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N6-methyladenosine (m6A) is the methylation of the adenosine at the nitrogen-6 position, which is the
most abundant RNA methylation modification and involves a series of important biological processes.
Accurate identification of m6A sites in genome-wide is invaluable for better understanding their biolog-
ical functions. In this work, an ensemble predictor named iRNA-m6A was established to identify m6A
sites in multiple tissues of human, mouse and rat based on the data from high-throughput sequencing
techniques. In the proposed predictor, RNA sequences were encoded by physical-chemical property
matrix, mono-nucleotide binary encoding and nucleotide chemical property. Subsequently, these fea-
tures were optimized by using minimum Redundancy Maximum Relevance (mRMR) feature selection
method. Based on the optimal feature subset, the best m6A classification models were trained by
Support Vector Machine (SVM) with 5-fold cross-validation test. Prediction results on independent data-
set showed that our proposed method could produce the excellent generalization ability. We also estab-
lished a user-friendly webserver called iRNA-m6A which can be freely accessible at http://lin-group.cn/
server/iRNA-m6A. This tool will provide more convenience to users for studying m6A modification in dif-
ferent tissues.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

RNA modification occurs in all living organisms, and is one of
the most evolutionarily conserved properties of RNAs [1]. It is crit-
ical post-transcriptional regulator for gene expression and can
affect the activity, localization as well as stability of RNAs. Studies
have demonstrated that RNA modification correlates with various
of diseases [2]. A recent noteworthy example is N6-
methyladenosine (m6A), which could affect the translation and
stability of the modified transcripts, thus providing a mechanism
to coordinate the regulation of groups of transcripts during cell
state maintenance and transition [3]. m6A refers to methylation
of the adenosine base at the nitrogen-6 position. It is dynamically
reversible and can be regulated in time and space by methyltrans-
ferases and demethylases. The distribution of m6A is nonrandom
and asymmetric in a way that majority of m6A sites are highly
enriched within CDS, 30 UTR, stop codon, and long introns [4],
and are also found in long non-coding RNAs [5].
m6A is one of the most common and abundant modifications on
RNA molecules present in eukaryotes [6]. It has been recognized as
the most prominent in its range of the regulation functions in
eukaryotic mRNA, leading to the significant efforts paid particu-
larly in recent years with invention and application of high-
throughput sequencing [7,8] as well as advances in modern molec-
ular and genetic technologies. Correct recognition of m6A sites
contributes to elucidate the biological functions of m6A and the
underlying mechanisms. However, the limitations including
expensive experimental materials and long experimental period
of high-throughput sequencing and wet experiments make it diffi-
cult to identify m6A sites at a whole-genome scale. Therefore, com-
putational tools are required to accurately identify m6A
modification sites and to help reduce the costs associated with
high-throughput sequencing.

Recent years, with the development of bioinformatics and the
accumulation of biological experimental data, some computational
predictors have been developed to recognize m6A sites in eukary-
otic organism [9–21]. More than 20 computational approaches
developed for identifying m6A sites based on sequences have been
summarized in recent review [22]. They introduced prediction
model construction in a variety of aspects, including benchmark
dataset construction, features employed and software availability
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and utility. Despite significant research efforts being devoted to the
development of computational methods for RNA-modification site
prediction, to our best of knowledge, few computational tools were
developed especially for predicting m6A in different tissues.

In view of the aforementioned descriptions, the present study is
devoted to developing a computational tool that can identify m6A
modification sites in various tissues of human, mouse and rat. We
firstly collected experimentally confirmed m6A sequences and
non-m6A sequences to build benchmark dataset based on the
experiment results by Zhang et al. [23]. Subsequently, three kinds
of sequence encoding features algorithms were proposed to formu-
late samples. mRMR was proposed to optimize these features.
Then, the obtained optimal features were inputted into the SVM
to discriminate m6A sequences from non-m6A sequences. The
independent datasets were performed to investigate the prediction
capability of the proposed method. Finally, on the basis of the pro-
posed method, we established an ensemble predictor called iRNA-
m6A. The flowchart of this work is shown in Fig. 1.
2. Materials and methods

