 1.7 6.50 ± 1.4 6.71 ± 1.5 0.21
Adiponectin, μg/ml 11.4 ± 5.7 11.7 ± 5.8 10.9 ± 5.9 9.87 ± 3.9 0.19

Values are presented as arithmetic mean ± SD unless indicated otherwise. 
Characteristics of children according to IOTF weight status were compared using chi-square test for categorical variable (sex) and compared using analysis of 

variance (ANOVA) for continuous variables. Values with different superscript numbers are statistically different (P < 0.05). 
Abbreviations: BMI, Body Mass Index; SST, Subscapular skinfold thickness; TST, Triceps skinfold thickness. 

Table 2. Adjusteda means (±SEM) of metabolite concentrations according to IOTF weight status*.
IOTF weight status

Lean 
(n = 173)

Overweight 
(n = 56)

Obese 
(n = 19) P trend

BCAA (mg/L)
Valine (Val) 21.1 ± 0.41 23.0 ± 0.72 24.3 ± 1.22 0.01
Isoleucine (Ile) 7.5 ± 0.2 7.7 ± 0.3 8.2 ± 0.5 0.22
Leucine (Leu) 13.0 ± 0.3 13.0 ± 0.6 13.8 ± 1.0 0.42
AAA (mg/L)
Phenylalanine (Phe) 9.5 ± 0.1 9.6 ± 0.3 10.0 ± 0.4 0.31
Tyrosine (Tyr) 12.9 ± 0.21 13.7 ± 0.41,2 14.7 ± 0.82 0.03
Other amino acids (mg/L)
Glutamic acid (Glu) 9.2 ± 0.7 8.9 ± 1.3 10.9 ± 2.2 0.47
Arginine (Arg) 16.3 ± 0.4 16.0 ± 0.6 15.8 ± 1.1 0.65
Methionine (Met) 4.6 ± 0.1 4.6 ± 0.2 4.8 ± 0.4 0.53
Acylcarnitines (µg/L)
C0 (Carnitine) 10,531 ± 182 10,777 ± 321 10,558 ± 551 0.96
C2 (Acetyl) 1307 ± 51 1409 ± 90 1365 ± 155 0.72
C3 (Propionyl) 97.4 ± 2.9 89.7 ± 5.2 87.0 ± 8.9 0.27
C4 (Butyryl) 32.5 ± 1.1 34.2 ± 1.9 35.4 ± 3.2 0.39
IsoC4 (Isobutyryl) 25.0 ± 0.7 24.7 ± 1.2 21.4 ± 2.1 0.11
C5-DC (Glutaryl) 4.9 ± 0.3 5.3 ± 0.5 4.5 ± 0.8 0.70
C6 (Hexanoyl) 7.9 ± 0.2 7.7 ± 0.4 8.7 ± 0.6 0.24
C8 (Octanoyl) 13.1 ± 0.7 13.0 ± 1.2 13.4 ± 2.1 0.89

aAdjusted for age (continuous) and sex. Arithmetic means (±SEM) of metabolites concentrations according to IOTF weight status were compared using 
a one-way analysis of variance (ANCOVA) with Tukey’s post-test for continuous variables. Values with different superscript numbers are statistically 
different (P < 0.05). 

Abbreviations: BCAA, Branched-chain amino acids; AAA, Aromatic amino acids. 
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associated with an increment of 0.21 (95% CI: 0.08, 0.33) 
for Val, 0.15 (95% CI: 0.02, 0.27) for Ile and 0.17 (95% CI: 
0.04, 0.29) for Tyr. Increments of 1 SD (SD = 5.8 mm) in 
triceps skinfold thickness and 1 SD (SD = 6.5 mm) in 
subscapular skinfold thickness were statistically asso-
ciated with an increment for Val of 0.21 (95% CI: 0.08, 
0.33) and 0.19 (95% CI: 0.07, 0.32), respectively.

Figure 3 depicts the age- and sex-adjusted standar-
dised estimates of plasma AA concentrations (95% CI) 
according to 1-SD increment in biomarkers. All AA 
except Met were significantly associated with non- 
fasting insulin concentration. An increment of 1 SD for 
insulin concentration (SD = 143 pmol/L) was accompa-
nied by an increase of AA varying between 0.06 and 
0.19. In contrast, an augmentation of 1 SD for insulin 
was associated with a decrease of −0.14 (95% CI: −0.28, 

−0.01) of octanoyl carnitine (C8). An increase of 1 SD 
(SD = 3.9 mmol/L) of plasma glucose was only signifi-
cantly associated with an increase of 0.07 (95% CI: 0.03, 
0.11) Glu, whereas adiponectin was not associated with 
any metabolite concentrations. All data related to crude 
metabolite concentrations are presented in Tables S1, 
S2 and S3 of Appendix (Supplementary materials).

Discussion

We used of a metabolite profiling approach covering 
BCAA, AAA, and AC to gain insight on obesity-related 
T2D in Inuit children from Nunavik, an Indigenous 
population that have adapted to severe cold and 
a diet comprising predominantly marine foods. Our 
results suggest that a metabolite signature is associated 
with obesity and biomarkers of T2D in children from 
this population. Plasma concentrations of Val, Ile and 
Tyr increased with BMI, whereas an augmentation of 
non-fasting plasma insulin level was associated with 
higher concentrations of all AA except Met.

