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Active particles with desired 
orientation flowing through a 
bottleneck
Daniel R. Parisi   1, Raúl Cruz Hidalgo2 & Iker Zuriguel2

We report extensive numerical simulations of the flow of anisotropic self-propelled particles through a 
constriction. In particular, we explore the role of the particles’ desired orientation with respect to the 
moving direction on the system flowability. We observe that when particles propel along the direction 
of their long axis (longitudinal orientation) the flow-rate notably reduces compared with the case of 
propulsion along the short axis (transversal orientation). And this is so even when the effective section 
(measured as the number of particles that are necessary to span the whole outlet) is larger for the case 
of longitudinal propulsion. This counterintuitive result is explained in terms of the formation of clogging 
structures at the outlet, which are revealed to have higher stability when the particles align along the 
long axis. This generic result might be applied to many different systems flowing through bottlenecks 
such as microbial populations or different kind of cells. Indeed, it has already a straightforward 
connection with recent results of pedestrian (which self-propel transversally oriented) and mice or 
sheep (which self-propel longitudinally oriented).

In some circumstances, the flow of an ensemble of discrete macroscopic particles through a constriction might 
display intermittencies. These have been generically characterized by an exponential tail of the flowing intervals 
distribution and a broad tail (some times a power law) of the clogging times distributions1. Such statistical features 
agree with a description of the intermittent flow in which the probability of blockage formation is constant over 
time, whereas the probability of getting the block destroyed depends on time. Interestingly, this behavior seems 
to hold for systems built of different constituents (such as colloids2–4, droplets5, granular6–10, vibration-driven 
vehicles11, animals12,13 and pedestrians14) as well as for different confining geometries (bottlenecks and obstacle 
arrays or porous materials15,16).

Curiously, the broad tails in the clogging times distributions are not easily reproduced by means of molecular 
dynamics simulations of discs or spheres, which have evidenced suspicious features such as the apparition of 
cut-offs17 or the necessity of simulating (unphysical) exceedingly long times1. Recently, we postulated that intro-
ducing an anisotropy in the particles’ shape gave immediately rise to the emergence of robust power law decays 
of the clogging time distributions18. Indeed, the shape of particles has been demonstrated to have a strong impact 
on the flow19–23 and clogging patterns of inert grains when discharged from a silo24,25. Also, particle elongation 
has evidenced to cause the emergence of new features for the case of active particles26,27 (see28 for a review on this 
field).

Surprisingly, the number of works where the effect of particle shape is studied for active particles passing 
through a constriction is scarce. Some of these simulations are within the field of pedestrian dynamics29–31 but, 
for different reasons, contacts among the particles were not implemented; therefore the shape role is expected to 
be less determinant than in a highly packed situation where particles align each other determining the system 
response. The only exception to this trend is the work of Alonso-Marroquín et al.32 who introduced a novel 
two dimensional section of a human body to simulate counter flow of dense crowds through narrow corridors. 
Inspired by this paper, we recently simulated the egress of pedestrians by using spherocylinders that aim to propel 
transversally; i.e. with their longer axis perpendicular to the trajectory18. Beyond the undeniable role of the parti-
cle shape, both the strength of the torque inducing the desired orientation of the individuals and the magnitude of 
the noise imposed to erase the blocks at the outlet, were proved to strongly influence the flow rate.
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In this manuscript we generalize the results of that previous work and enlarge its scope beyond the field of 
pedestrian dynamics. To this end, we investigate the role of active desired orientation in the flow of particles 
through bottlenecks, an issue that -to our knowledge- has been never addressed in the field of active matter. This 
analysis allows us to discover that the flow dramatically drops when the anisotropic particles propel with the long 
axis in the displacement direction and suggests that, in order to minimize clogging at confined geometries, a suit-
able design of artificial active particles might involve self-propulsion without any preferred orientation.

The Model
The contact force model that allows to simulate highly packed ensembles of spherocylinders was already pre-
sented in18. Therefore, we will only describe here its main characteristics.

For particle i, the equations of motion for the translation of the center of mass and the rotation around it are 
given by Eqs 1 and 2 respectively,
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tion. In both equations, the first term of the right hand side accounts for the self-propulsion (or energy input 
provided by the own particle), and the second term for the contact interactions given by walls and neighboring 
particles.