2.1. Benchmark dataset

Constructing an objective and rigorous benchmark dataset is a
key step for establishing a reliable and robust model of m6A sites
prediction [24]. Zhang et al. [23] developed m6A-REF-seq protocol
to identify the modification sites in the different tissues of human
(brain, liver, and kidney), mouse (brain, liver, heart, testis, and kid-
ney) and rat (brain, liver, and kidney). This method is an antibody-
independent, high-throughput, and single-base detection method
based on m6A sensitive RNA endoribonuclease, which provides a
new perspective for single-based m6A identification at the tran-
scriptome level. Due to the high quality of these data, the bench-
mark dataset was also constructed on such data and download
form the paper of Zhang et al. [23]. To further improve the quality
of the data, we only selected the fragment that the length of the
segment is 41 nt with the m6A site in the center as positive sam-
ples. To avoid redundancy and reduce homology bias, positive
samples with more than 80% sequence similarity were removed
using the CD-HIT program [25,26].

The negative samples (non-m6A sites) for the above mentioned
tissues in three genomes were collected by satisfying the require-
ment that the 41 nt long sequences with Adenine in the center. At
the same time, these samples were not proved to be methylated by
experiments. By doing so, large number of negative samples were
obtained. If a model is established on an unbalanced benchmark
dataset, its performance will bias [27]. Thus, we randomly
Fig. 1. Overall framew
extracted negative samples with the same number of positive sam-
ples in each of the tissues.

To objectively evaluate the proposed models, we separated the
dataset into two parts: one is used to train the model, another is
independent dataset for examining the performance of the pro-
posed models. Details about these benchmark datasets were
shown in Table 1.

2.2. Sample formulation

Most of machine learning methods can only handle the data
with same vector [28–32], thus, we applied diverse feature extrac-
tion algorithms to encode the RNAm6A site sequences describes as
follows.

2.2.1. Physical-chemical property matrix
The first feature extraction algorithm applied in this paper is

physical-chemical property matrix which used physicochemical
properties of dinucleotides to characterize RNA sequences [33–
35]. Suppose the length of an RNA sequence is L nt as following
formula:

D ¼ R1R2R3 � � �RL ð1Þ
There are 4�4 = 16 different dimers in an RNA sequence. Each

dimer in a RNA sequence has different physical-chemical (pc) prop-
erties. In the study, we considered six pc properties [36]: (1) pc1:
rise; (2) pc2: roll; (3) pc3: shift; (4) pc4: slide; (5) pc5: tilt; (6) pc6:
twist, which can be obtained from http://lin-group.cn/server/
iRNA-m6A/download. Finally, a RNA sequence sample can be
transformed into PC matrix as following.

PC ¼

pc1 R1R2ð Þ pc1 R1R2ð Þ � � � pc1ðRL�1RLÞ
pc2 R1R2ð Þ pc2 R2R3ð Þ � � � pc2ðRL�1RLÞ

..

.

pc6 R1R2ð Þ pc6 R2R3ð Þ � � � pc6ðRL�1RLÞ

2
66664

3
77775 ð2Þ

Based on Eq. (2), auto-covariance (AC) and cross-covariance
(CC) [37] were used to transform the matrix to a length-fixed fea-
ture vector.

According to the concept of AC, the k value was defined as the
number of dinucleotides to separate two subsequences for the
same pc property, which can be expressed as:

AC m; kð Þ ¼
PL�k

j¼1 ½pcm RjRjþ1
� �� PCm�½pcm RjþkRjþkþ1

� �� pcm�
L� k

ð3Þ

where m is the number of pc property including 1, 2, . . ., 6. k is an
integer between 0 and L � 1. pcm is the mean of the data along
the mth row in the matrix of Eq. (3), as given by
ork of iRNA-m6A.
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Table 1
The benchmark datasets for predicting RNA m6A sites.

Species Tissues Positive Negative
Training Testing Training Testing

Human Brain 4605 4604 4605 4604
Liver 2634 2634 2634 2634
Kidney 4574 4573 4574 4573

Mouse Brain 8025 8025 8025 8025
Liver 4133 4133 4133 4133
Kidney 3953 3952 3953 3952
Heart 2201 2200 2201 2200
Testis 4704 4706 4707 4706

Rat Brain 2352 2351 2352 2351
Liver 1762 1762 1762 1762
Kidney 3433 3432 3433 3432
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pcm ¼
PL

j¼1pc
mðRjRjþ1Þ
L

ð4Þ

As we can see from Eq. (3), by means of the auto-covariance
approach, we can generate 6�k components associated with the
physical-chemical properties of an RNA sample in Eq. (1).

