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Recently we showed that delta radiomics features (DRF) from daily CT-guided

chemoradiation therapy (CRT) is associated with early prediction of treatment response

for pancreatic cancer. CA19-9 is a widely used clinical biomarker for pancreatic cancer.

The purpose of this work is to investigate if the predictive power of such biomarkers

(DRF or CA19-9) can improve by combining both biomarkers. Daily non-contrast CTs

acquired during routine CT-guided neoadjuvant CRT for 24 patients (672 datasets,

in 28 daily fractions), along with their CA19-9, pathology reports and follow-up data

were analyzed. The pancreatic head was segmented on each daily CT and radiomic

features were extracted from the segmented regions. The time between the end

of treatment and last follow-up was used to build a survival model. Patients were

divided into two groups based on their pathological response. Spearman correlations

were used to find the DRFs correlated to CA19-9. A regression model was built to

examine the effect of combining CA19-9 and DRFs on response prediction. C-index

was used to measure model effectiveness. The effect of a decrease in CA19-9

levels during treatment vs. failure of CA19-9 levels to normalize on survival was

examined. Univariate- and multivariate Cox-regression analysis were performed to

determine the effect of combining CA19-9 and DRFs on survival correlations. Spearman

correlation showed that CA19-9 is correlated to DRFs (Entropy, cluster tendency

and coarseness). An Increase in CA19-9 levels during treatment were correlated to

a bad response, while a decline was correlated to a good response. Incorporating

CA19-9 with DRFs increased the c-index from 0.57 to 0.87 indicating a stronger

model. The univariate analysis showed that patients with decreasing CA19-9 had

an improved median survival (68 months) compared to those with increasing levels

(33 months). The 5-years survival was improved for the decreasing CA19-9 group

(55%) compared to the increasing group (30%). The Cox-multivariate analysis showed
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that treatment related decrease in CA19-9 levels (p = 0.031) and DRFs (p = 0.001) were

predictors of survival. The hazard-ratio was reduced from 0.73, p = 0.032 using CA19-9

only to 0.58, p = 0.028 combining DRFs with CA19-9. DRFs-CA19-9 combination has

the potential to increasing the possibility for response-based treatment adaptation.

Keywords: pancreatic cancer, survival, CA19-9, biomarkers, chemo-radiation therapy, response assessment

INTRODUCTION

Pancreatic cancer (PC) is a devastating malignancy and one of
the leading causes of cancer death in the United States. The
American cancer society estimates that about 56,770 people will
be diagnosed with PC in 2019 (1). Precise oncologic profiling
in early stages is very critical to improve prognosis. Although
advances in cancer care have substantially improved outcomes
for particular tumor sites over the past years, little change has
been seen in the pancreatic cancer patient outcomes. Surgical
resection is considered a prerequisite for curing pancreatic
cancer and achieving long term survival. However, <10% of
patients with pancreatic tumors have resectable tumors at the
time of presentation due to the nature of the tumor and its
relationship to the surrounding vascularity (2). Tumor degree
of abutment to the superior mesenteric artery (SMA) and/or
celiac artery and the size of the tumor is a major determinant
of resectability. Based on our institutional recommendations,
tumor with <180◦ abutment in the SMA or celiac artery or
with short segment abutment/encasement without extension to
celiac artery or hepatic artery bifurcation or >50% narrowing
in the tumor-vein anatomy are considered borderline resectable.
Neoadjuvant therapy with chemo-radiation usually precedes
surgery to downstage the tumor from being borderline resectable
to resectable (3).

Clinically, Carbohydrate antigen (CA19-9) has been
extensively studied and widely accepted as a tumor biomarker
for PC. For instance, Waraya et al. performed a multivariate
analysis of factors predicting survival for patients undergoing
surgical resection and reported that low preoperative CA19-9
serum levels and positive peripancreatic margins independently
predict overall survival (4). Turrini et al. reported a median
survival of 22 months for the group with a low CA19-9 compared
to 12.7 months for the elevated CA19-9 group (5). Kondo et al.
reported a median survival of 57 months for the group with a
low CA19-9 vs. 30 months for those with elevated levels (6).
These studies have demonstrated that a treatment related decline
in CA19-9 serum levels is associated with prolonged survival
and is an independent predictor of overall survival, and that an
elevated CA19-9 serum level is associated with poor prognosis.
However, CA19-9 if used alone, suffers from low sensitivity
because other factors that are not tumor related can elevate
the CA19-9 levels, Kim et al. demonstrated that preoperative
serum CA19-9 and CEA levels can be used for the prediction of
resectability with an accuracy of 27.1% if either tumor marker
is used and 40.6% if both are used (7). Steinberg, Duraker et al.,
and Kim et al. found that interpretation of CA19-9 can be falsely
elevated by the presence of benign conditions, such as ovarian