Some metabolic features noted in these school-aged 
children are similar to those observed in children 
experiencing obesity or overweight from other popula-
tions. In a cross-sectional study involving 69 US children 
aged 8 to 18 years, McCormack et al. [15] reported that 
obesity was significantly associated with an elevation in 
fasting concentrations of circulating BCAA (Val, Ile, Leu). 
In their 18-month longitudinal analyses of a subsample 
of children (n = 17), the authors noted that baseline 
BCAA concentrations were associated with a higher 
insulin resistance, independently of the initial BMI. 
Using an untargeted metabolomic approach and 

Figure 1. Standardised differences (95% CI) of amino acid 
concentrations between overweight and normal weight, 
obese and normal weight Inuit children. The weight status 
was determined according to the IOTF cut-offs for age and sex.

Figure 2. Adjusted standardised estimatesa (95% CI) of amino 
acid concentrations per increment in adiposity measurements 
(BMI, subscapular skinfold thickness, Triceps skinfold thickness) 
among Inuit children.
a Estimates were obtained by multivariate linear regression adjusted 
for child age and sex. Abbreviations: BMI, body mass index; SST, 
subscapular skinfold thickness; TST, triceps skinfold thickness. 

Figure 3. Adjusted standardised estimatesa (95% CI) of amino 
acid concentrations per increment in biomarkers (glucose, insu-
lin, adiponectin) among Inuit children. Biomarkers where col-
lected in non-fasting state.
a Estimates were obtained by multivariate linear regression adjusted 
for child age and sex. 
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a principal component analysis (PCA), Perng et al. [19] 
observed among 262 US children (aged 6–10) that 
a factor dominated by BCAA and short-chain AC was 
associated with adiposity and elevated cardiometabolic 
biomarkers (HOMA-IR, insulin, hs-CRP, IL-6, and leptin), 
but was not linked to adiponectin levels [19]. In 
a follow-up study in which the authors characterise 
metabolomic profiles of four overweight/obesity and 
metabolic risk phenotypes among 524 adolescents 
aged approximately 13 years, a principal component 
analysis revealed that a factor representing mainly 
BCAA (Val, C3 and C5 AC) was highest in participants 
belonging to the overweight/obese and high metabolic 
risk group [36]. A serum amino acid signature including 
BCAA and AAA was found to be associated with obesity 
and serum triglycerides among 6–12 years Mexican 
children [37]. In a longitudinal cohort followed by the 
same researchers, the amino acid signature was asso-
ciated with serum triglycerides and with the risk of 
hypertriglyceridaemia after 2 years of follow-up. In the 
only study on this topic conducted among Indigenous 
children, Short et al. [32] examined if differences in 
plasma concentrations of several amino acids and 
their metabolites were present between 11–17 year- 
old boys and girls with obesity (n = 58) and those of 
normal weight (n = 36). Compared with the normal 
weight group, participants in the obese group had 
significantly higher plasma levels of 17 AA including 
BCAA (+110% to 16%) and AAA (+115% to 32%). 
Concentrations of all AA were positively correlated 
with body fat and negatively correlated with insulin 
sensitivity [32].

In contrast, Mihalik et al. [38] observed no evidence 
of alteration in AA and AC metabolism in obese (BMI ≥ 
95th for age and sex) or obese with T2DM adolescents 
compared to their normal-weight counterparts [17]. 
Similarly, Michaliszyn et al. [16] reported lower fasting 
plasma concentrations of several AA (Leu/Ile, Phe, Met 
and Arg) in obese adolescents with and without dys-
glycemia compared to normal-weight adolescents [16]. 
They also observed that an increment in the glycaemic 
status was associated with a reduction of circulating AA 
levels. Unfortunately, because school-aged of children 
did not fast prior to blood collection in the present 
study, we could not categorise them according to 
their glycaemic status.

The reasons behind such inconsistency in the litera-
ture are unclear. Both Mihalik et al. [17] and Michaliszyn 
et al. [16] suggested that obese adolescents might 
exhibit different metabolic adaptations than adults, for 
whom the disease progression is spread over a longer 
period of time. They also argue that plasticity and 
growth during childhood and adolescence might have 

a major impact on metabolism (increased anabolism or 
decreased catabolism), which makes comparisons diffi-
cult with adult metabolomic profiles.