According to the concept of CC, the correlation between two
subsequences each belonging to a different PC property can be for-
mulated by

CC l1;l2; k
� � ¼

PL�k
j¼1 ½pcl1 RjRjþ1

� �� pcl1 �½pcl2 RjþkRjþkþ1
� �� pcl2 �

L� k
ð5Þ

where l1 = 1, 2. . ., 6; l2=1, 2. . ., 6 and l1 – l2. So that there are
6�5�k components associated with the physical-chemical proper-
ties of an RNA sample in Eq. (1).

According to the formulas of auto-covariance and cross-
covariance, a RNA sequence sample can generate a vector of
(6�k + 6�5�k) = 36�k dimension.
2.2.2. Mono-nucleotide binary encoding
The second feature extraction technique is to transfer nucleo-

tide to a string of characters which is consisted by 0 and 1 formu-
lated as:

A ¼ 1;0;0;0ð Þ
C ¼ 0;1;0;0ð Þ
G ¼ 0;0;1;0ð Þ
U ¼ 0;0;0;1ð Þ

8>>><
>>>:

ð6Þ

For example, the RNA sequence ‘GGAUUCGA’ can be expressed
as [00100010 . . . .. . .1000]T. Therefore, a RNA sample of 41 nt in
length is converted into a 164 (4�41) dimension vector in this
study.
2.2.3. Nucleotide chemical property
The third feature description strategy used three coordinates (x,

y, z) to represent the chemical properties of the four nucleotides,
and the value of 0 and 1 was assigned to the three coordinates
[38]. The x coordinate stands for the ring structure, y for the hydro-
gen bond, and z for the chemical functionality, a nucleotide in RNA
sequence can be encoded by xi; yi; zið Þ, where

xi ¼
1 when Ri 2 A;Gf g
0 when Ri 2 C;Uf g

�
; yi ¼

1 when Ri 2 A;Uf g
0 when Ri 2 C;Gf g

�
;

zi ¼
1 when Ri 2 A;Cf g
0 when Ri 2 G;Uf g

� ð7Þ

Therefore, A, C, G and U can be represented by the coordinates
(1, 1, 1), (0, 0, 1), (1, 0, 0) and (0, 1, 0), respectively. Furthermore,
the density di of nucleotide Ri for extracting nucleotide composi-
tion surrounding the modification sites was defined as

di ¼ 1
Nij j

XL

i¼1

f Rið Þ; f Rið Þ ¼ 1 when Ri 2 A;C;G;Uf g
0 when Ri is other cases

�
ð8Þ

where L is the sequence length, |Ni| is the length of the ith prefix
string R1;R2; � � � ;Rif g in the sequence.

From what has been discussed above, each nucleotide was pre-
sented by chemical properties and nucleotide frequency, which
was converted into a 4-dimensional vector. Accordingly, a RNA
sample of L nt long will be encoded by a (4�L) dimensional vector.

2.3. Model training

Support vector machines (SVM) is a binary classification model
and a supervised machine learning method based on statistical
learning theory [39–43], which is widely employed in the recent
bioinformatics researches [44–52]. The basic principle of SVM is
to transform the input vector into a high-dimension Hilbert space
and find a separating hyperplane to separate samples of different
categories. SVM has rigorous mathematical theories, which makes
it show the incomparable superiority of other algorithms in solving
small sample and high-dimensional data problems [53–59].

In this study, the implementation of the SVM was conducted by
the open source software library LIBSVM developed by Lin [60],
which can be downloaded from the website (www.csie.ntu.edu.
tw/~cjlin/libsvm). We chose the radial basis kernel function (RBF)
to obtain the classification hyperplane, and used the grid search
method to optimize the regularization parameter c and kernel
parameter g based on 5-fold cross-validation test.