cysts, heart failure, Hashimoto’s thyroiditis, rheumatoid arthritis,
diverticulitis, or biliary obstruction with elevation of serum
bilirubin (8–10). The presence of such conditions can increase
the false positive rate. An option to address this problem is to
associate CA19-9 with another biomarker that can confirm its
tumor related elevation and hence, increase the sensitivity and
reduce the false positive rates.

CT is a non-invasive imaging modality that is used to
monitor oncologic changes and/or to assess treatment response
for cancer treatment. Radiomics is the field that converts these
medical images into quantitative data. CT-derived radiomic
texture features have shown promising prognostic value in
a variety of cancer treatments. For instance, Hou et al.
performed radiomic analysis using contrast-enhanced CT and
found that the identified radiomic features have the potential
to predict treatment response in esophageal carcinoma with
an AUC of 0.97 (11). Coroller et al. showed that CT-based
radiomics can be developed as a prognostic biomarker to predict
distant metastasis in lung cancer (12). Eilaghi et al. reported
that CT texture features of the dissimilarity and normalized
inverse difference were associated with overall survival for
PC (13).

Delta radiomics is a form of radiomics and is introduced to
assess the relative net change of radiomic features in a set of
longitudinal images. Delta radiomic feature (DRF) can be derived
from a variety of radiomic metrics in conjunction with clinical
outcomes. The presence of a trend in DRF during treatment
may indicate a good or poor response to the treatment. For
instance, Chen et al. showed that the first-order CT DRFs could
potentially be used for early assessment of treatment response
during chemoradiation therapy (CRT) for PC (14). Al-Kadi and
Watson showed that fractal texture changes in time-sequenced
contrast-enhanced CT images could potentially impact the
clinical decision for choosing the appropriate treatment plan for
aggressive and non-aggressive malignant tumors (15). Fave et al.
used DRFs to create a model for survival and distant metastases
in lung and found that adding radiomic features improved the
prognostic power of their model (16). Our previous analysis
showed that DRFs including kurtosis, NESTD, and coarseness
can predict treatment response for resectable pancreatic cancer
with AUC of 0.94 (17–19). Although DRFs have been associated
with several clinical endpoints in a variety of applications, the
complex relationships of radiomics and clinical factors are largely
unknown. Particularly for CRT of PC, the predictive power
of DRF or CA19-9 for response assessment and/or survival is
limited if used alone. The purpose of this work is to investigate
if the predictive power and prognostic value can be improved by
combining both DRF and CA19-9. We will analyze the clinical

Frontiers in Oncology | www.frontiersin.org 2 January 2020 | Volume 9 | Article 1464

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Nasief et al. Multi-Biomarker Panel for Pancreatic Cancer

data collected for both resectable and borderline resectable
PC patients.

MATERIALS AND METHODS

In this retrospective, Medical college of Wisconsin IRB
approved HIPPA compliant study (consent forms are waived
for retrospective study), daily non-contrast CTs acquired during
routine CT-guided CRT for 24 patients (standard imaging
protocol, 28 daily CTs for each patient, a total of 672 CT
sets), along with their CA19-9 tests, post-CRT pathology
reports and follow up data were analyzed. Inclusion criteria
included (1) patients who have multiple CA19-9 test results
before, after and within the course of treatment (enough
for assessing weekly changes), (2) no other apparent non-
tumor related factors that are known to elevate CA19-9 (i.e.,
no liver diseases, no gallstones, all patients had biliary stent
to avoid inflammation, no pancreatitis and no jaundice), (3)
patients with PT3N0M0R0 resectable or borderline resectable
pancreatic head tumors (equal number of resectable and
borderline resectable tumors were included. To reduce variations
in the data, patients included in the study underwent the
same CRT scheme and treatment protocol. All patients were
treated with pre-operative chemotherapy with Folfirinox and
concurrent CRT with gemcitabine in 28 daily fractions followed
by surgery during the period between 2012 and 2017. The
mean age for the patients included in the study was 65
years old at the start of treatment, with 70% being male and
30% female.