The differences observed between obese and normal 
weight school-aged of Inuit children concerning plasma 
concentrations of Val and Tyr might represent an early 
manifestation of the adverse metabolic consequences 
of nutritional transition [39]. This Westernisation of diet 
(regimen rich in refined sugars, saturated animal fats, 
and engineered foods, but low in fruits, vegetables and 
fibre) [40] has been proposed to explain the obesity/ 
T2D epidemic in Indigenous populations [41,42] whose 
traditional diet was based on local food gathered from 
fishing, hunting, wild plant- and fruit-picking [43–48]. 
An effect of diet through an alteration of gut micro-
biota is also likely. Ridaura et al. [49] observed in obese 
mice that the gut exhibits a higher level of expression 
of microbial genes involved in the biosynthesis of 
essential AA (Phe, Lys, Val, Leu and Ile) and nonessential 
AA (Arg, Cys and Tyr), which contributes to the eleva-
tion of their circulating concentrations. Alternatively, 
the increase in circulating Val and Tyr levels in obese 
compared with normal weight children could be due to 
a decrease in the expression of the large neutral AA 
transporter (LAT1) in obese children [50].

Of mention is the lack of an association between 
plasma AC levels and biomarkers of adiposity and glu-
cose homeostasis in the present study. This is in con-
trast to the above-mentioned study of Perng et al. 
which found that the highest levels of a BCAA-related 
factor (Val, C3 and C5) were present in adolescents 
belonging to the overweight/obese and high metabolic 
risk group [36]. Hence, although Val is increased in 
obese Inuit children, it is not accompanied by 
a similar increase in propionylcarnitine (C3), a product 
of BCAA catabolism, in particular valine and isoleucine 
catabolism [9]. Higher levels of C3 (and C5) have been 
noted in metabolically unhealthy individuals, indepen-
dently of body mass index [11], suggesting that these 
AC may represent promising biomarkers for discriminat-
ing metabolic wellness among obese individuals. 
Hence, obesity among Inuit children may not exhibit 
the hallmarks of the unhealthy metabolic phenotype 
that may lead to obesity-related T2D in the long term. 
Using criteria developed for other populations, obesity 
has been on the rise in circumpolar Inuit populations 
over the past decades, especially among women 
[51,52]. While the impact of obesity on metabolic indi-
cators has been lower than in other populations, better 
quality epidemiological data are required and commu-
nity based-health interventions urgently needed to pre-
vent future consequences of the emerging obesity 
epidemics [52].
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Our study has limitations and therefore results 
should thus be interpreted with caution. Firstly, 
because of limitations inherent to cross-sectional inves-
tigations, no causal relationship can be ascertained. 
Secondly, our participants were Inuit children aged 
between 8.5 and 14.5 years, and therefore generalisa-
tion of our results to other populations and other age 
groups is limited. Thirdly, our participants provided 
a non-fasting blood sample for laboratory analysis. 
This non-fasting condition is an obstacle to the use of 
the homeostasis model assessment (HOMA) to assess 
insulin resistance (HOMA-IR) and beta-cell function 
(HOMA-β) [53] or associations of metabolites with 
other established cardiometabolic risk biomarkers. 
Furthermore, metabolite concentrations are influenced 
by dietary exposure [54] and are therefore more vari-
able then they would have been under fasting condi-
tions. It is therefore remarkable that significant 
associations were noted between amino acids and 
adiposity as well as metabolic biomarkers, despite the 
non-fasting condition of participants. Fourthly, we did 
not collect information pertaining to the stage of pub-
erty. Increased secretion of growth hormone (GH) and 
changes in protein metabolism during puberty can 
interfere with the dynamics of BCAA at the muscle cell 
level. As discussed above, in contrast to adults, associa-
tions between plasma concentrations of some metabo-
lites and obesity in youth are not well established and 
studies showed controversial results. A systemic review 
indicated that several potential factors could interfere 
with these associations, including age and sex in rela-
tion to the hormonal and metabolic changes associated 
with puberty and rapid growth during this phase of 
life [55].

Finally, we measured traditional markers of adiposity 
that may not be optimal in this population. Wells et al. 
observed that adiposity tends to be greater in popula-
tions inhabiting colder environments [56]. Therefore, 
inclusion of surrogate markers of fatness localisation 
such as waist circumference or visceral fat might pro-
vide more insight regarding the associations between 
obesity and T2D, and metabolite concentrations. Of 
interest, a recent report identified a BCAA-based meta-
bolic score that can predict steatosis grade in a group 
of young patients aged 9 to 19 years (n = 68) with 
severe obesity [57]. In the future, this score may provide 
a feasible alternative to expensive imaging tests or 
biopsy to identify obese children and adolescents with 
severe steatosis, a key metabolic event in the patho-
genic sequence leading to T2D.

In conclusion, adiposity or insulin-resistance among 
children can be discriminated by using metabolites, 
especially those related to amino acid metabolism. 

Data from the present study indicate that metabolites 
such as Val, Tyr and likely isoleucine might have the 
ability to metabolically discriminate excess adiposity 
among children. Although overweight/obesity 
increases the risk of T2D, levels of metabolites such 
as BCAA in individuals with excessive weight might be 
clinically useful to discern which children are at higher 
risk for T2D. However, do higher levels of these meta-
bolites allow us to better predict and identify future 
risks of T2D for overweight/obese children? 
Unfortunately, cross-sectional studies cannot ade-
quately and accurately answer this question. 
Longitudinal studies among children are warranted 
to investigate if increased plasma levels of these puta-
tive metabolites allow for early identification and bet-
ter predict individuals at higher risk of 
developing T2D.
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