The contact forces 
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FGi acting on the center of mass of a given particle can be written as
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tacting neighbors j on i. These contact forces also produce a torque on the particle i that is given by
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where rij
→ is a vector pointing from the center of particle i to the contact point with particle j. More details about 

the numerical implementation of contacts among two spherocylinders can be found in18.
Focusing now on the self-propulsion terms of Eqs 1 and 2, 

→
FDi is the translation-driving force given by:
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where vi
→ and vd

→ = vdei are the actual and desired particle velocities respectively. The normalized vector ei points 
to the desired target; i.e. towards the exit. Finally, λ = 0.5 s is the characteristic time that a free particle (with no 
contacts) would need to achieve vd.

Implementing anisotropic particles provides the opportunity of introducing a desired torque, τDi, which 
accounts for the strength with which particles aim to align in a certain orientation. In our case, we define it as:

S t z[ ( )] , (6)Di Dτ θ βθ→ = − Δ − + ˆR

This desired torque has a linear part proportional to Δθ ∈ [−π, π], the angular difference between the particle 
orientation and the desired one (Fig. 1). The parameter SD that multiplies Δθ can be seen as the angular strength. 
The desired torque also contains a damping force, which is S4 5 Dβ = .  times the angular velocity θ, guaranteeing 
over-damped conditions. Finally, a sinusoidal noise R t( ) is introduced to mimic the extra torque exerted by par-
ticles whenever trying to escape from a jammed situation. Inspired by the pedestrian case18, this noise was given 
the form R η ω φ= +t sin t( ) ( )i  and is characterized by the period = = .π

ω
T 1 0 s2  and the amplitude 

η = 0.75 mgL; where g = 10 m/s2 and m and L are the largest particles’ mass and long axis, respectively.
A central concept of the present model is to define the particle orientation with respect to the moving direc-

tion, which is different for each type of particle investigated. We define it with a unitary vector ne (dark arrows in 
Fig. 1A–C) that takes the following values: (1) in transversal orientation, ne is perpendicular to the particle’s long 
axis and has a predefined sense (from the particle center to the grey side in Fig. 1A); (2) in longitudinal (asymmet-
ric) orientation, ne is aligned to the particle’s long axis and has a predefined sense (from the particle center to the 
grey side in Fig. 1B); and (3) in longitudinal-symmetric orientation, ne is aligned to the particle’s long axis and has 
not a predefined sense (Fig. 1C); in this case, as the ‘head’ of the particle is (by definition) the end closer to the 
exit, Δθ ∈ [−π/2, π/2]. Finally, a special case of no desired orientation is considered, i.e. SD = 0.

Considering the definition of particle orientation introduced above, the desired orientation of each particle 
coincides with the direction of the target (red-ligth arrows in Fig. 1A–D); i.e. particles aim to get ne aligned with 
ei. Incidentally, note that longitudinal (asymmetric) propulsion is analogous to the propulsion of sheep12 or janus 
rods28, and transversal propulsion corresponds to the case of humans.
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In our simulations, the translational (Eq. 1) and rotational (Eq. 2) equations of motion of each particle 
were integrated using velocity Verlet and leap-frog algorithms, respectively. In particular, we adopted a hybrid 
CPU-GPU discrete element algorithm which benefits from the highly parallel structure of the NVIDA graphics 
processing units (GPUs). The algorithm has already been successfully used in the simulation of non-circular 
pedestrians18 and inert grains with different shapes33–35.

Simulated Scenarios
The geometrical configuration of the system is the same than in18: a square domain of 8 × 8 m with a door of width 
W at the center of one of the sides. In all simulations 192 spherocylinders are implemented having the long axis 
dl distributed in the range [0.35–0.5 m] and the short axis ds in [0.24–0.33 m]. The simulated particles have an 
average mass of 67 kg with a normal distribution truncated at [45–114 kg]. All these parameters correspond to the 
real pedestrian experiments reported in14 but similar behavior is expected for other particle sizes as soon as the 
exit/particle size ratios are kept around the same values.