All patients underwent surgery after CRT and the pathological
treatment response was assessed from the serially sectioned
formalin-fixed surgical specimen the area of tumor and
surrounding fibrosis in the pancreas was submitted for
microscopic examination. Hematoxylin and eosin sections were
prepared, and treatment effect was evaluated. A modified Ryan
Scheme for tumor regression score recommended by the College
of American Pathologists was used to evaluate treatment effect as
follows: Grade 0 (G0): no viable cancer cells (complete response),
Grade 1 (G1): single cells or small groups of residual cancer (near
complete response), Grade 2 (G2): residual cancer with evident
tumor regression, but more than single cells or rare small groups
of cancer cells (partial response), and Grade 3 (G3): extensive
residual cancer with no evident of tumor regression (poor or no
response) (20). Among the 24 patients, there were 12 patients
with good pathological response (G1 and G2) and 12 with bad
pathological response (G3). These pathological data were used for
the response correlation analysis.

To avoid technical variations, patients included in this study
were all scanned using the same CT scanner (Definition AS,
Siemens), with a standard abdominal protocol consisting of
the following parameters: 120 kVp tube voltage, 252mA tube
current, 0.5 s, 1.2mm focal spot, and standard filtered back-
projection (FBP) algorithm with B30f kernels. All analyzed CTs
were reconstructed in a 512 × 512 × Z (slices) voxels with
resolution 0.98 × 0.98 × 3mm. The daily CTs were acquired
with respiratory gating, reducing the motion to below 3mm

(the residual motion in the gating window) during the CT
acquisition (21). A delta radiomic process was performed to
extract radiomic features from the regions of interest (ROIs)
as shown in Figure 1. The process starts with acquiring the
longitudinal CT images from the daily CTs. Daily CTs were
registered rigidly with each other with manual adjustment, if
necessary, to achieve the best local matching between the two
CT sets. For each case, the pancreatic head (excluding the stent)
was segmented delineated on the contrast-enhanced simulation
CT and MRI and was populated to the CT of the first fraction,
then to other daily CTs based on rigid image registration.
The segmented ROIs were inspected and edited if necessary,
by experienced researchers using MIM software and verified
independently by other experienced researchers and oncologists
to ensure consistency. Contour QA checks were also applied
to reduce the interobserver contouring variability using our
newly developedNESTDmap (defined as the normalized entropy
to standard deviation difference on a voxel by voxel basis) to
enhance boundary detection and to adjust the contours if tissues
other than the pancreatic head is included in the ROIs.

Over 1,300 radiomic features were extracted using IBEX
software (22) from the segmented regions. Features extracted
included intensity-based histogram, gray level co-occurrence
matrix, neighbor gray tone difference matrix, gray level run
length matrix, Intensity histogram Gaussian fit, and Shape-based
features, and our newly developed NESTD feature (defined as
the normalized entropy to standard deviation difference on a
voxel by voxel basis) (23–32). Since relatively high numbers
of extracted radiomic features compared to the sample size
can reduce the statistical power and increase the overfitting
probability, a Spearman rank-order correlation coefficient was
used to rule out low-rank redundant features (rs > 0.9). Also,
to reduce directional dependence of texture features, direction-
specific matrices are summed and averaged to create a final global
matrix. This resulted in 73 DRFs that could be used for delta-
radiomic analysis (17–19). In this study, patients were divided
into good- and poor-response groups based on their treatment
responses. Changes in each of the 73 DRFs were calculated as the
relative net change of the radiomic feature of interest from the
first fraction as follows (19):

DRFn =
Feature valueFrac 1 − Feature valueFrac n

Feature valueFrac 1
,

where n = 2 : 28 (1)

A metric trend was established using a linear regression model
to find the best fit for each of the DRFs features vs. response
and subsequently determine those with potential trends. Features
were also evaluated to determine if they changed during the
treatment using a t-test and were tested for whether related to
response by fitting linear mixed effects models using R R© software
for the change of DRFs as a function of response with two
random effects to account for patient- and fraction-dependent
variations as follows (19):

⌈

model = lme(DRF ∼ Response + (1|Patient) + (1|Fraction)
⌉

(2)
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FIGURE 1 | Work flow of combining the delta-radiomic and CA19-9.