2.4. Feature selection technique

High dimension vector may lead to the large calculation, over-
fitting and low robust of proposed model [61,62]. Consequently,
feature selection is an indispensable step to exclude noise and
improve computational efficiency of the proposed models
[63–65]. We applied mRMR algorithm to acquire optimal feature
subset. The mRMR is performed easily and efficiently as well as
could achieve robust model. It is a filter-based feature selection
method proposed by Peng et al. [66]. The probability density func-
tions are defined as p(x) and p(y) for corresponding two random
variables x and y, and p (x, y) is the joint probability density. The
mutual information between them can be defined as

I x; yð Þ ¼
ZZ

pðx; yÞlog pðx; yÞ
pðxÞpðyÞdxdy ð9Þ

According to mutual information, finding a feature subset S
with m optimal features xif g is the purpose of feature screening
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that has the largest dependency on the target class c. The maxi-
mum relevance has the following form:

max D S; cð Þ; D ¼ 1
sj j

X
xi2S

I xi; cð Þ ði ¼ 1; � � � ;mÞ ð10Þ

The minimum redundancy is defined as:

min R S; cð Þ; R ¼ 1

sj j2
X
xi ;xj2S

Iðxi; xjÞ ð11Þ

The final selection criteria are formulated as:

max£ D;Rð Þ;£ ¼ D� R ð12Þ
It can be seen the essence of mRMR is to use a standard

(relevance-redundancy) to rank features to obtain the purest fea-
ture subset.

2.5. Evaluation metrics

The following indexes [67–70]: sensitivity (Sn), specificity (Sp),
overall accuracy (Acc), and Matthews correlation coefficient (MCC)
[71–73] were used to objectively evaluate the performance of pro-
posed models defined as Eq. (13).

Sn ¼ TP
TPþFN 0 � Sn � 1

Sp ¼ TN
TNþFP 0 � Sp � 1

Acc ¼ TPþTN
TPþTNþFPþFN 0 � Acc � 1

MCC ¼ TP�TN�FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFNÞ�ðTNþFNÞ�ðTPþFPÞ�ðTNþFPÞ

p �1 � MCC � 1

8>>>>><
>>>>>:

ð13Þ

In addition, the AUC (area under the receiver operating charac-
teristic curve) was also calculated to objectively evaluate the pro-
posed model [74]. The AUC ranges from 0 to 1. A model with a
higher AUC indicates a better performance.

Cross-validation test is a statistical analysis method for assess-
ing a classifier [75–85]. The basic idea of cross-validation is that
the dataset is divided into several data subsets, in which one is
used as testing set and the remained subsets as training set. Using
training set to train classifier and testing set is used to test the
Fig. 2. The nucleotide distribution surr
obtained model. This process is repeated utile all data subset was
selected as testing set. In this study, to save computational time
and source, we used 5-fold cross-validation to examine the antici-
pated success rates of the predictor on training data. Once the
model was established, the independent data was used to evaluate
the performance of the model.
3. Results and discussion

3.1. Sequence composition analysis

The potential oligonucleotide distribution patterns of sequences
around modification site is an effective step to understand why the
site is modified and reveal the biological functions of modifications
[86]. In this work, the tool Two Sample Logos [87] (http://www.
twosamplelogo.org/cgi-bin/tsl/tsl.cgi) was used to investigate the
nucleotide distribution surrounding m6A sites. Fig. 2 was plotted
to show the statistical difference of nucleotide occurrence between
positive and negative samples by Two Sample Logos for different
tissues of three species. In each figure, the top panel of the x axis
is for m6A site-containing sequences, whereas the bottom panel
of the x axis is for non-m6A site-containing sequences. As shown
in Fig. 2, the m6A sequences are significantly different (t test, p
value < 0.05) from non-m6A samples in terms of nucleotide distri-
bution. In addition, the flanking sequences of m6A among three
species of different tissues all reveal some bias toward GC-rich ele-
ments but the flanking of non-m6A are AU-rich regions. Thus, it is
reasonable to extract the information of the sequences to construct
m6A classification model.
3.2. Classification models building

According to the data and features described in the materials
and methods, we built models for m6A identification following
three steps:

First, determining the optimal parameter of k in physical-
chemical property matrix. For each dataset, we calculated and
compared the results by changing k from 1 to 5 by using SVM in
ounding m6A and non-m6A sites.

http://www.twosamplelogo.org/cgi-bin/tsl/tsl.cgi
http://www.twosamplelogo.org/cgi-bin/tsl/tsl.cgi


Table 2
The performance of models before and after feature selection.