Initially, the self-propelled particles are homogeneously distributed within the enclosure at the vertices of a 
12 × 16 square lattice (16 particles arranged in the direction perpendicular to the door) and randomly oriented. 
Then, they begin moving towards the exit, in such a way that the direction of the desired velocity ei points to the 
closest point over a segment aligned with the door (and 20 cm shorter) as can be seen in Fig. 1A–D. In order to 
avoid transient effects36 related to the system’s initial state and guarantee stationary conditions we have imple-
mented periodic boundary conditions18. In Fig. 1E–H we illustrate snapshots of typical configurations corre-
sponding to the three kind of agents simulated and the case of no preferred orientation (SD = 0). The simulations 
were run for Tend = 2000 s for each set of parameters. During this time, the number of circulating particles range 
from ~1500 to ~7500, depending on the conditions.

The parameters studied were the particle orientation (3 different options), door width W, desired velocity vd, 
and the angular strength SD. Based on our previous knowledge, the three parameters took values of: W = {0.6, 0.7, 
0.8, 0.9, 1} m; vd = {0.5, 1, 1.5, 2, 2.5, 3} m/s; and SD = {0, 2, 5, 10, 15, 20} Nm.

Results
Flow rates.  We start by presenting the number of particles that flow out of the enclosure versus time, when 
the different types of particle orientation are implemented keeping constant the rest of parameters (Fig. 2). 
Clearly, the best scenario possible is when particles propel without any preferred orientation. We also observe 

Figure 1.  Sketches of the different type of particles’s orientation implemented in this work (A–D) and pictures of the 
emerging collective configurations (E–H). The direction of the desired velocity is characterized by a unitary vector ei 
(red arrows in A) that points to the closest point over a segment 20 cm shorter than the door (dark dashed lines in A–
D). The orientations at which each particle aims to move are defined by an unitary vector (ne) shown as a dark arrow. 
As the desired orientation of the particles coincides with the direction of ei, all particles with preferred orientation 
(A–C) apply a torque that is proportional to the difference among these two unitary vectors, Δθ.
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that the flow for transversal propulsion is considerably higher than for the longitudinal cases (which are similar 
each other). This result is rather surprising as the number of particles that are necessary to span the whole outlet 
is notably smaller if they propel transversally than when propel longitudinally (around 1.65 against 2.46). In what 
follows, we will show that this counter-intuitive behavior is robust and happens for all the directional strengths, 
desired velocities, and outlet sizes.

To this end, we look at the global specific flow rate (Qs) during the whole simulation run which can be computed 
as Qs

N N
T T W( )

tot

end

150

150
= −

− ×
, where Ntot is the total number of pedestrians that cross the door in the time up to Tend = 2000s 

and the sub-index 150 indicates that we discard the first 150 outgoing particles to avoid the initial transient18.
Figure 3A displays the global specific flow rate for W = 0.7 m and SD = 15 Nm versus the desired velocity for 

the three kind of orientations analyzed. In all cases, the transversal orientation gives rise to the higher flow rates 
whereas the two longitudinal orientations (symmetric and asymmetric) lead to similar outcomes. This confirms 
that, despite transversal orientation implies a larger cross section of the particle’s size with respect to the exit, the 
flow rate is notably larger. Apart from this, we should also stress that the faster-is-slower effect37,38 is present in all 
cases, hence demonstrating that this effect is robust and does not depend on the orientation at which particles 
propel. Finally, note the significant flow rate fluctuations obtained for desired velocities .v 1 5 m/sd   in the case 
of longitudinally propelled particles. The origin of this is the development of very long clogs which strongly deter-
mine the global flow rate. Indeed, for several systems of frictional particles flowing through bottlenecks, it was 
already reported that the distributions of clog duration (tc) follow a power-law1. For the cases indicated in Fig. 3A 
we calculated the power-law exponents using the method proposed by Clauset et al.39 which are shown in Table 1. 
Values of 2α   imply that the flow rates obtained depend on the duration of the observation window, approach-
ing zero for very long observation times.