The p-value of the log likelihood ratio for each model was
calculated. The features that passed both the linear mixed effect
model and the t-test (p < 0.05) were selected to be used for
subsequent analysis.

Unlike DRFs, the CA19-9 is a blood test and thus cannot be
collected for each fraction for each patient. Patients selected in
this study, had CA19-9 test results available at the start, the end of
the treatment and at additional time points within the treatment.
CA19-9 test results were obtained from all available fractions for
each patient. To obtain the weekly changes in CA19-9 test results
and be able to combine data from different patients given the
wide range CA19-9 values can span, the values were normalized
in a similar fashion to the DRFs. The relative net change of CA19-
9 was obtained by comparing the CA19-9 value for each available
fraction with respect to a starting point of the blood sample
collected within the week post-simulation and prior to radiation.
The first week data were obtained from patients with available
CA19-9 blood test collected within the first week of treatment and
the last week data were obtained from all available CA19-9 for any
available fractions within the last week of treatment or within 2
days after last day of treatment and prior to surgery. The rest of
the weeks contained data from the patients with available CA19-9

for any fraction within that week (for instance if one patient has
CA19-9 data collected at a time point corresponding to Frac 17
and the other have CA19-9 corresponding to Frac 18, these data
were combined in a boxplot representing this week). All available
CA19-9 test results from all patients were used to generate weekly
boxplots and t-test was used to determine significant changes.
Spearman correlation coefficients were used to find which of the
significant DRFs are highly correlated to CA19-9 for survival
correlations. The time between the end of the treatment and the
presence of an endpoint of death or presence of metastasis were
used to build the survival model. Patients who did not reach an
endpoint were censored at their last follow-up.

A regression model was built to examine the effect
of combining changes in CA19-9 and DRFs on response
correlations. A concordance statistic was used to reflect the ability
of the prognostic model to correctly identify treatment response.
A value below 0.5 indicates a very poor model, 0.5 means
that the model is no better than predicting an outcome than
random chance, 0.7–0.8 indicate a good model, over 0.8 indicate
a strong model, and 1 means that the model perfectly predicts
tumor response. A Cox proportional hazard regression model
was built to examine the effect of combining CA19-9 and DRFs
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FIGURE 2 | Changes of selected delta radiomic features [(A) Entropy and (B) cluster tendency] as a function of increasing treatment fraction. Each dot represents the

average value of all good responders for a treatment time point.

FIGURE 3 | (A) Comparison of the DRF (cluster tendency) values between the two response groups and the t-test p-value, and (B) a t-test comparison of weekly

DRFs between the good and bad response groups for the DRF (cluster tendency). The boxplots show the median and interquartile range for each response group

and the diamond data point in the middle represents the mean of the group.

FIGURE 4 | (A) Comparison of the changes in the normalized CA19-9 levels between the two response groups and the t-test p-value, and (B) a t-test comparison of

weekly changes of CA19-9 between the good and bad response groups, indicating that their significant changes began at the fourth week of the treatment.
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FIGURE 5 | Weekly change of the CA19-9 as function of treatment response. For instance, 1. Bad represent all available fractions within the first week acquired from

all patients in the bad response group.

on survival prediction. Hazard ratio was used to determine the
prognostic value of combining CA19-9 and DRFs on progression
free survival.

RESULTS

The results showed that 13 DRFs (complexity, cluster tendency,
coarseness, information measure, contrast, entropy, inverse
variance, gray level non-uniformity, mean, IDN, kurtosis,
skewness, and NESTD) showed a trend correlating to
pathological treatment response and this trend was opposite
between good and bad response groups. Figure 2 shows
examples of DRFs (Entropy and cluster tendency) showing a
decreasing trend with increasing treatment fractions (radiation
dose increase) for all good responders.

Based on the t-test and the linear mixed effect analysis,
these DRFs passed both tests (p < 0.05) indicating significant
difference between the two response groups when combining all
fractional values for all patients within each response groups.
This significant difference was more pronounced between the
second to fourth week of treatment. Figure 3 shows an example
of boxplots and corresponding t-test p-value for (A) DRF values
of all fractions for cluster tendency in each group, showing
significant changes between the good and bad response groups,
and (B) a t-test comparison of weekly values (combining all
fractional values for all patients within each week) between the
good and bad response groups for the DRF (cluster tendency).
These data indicate the significant changes of the selected
DRFs from the first fraction to the subsequent weeks during
the treatment. The presented boxplots show the median and
interquartile range for each response group and the diamond data
point in the middle represents the mean of the group.