Species Tissues lambda mRMR Dimension Acc (%) Sn(%) Sp (%) MCC AUC

Human Brain 2 No 400 70.97 73.81 67.56 0.41 0.7789
Yes 206 71.26 74.79 66.19 0.41 0.7756

Liver 3 No 436 79.42 79.65 78.63 0.58 0.8683
Yes 126 80.13 81.32 78.13 0.59 0.8738

Kidney 2 No 400 78.50 80.72 76.83 0.58 0.8658
Yes 92 78.99 80.85 76.34 0.57 0.8634

Mouse Brain 2 No 400 78.13 79.81 76.45 0.56 0.8612
Yes 129 78.75 79.32 76.90 0.58 0.8701

Liver 2 No 400 70.26 75.39 65.81 0.41 0.7781
Yes 86 70.59 74.93 65.59 0.41 0.7743

Kidney 2 No 400 79.70 81.18 77.84 0.59 0.8777
Yes 184 79.98 82.60 77.31 0.60 0.8726

Heart 2 No 400 72.19 73.78 69.15 0.43 0.7896
Yes 88 72.76 75.24 68.97 0.44 0.7948

Testis 4 No 472 74.05 77.42 70.43 0.48 0.8190
Yes 97 74.40 78.14 70.02 0.48 0.8156

Rat Brain 2 No 400 75.06 76.06 72.79 0.49 0.8245
Yes 72 75.96 77.00 73.47 0.50 0.8282

Liver 3 No 436 80.05 82.92 77.30 0.60 0.8758
Yes 109 80.90 83.09 76.33 0.60 0.8766

Kidney 4 No 472 81.11 82.70 79.03 0.62 0.8839
Yes 124 81.78 82.46 80.05 0.63 0.8877

Fig. 3. The ROC curves for optimal feature subsets of 11 final models.
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5-fold cross-validation test. Then, the best k value can be
determined.

Second, building classification models based on the fusion fea-
tures descripted by three feature extraction methods [88,89]. We
fused these features extracted by physical-chemical property
matrix, mono-nucleotide binary encoding and nucleotide chemical
property. And 11 classification models were constructed by using
SVM in 5-fold cross-validation test. We noticed that the prediction
accuracies of these models are almost concentrated in the range of
70% to 80%, and the values of AUC are between 0.75 and 0.90. Con-
sequently, we looked forward to further improving the perfor-
mance of models through feature selection.

Third, selecting the best features by using mRMR. We used
mRMR algorithm to calculate the contribution value of each fea-
ture, and ranked the features according to the contribution values
from large to small. Based on the incremental feature selection
(IFS) strategy, we could obtain the optimal feature subsets for dif-
ferent tissues which could produce the maximum accuracies. The
performance metrics of the final models obtained after the feature
screening were exhibited in Table 2 and corresponding ROC curves
were plotted in Fig. 3. Compared with original results, the predic-
tion performances were not significantly improved for the most of
new models. However, the dimension of the optimal feature sub-
sets has been greatly reduced to reach the goal of eliminating the
redundant features and reducing calculation time. Therefore, the
11 final prediction models were constructed after feature selecting
by mRMR.

3.3. Performance evaluation on independent dataset

To further investigate the robustness and stability of the pro-
posed model, we established the independent datasets for each tis-
sue as shown in Table 1. If the proposed model is suitable for the
independent dataset, there is the minimal over fitting occurs. The
examined results on 11 independent datasets generated by above
models were listed in Table 3. We observed that the accuracies
on independent datasets are similar to the results on training set
by synthesizing all the evaluation metrics, indicating that our clas-
sification models are capable enough to identify the m6A sites for
an unknown sequence.

3.4. Cross-species/tissues validation

In the study, we collected 11 benchmark datasets of different
tissues from three species. It is necessary to demonstrate whether
a model trained with the data from one tissue could recognize the
m6A sites in other tissues. Therefore, we applied the knowledge of
transfer information [90] to study the relationships of interacting
tissues and designed following experiment. The 11 tissues-
specific models were first constructed by training datasets from
11 different tissues, respectively. Subsequently, for each model,
the 11 tissues’ training datasets were regarded as independent
testing datasets to evaluate the performance of the models. A heat
map was drawn in Fig. 4 to describe the prediction performance of
cross-species/tissues validation based on the AUC values. The mod-
els in rows were tested on the other datasets in columns. For the
convenience to observe, the different tissues of same species were
marked by black box dashed.