In Fig. 2B we show the average specific flow rates for W = 0.7 m and vd = 1 m/s versus the directional strength. 
Again, the transversal orientation reveals higher flow rates than the two longitudinal ones. The later are very 
similar, hence confirming that the preference of sense has little effect on the flow rate. In addition, we observe that 
in all cases the flow rate reduces monotonously with SD. This means that the case with no preferred orientation 
(SD = 0) is the one where the flow rate through bottlenecks is maximized. Importantly, these results contradict the 
idea suggested in18 where the reduction of flow rate when increasing SD in pedestrian like particles (transversally 
propelled) was attributed to the increase of the cross section in the direction parallel to the outlet. And this is so 
because the flow rate also reduces when increasing SD in longitudinally oriented particles, which reduce the effec-
tive cross section as they become more aligned.

Finally, we report the outcomes of the flow rate when varying the exit size and keeping the rest of the param-
eters constant (Fig. 3C). Once more, the flow rate attained when the particles tend to propel transversally is the 
highest; definitively proving the robustness and generality of this behavior. Moreover, Fig. 3C reveals a weak 
difference in the flow rates reached by both longitudinally propelling particles: the symmetric ones, which have 
no preference of sense, shows up lower flow rates, at least for the largest exit sizes.

Up to now, we have reported several features of the influence of particle orientation with respect to moving 
direction on the flow rate through bottlenecks that can be summarized as:

•	 Particles with transversal orientation give rise to higher flow rates than longitudinal ones, despite the higher 
cross section of the former with respect to the exit direction.

•	 Particles that move with no preferred orientation reveal the highest flow rates.
•	 For large exits, longitudinally propelled particles evidence slightly higher flow rates when they have a prede-

fined sense of movement.

Figure 2.  Number of particles that have left the room versus time for W = 0.7 m, vd = 2.0 m/s, SD = 15 Nm and 
three different preferred orientations as indicated in the legend. Also, the special case of SD = 0 (no preferred 
orientation) is displayed for comparison.
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In what follows we will justify all these features based on a very simple idea: the flow is highly conditioned by 
the formation of clogs at the outlet. Therefore, the stability of clogging configurations against the perturbations 
that might destroy them (which come mainly from the noise in the desired torque) is crucial in determining the 
flow rate. And, clearly, the particles orientation in the ensembles that are clogged must play a role in their stability.

Desired vs. achieved orientation.  First of all, we present a general overview of the particles orientation in 
the room displaying the more probable alignment for each kind of agent in a grid of 50 × 50 cm2 (Fig. 4).

The outcomes confirm what one can expect from the prescription given in the model sketched in Fig. 1: lon-
gitudinally propelled particles align with their long axis pointing the exit, transversally propelled ones align per-
pendicularly to the exit direction, and particles without preferred orientation seem to be randomly oriented 
within the room. Having said that, it is remarkable that the deviation of the particle’s alignment with respect to 
the desired alignment (difference between blue and red vectors) seems slightly stronger for the case of transversal 
orientation than longitudinal. This effect can be explained considering that in a system of anisotropic particles 
with velocity gradients (as it is the bottleneck flow) shear forces lead to the emergence of torques that align 
particles with their long axis in the flow direction; i.e. in a way similar to the longitudinal case. This feature was 
already observed when studying the flow of elongated inert particles out of a silo under the action of gravity22–25. 
Therefore, for longitudinal orientation the torque resulting from shear forces acts on the same direction than the 

Figure 3.  (A) Global flow rate versus desired velocity for W = 0.7 m, SD = 15 Nm and three different 
orientations as indicated in the legend. The inset shows the survival function for the longitudinal case and 
four desired velocities (the two lowest and the two largest). (B) Global flow rate versus rotational strength for 
W = 0.7 m, vd = 1 m/s and three different orientations as indicated in the legend. (C) Global flow rate versus 
door size for vd = 1 m/s, SD = 15 Nm and three different orientations as indicated in the legend.

α exponents vd = 0.5 m/s vd = 1.0 m/s vd = 1.5 m/s vd = 2.0 m/s vd = 2.5 m/s vd = 3.0 m/s

longitudinal 4.24 ± 0.26 2.81 ± 0.15 2.27 ± 0.04 2.06 ± 0.04 1.95 ± 0.09 1.89 ± 0.05

long. symmetric 3.99 ± 0.16 2.76 ± 0.09 2.22 ± 0.07 2.07 ± 0.04 1.98 ± 0.04 1.94 ± 0.08

Table 1.  Power-law exponents (α) for the the longitudinal propelled cases shown in Fig. 3A.