The results also showed that, like the DRFs the relative net
changes in normalized CA19-9 levels were significantly different
between the two response groups as shown in Figure 4A.
However, unlike the DRFs in case of CA19-9, examining the
significant differences between the two response groups on a
weekly basis, the earliest significant differences were seen by the
fourth week of the treatment as demonstrated by the significant
p-values of the t-test shown in Figure 4B.

The results also showed that there was an opposite trend
between the two response groups utilizing CA19-9 data alone. A
relative increase in CA19-9 levels compared to the first fraction

FIGURE 6 | The c-index of the prediction model based on DRFs or CA19-9

alone and their combination.

during treatment were correlated to a bad response, while a
decline in CA19-9 levels, was correlated to a good response.
Figure 5 shows the weekly changes of CA19-9 for each response
group combing all values for each week for all patients within
each response group.

Of the 13 DRFs correlated to treatment response, three DRFs
(entropy, coarseness, and cluster tendency) were statistically
relevant and correlated to the changes in CA19-9 with Spearman
correlations of (0.65, 0.61, and 0.72, respectively. Incorporating
the changes in DRFs to the clinical biomarker CA19-9 enhanced
the predictionmodel as shown by the increase in the concordance
statistic of our model from 0.69 using CA-19-9 alone to 0.87
combining CA19-9 to the three DRFs of interest, indicating
a stronger power to predict treatment response as shown
in Figure 6.

The prediction of good and bad responder was also earlier by
combining the changes in the DRFs to CA19-9. The prediction
power changed from the fourth week of treatment with CA19-9
alone to the third week combining CA19-9 and DRFs, as shown
in Figure 7. Such early detection of treatment response would
allow more time to adapt the treatment if necessary.

For survival correlations, the univariate analysis showed that
patients with decreasing CA19-9 had an improved median
survival (68months) compared to those with increasing levels (33
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months). The 5-years survival was improved for the decreasing
CA19-9 group (58%) compared to the increasing group (36%).
The survival probability was enhanced by combining DRFs to
CA19-9 with an improved median survival in the increasing
group (49 months) and 68 months in the decreasing group. The
5-years survival probability was also improved to 93% in the
decreasing CA19-9 with DRF group compared to the increasing
group (50%). Figure 8 show the survival curve comparing group
with increasing CA19-9 vs. those with normalized or decreased
CA19-9 during treatment (right) and increased vs. decreased
survival curves after combining DRFs to CA19-9 (left).

The Cox proportional multivariate hazard analysis showed
that a treatment related decrease in CA19-9 levels (p= 0.031) and
DRFs (p= 0.001) were predictors of survival. Table 1 summarize
the hazard ratio and the 95% confidence intervals with the
corresponding p-value. The hazard ratio was reduced from 0.73,
p= 0.032 using CA19-9 only to 0.58, p= 0.028 combining DRFs
with CA19-9.

FIGURE 7 | Average weekly changes of the combined biomarker (CA19-9 and

DRFs) showing that the detection of good and bad responders begins at the

third week during the treatment.

CONCLUSIONS

The combination of CT delta radiomics and the clinical
biomarker CA19-9 leads to improved prediction of treatment
responses for CRT of pancreatic cancer, as compared to
radiomics or CA19-9 alone. The combined biomarkers could
predict treatment response sooner, during the treatment,
increasing the possibility for response-based treatment
adaptation, thus, improving treatment outcomes.

DISCUSSION

As demonstrated in this work, combining the clinical biomarker
CA19-9 and delta-radiomics can increase their prognostic value
as compared to using either of them alone and increase the

TABLE 1 | Hazard ratio and the 95% confidence interval with p-values.