Overall, there is a well-conserved distribution of m6A at the
sequence level in mammals as all calculated AUC values were
greater than 0.7 in the heat map. Especially, the datasets of human
(liver and kidney), mouse (brain and kidney) and rat (brain, liver
and kidney) have obtained superior results (AUCs > 0.8) in almost



Table 3
The generalization performance of our model on independent dataset.

Species Tissues Acc (%) Sn (%) Sp (%) MCC AUC

Human Brain 71.1 69.50 72.98 0.42 0.7845
Liver 79.01 78.19 79.87 0.58 0.8681
Kidney 77.76 77.13 78.42 0.56 0.8565

Mouse Brain 78.26 77.20 79.41 0.57 0.8613
Liver 68.79 67.82 69.86 0.38 0.762
Kidney 79.31 78.37 80.32 0.59 0.8697
Heart 71.3 70.52 72.13 0.43 0.7878
Testis 73.54 72.19 75.08 0.47 0.8182

Rat Brain 75.14 73.93 76.48 0.50 0.8265
Liver 79.85 77.74 82.31 0.60 0.8761
Kidney 81.42 80.18 82.77 0.63 0.8968

Fig. 4. The heat map showing the values of AUC in cross-tissues prediction. Once a
tissues-specific model was established on its own training dataset in rows, it was
validated on the data from the same tissue as well as the independent data from the
other datasets in columns.
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all models, which indicated the sequences of tissues in these spe-
cies can be identified potential m6A sites in any models. However,
when the 11 models were tested by using the human (brain),
mouse (liver, heart and testis) as independent datasets, most of
the AUC values produced were below 0.8. These results may be
due to the differences of orthologous genes modified by m6A in
different tissues of the three species [23].
3.5. Compared with published method

It is necessary to compare our proposed method with other
published methods to highlight the superiority of the pipeline in
this study. Considering the computing resources, the human and
mouse benchmark datasets from iRNA-3typeA [21] are more suit-
able. According to the workflow in Fig. 1, the fusion features
descripted by three feature extraction methods were obtained at
Table 4
Comparative results for identifying m6A on published database.

Species Methods Acc (%) Sn (%) Sp (%) MCC

Human iRNA-3typeA 90.38 81.68 99.11 0.82
iRNA-m6A 97.12 94.34 99.91 0.94

Mouse iRNA-3typeA 88.39 77.79 100.00 0.80
iRNA-m6A 89.17 78.34 100.00 0.80
first. Secondly, the best features set was selected by using mRMR.
Third, the m6A classification models were built by SVM. Finally, we
compared the results produced by iRNA-m6A with them obtained
by iRNA-3typeA by jackknife test based on same benchmark data-
sets. Table 4 showed the comparison. It is obvious that iRNA-m6A
is superior than iRNA-3typeA for identifying m6A. Therefore, the
pipeline of this paper was further validated to be effective.
3.6. Web-server

Based on the 11 benchmark datasets showed in Table 1, a pre-
dictor called iRNA-m6A was established. The step-by-step guide on
the web-server is provided as follows:

Step 1. Open the web-server at http://lin-group.cn/server/iRNA-
m6A/service.html and you will see the webserver page. Click on
the ‘‘Home” button to see a brief introduction about the server.
Step 2. Select ‘‘Species” and corresponding ‘‘tissues” from the
drop-down menu, input the query RNA sequences into the
input box or directly upload the FASTA format file. Note that
the length of each sequence should be greater than 41nt long.
Step 3. Click the ‘‘Submit” button, the predicted results (Yes/No)
will appear at a new page.

4. Conclusion

Because of the crucial roles of m6A in many biological processes
[1–4,6], consequently, accurate identification of m6A sites in gen-
ome is essential for fundamentally revealing its regulatory mecha-
nism and providing key clues for drug development as well [91].
The efficient and reliable computational methods can obtain
high-precision prediction results and guide for wet-experimental
scholars. In the present work, a new predictor, called iRNA-m6A,
was developed to identify m6A sites in various tissues of different
species, which included 11 m6A classification models based on
SVM in 5-fold cross-validation test. Moreover, the results of inde-
pendent dataset test demonstrated these proposed models were
robust and reliable. Finally, we developed a webserver at http://
lin-group.cn/server/iRNA-m6A, where users can submit RNA
sequences in FASTA format and we can provide the potential
m6A sites within the submitted RNA sequences. We anticipate
the computational m6A identification platform will be useful for
facilitating to reveal the functional mechanisms of m6A sites.
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