A B C D

Figure 4.  The most probable alignment of the particles analysed over a squared grid of 50 × 50 cm2. Black lines 
represent the most probable alignment of particles’ long axis, and blue arrows the corresponding definition of 
orientations (ne). (A) Transversal; (B) longitudinal; (C) longitudinal symmetric; and (D) no preferred 
orientation. For reference, red arrows indicate the exit direction ei which for cases (A–C) coincides with the 
particles’ desired orientation. The simulation conditions implemented to obtain these maps were: W = 0.7 m, 
vd = 2 m/s and SD = 20 Nm.
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desired torque, aligning particles with the long axis pointing towards the exit. Oppositely, for transversal orienta-
tion these two torques act in different directions leading to what can be seen as a source of noise.

Aiming a better quantification of this behavior, in Fig. 5 we analyse the difference between the actual and 
desired orientation (Δθ) of the particles.

First, we display the average of the absolute value of this difference 〈|Δθ|〉 as a function of the distance to the 
door (Fig. 5A). Note that for the case of no preferred orientation we take as a reference the orientation that would 
correspond to the longitudinal alignment. Clearly, the obtained values for this specific case (around π/2) indicate 
that the particles take any possible orientation (|Δθ| ∈ [0, π]) with the same probability; hence revealing that the 
actual alignment by shear forces is very weak. When comparing the outcomes for the three different orientations 
we confirm that the deviation from desired orientation is higher for transversal propulsion. This feature becomes 
more obvious near the door, where the shearing forces are expected to be higher. The cases of symmetric and 
non-symmetric longitudinal orientation are indistinguishable.

Now, in order to look with more detail at the region near the door, we present the distribution of orientation 
deviations of those particles being at a distance to the exit smaller than 0.75 m in Fig. 5B. As expected, the distri-
bution for longitudinal orientation is much narrower than the one for transversal case. This result confirms that 
the longitudinal propelled particles align to each other rather easily, hence giving rise to highly ordered structures 
that favor clogging. The alignment seems attenuated when particles propel transversally, so the flow is higher in 
this scenario. The limit case of particles without preferred orientation is the one with more disorder and therefore 
the best alternative to prevent clogging in constrictions.

To confirm these ideas we have calculated the radial distribution function g(r) and the orientation distribution 
function Q(r) of the whole ensemble of particles for the different cases (Fig. 6).

The g(r) accounts for the probability of finding any two particles whose centers are at a distance r. It evidences 
peaks at distances that coincide with the particle short (ds) and long diameters and the sum of these; i.e. r/ds = 1, 
1.4, 2, 2.8... m. These peaks are a signature of very dense packings. Indeed, the fact that for the particles without 
any preference of orientation, most of the g(r) structure disappears correlates with the high degree of disorder 
deduced from the distributions of Fig. 3B. Following this line of reasoning, the g(r) outcomes also support that 
transversally oriented moving particles lead to higher disorder; as the height of the peaks in this case is dis-
tinctly lower than for longitudinally propelled agents. Apart from the ordering, we quantify particle’s alignment 
by means of the Q(r) which stands for the probability that two particles are aligned to each other, given that their 
centers are at a distance r. The specific equation for Q(r) can be found in11 but the idea is that when two particles 
are perfectly aligned Q = 1, whereas when their angles differ in π/2, then Q = −1. The obtained distributions 
definitively prove that the alignment developed when particles propel longitudinally is much higher than in the 
transversal case. Also, the values of Q ≈ 0 reached for r/ds > 1.4 for the case of particles without preferred pro-
pulsion orientation, confirm the complete absence of order in this case. Incidentally, note that the peaks in the 
Q(r) appear for values of r/ds slightly smaller than the ones at which were displayed in the g(r); an issue which is 
attributed to the polydispersity of the particles in terms of the size of their short and long diameters.