Variate HR (95% CI) Coefficient (P)

Sex 1.3 (0.48–3.4) 0.63

Age 1.7 (1.9–14) 0.31

Response 1.5 (0.67–1.53) 5.40E-05

Cluster tendency 1.1 (0.11–1.3) 0.001

Entropy 0.96 (0.22–1.7) 0.008

Coarseness 0.83 (0.4–1.3) 0.04

CA19-9 + Cluster tendency 0.78 (0.48–1.9) 0.001

CA19-9 + Entropy 0.77 (0.07–1.3) 0.005

CA19-9 + Coarseness 0.76 (0.15–0.79) 0.0007

3 DRFs 0.75 (0.1–1.1) 0.006

CA19-9 0.73 (0.12–0.8) 0.032

CA19-9 + 2 DRFs 0.68 (0.09–1.07) 0.001

CA19-9 + 3 DRFs 0.58 (0.14–1.16) 0.028

FIGURE 8 | Survival curve as a function of the normalized CA19-9 changes between the increasing and decreasing CA19-9 groups without (left) and with (right)

adding DRFs.
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confidence in the prediction. CA19-9 is a promising clinical
biomarker, however its use can be limited due to the false positive
rate caused by certain co-morbid conditions (7–10). Thus, it was
important to find another biomarker that confirms the change in
CA19-9 is a tumor related response, increasing the sensitivity of
CA19-9 and reducing its false positive rates.

Radiomics analysis has been associated with several clinical
end points, several researchers showed that it has a potential to
be developed into an imaging biomarker using different imaging
modalities. We showed earlier that CT based radiomics has a
potential in a variety of applications (11–19). Researchers also
showed that it has promise using MR images for instance,
Wibmer et al. (33) and Vignti et al. (34) showed the radiomics
features as potential imaging biomarkers in prostate cancer.
Diehn et al. (35) showed that image features extracted from
MRI can predict global gene expression patterns in patients with
glioblastoma multiforme. Gilles et al. (36) show the potential
of radiomics to enable better-biopsy informed decisions in
patients with prostate, bladder, and metastatic breast cancer.
However, challenges are associated with the use of radiomics
due to the restriction for using the data acquired with technical
(e.g., different scanners or different protocols) and patient (e.g.,
respirationmotion, stent artifacts) variations. Thus, it’s important
to account for any technical variations prior to feature extraction,
to assure the reproducibility and the repeatability (19). The
presence of apparent artifacts can affect the textures extracted and
hence, reduce the prognostic value of radiomic features. Thus,
caution needs to be used to avoid slices with apparent artifacts
before extracting the radiomic features. In this study, we limited
our analysis to the patients scanned on the same CT scanner and
imaging protocol and we used DRFs that were not prone to those
variations (19).

Usually CA19-9 comparisons are made retrospectively
between pre- and post-operative values to assess treatment
response. However, this does not allow treatment response
prediction during treatment and early intervention for online
adaptation. In this retrospective study, three DRFs were found
to be correlated to CA19-9 and to enhance its prognostic value
and hence, the usefulness of the clinical biomarker for treatment
response assessment. Even though we included the most possible
homogeneous data set in our analysis, non-tumor related changes
during treatment (i.e., inflammation or fibrosis) can elevate
CA19-9. DRFs, however, can rule out such changes. In this
study for outcome predictions we used the pathological treatment
response as our outcome and used DRFs that showed significant

differences during treatment and correlate to relative net change
of CA19-9 to test the improvement in outcome prediction
based on both. The correlation between the CA19-9 and DRFs
demonstrates the value of adding delta radiomics to the clinical
biomarker. Combining CA19-9 and DRFs leads to a lower hazard
ratio and earlier treatment response prediction as compared with
CA19-9 or DRF alone.

Given these initial promising results, a future prospective
study will be designed to collect CA19-9 on a weekly basis
with a daily collection focusing on the third and fourth week
of treatment. In this analysis, the number of patients with
additional CA19-9 were limited as most pancreatic cancer
patients only have pre and post-CA19-9 test results. Certainly,
these results need to be fully validated and thoroughly tested
with larger patient datasets. Future studies can also include
examining the effect of different chemo-agents in chemo-only
neoadjuvant treatments on treatment response as correlated to
the CA19-9 and DRFs extracted using multimodality images.
Precise oncologic profiling of the tumor using combination of
CA19-9 and DRFs can lead to an early prediction of treatment
outcome, allowing for treatment adaptation for patient specific
treatment. With these further studies, the combination of CA19-
9 and DRFs may be developed as invaluable tools for adaptive
radiation therapy.
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