Discussion
In this work we investigate the influence of the orientation at which asymmetric active particles propel on their 
flow through a constriction. First, we show that all kind of self-orientation mechanisms lead to the well known 
faster-is-slower effect evidencing its robustness against this property. In a similar way, increasing the angular 
strength (SD) implies a reduction of flow rate in all cases. This result is understood if we are aware that the clog-
ging structures that interrupt the flow can be only destroyed by means of the angular noise intrinsic to each par-
ticle. As the magnitude of this noise has a constant value, its effect (in terms of ability of breaking arches) reduces 
when the angular strength increases.

Figure 5.  (A) Average of the absolute value of the deviation between actual and desired orientation as 
a function of the distance to the center of the door measured in sections of δr  =  0.25 m for SD = 20 Nm, 
vd = 1 m/s, W = 0.7 m and for particles propelling with different orientations with respect to the moving 
direction as indicated in the legend. (B) Distribution of the deviations between actual and desired orientations 
for particles at a distance of the door smaller than 0.75 m and the same conditions than (a).
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Concerning the features associated to the different propulsion orientations, we discover that the best solution 
to maximize the outflow through a bottleneck is that particles propel without any preferred orientation. Probably 
due to the intrinsic noise existing in the desired torque, this strategy leads to highly disordered structures near the 
outlet, hence reducing clogging. The same reasoning applies to understand why longitudinally propelled particles 
lead to lower flow rates than transversally propelled ones (despite the former have a smaller cross section in the 
direction of the exit). Clearly, transversally propelled particles give rise to less ordered structures where particles 
are not well aligned to each other, an effect attributed to shear forces that give rise to torques acting in a different 
direction than the one desired by the particles.

Finally, let us focus on the small effect that the propulsion sense of longitudinally propelled particles has in the 
outflow. In principle, it sounds reasonable that both symmetric and asymmetric particles give rise to similar out-
comes. Certainly, if asymmetric particles point towards the exit with their desired sense, the global configurations 
reached in both cases are equivalent. The only difference among these two kind of agents might arise if, for some 
reason, collective forces align an asymmetric particle in the direction of the door, but pointing backwards. In that 
case, the efforts of such misaligned particle to rotate 180 degrees, will introduce a local disorder in the system that 
would surely provoke a slight improvement of the flowability. As indicated by Fig. 3C, this phenomenon is more 
evident for large exits, suggesting that those are necessary in order to get sufficiently high shearing and disorder 
within the sample to completely misalign a longitudinally propelled particle.

In this manuscript we have examined what it could be considered the simplest example of anisotropic par-
ticles that propel along three basic orientations. Despite this simplicity, we believe that our results could set the 
basis to understand the flow of active particles through constrictions, whether real ones or artificially designed. 
More importantly, our findings can be straightforwardly connected to recent works about bottleneck flow of 

Figure 6.  (A) g(r) and (B) Q(r) of particles laying in the area between 0 and 2 m from the exit when flowing 
out of the W = 0.7 m bottleneck with vd = 1.0 m/s and SD = 15 Nm for three different propulsion orientations as 
indicated in the legend. Also, the special case of SD = 0 (no preferred orientation) is displayed for comparison. 
Note that the distance (r) has been rescaled by the particle’s short diameter (ds).
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pedestrians, sheep or mice. Indeed, the smaller variation of the flow rate with desired velocity observed for trans-
versal orientation than for longitudinal one (Fig. 3A) is perfectly compatible with the outcomes reported in38; 
where the variation of flow rates when changing competitiveness were significantly lower for pedestrians (around 
7%) than sheep (around 19%).

References
	 1.	 Zuriguel, I. et al. Clogging transition of many-particle systems flowing through bottlenecks. Sci. Rep. 4, 7324 (2014).
	 2.	 Haw, M. Jamming, two-fluid behavior, and “self-filtration” in concentrated particulate suspensions. Phys. Rev. Lett. 92, 185506 

(2004).
	 3.	 Marin, A., Lhuissier, H., Rossi, M. & Kähler, C. J. Clogging in constricted suspension flows. Phys. Rev. E 97, 021102 (2018).
	 4.	 Hidalgo, R., Goñi-Arana, A., Hernández-Puerta, A. & Pagonabarraga, I. Flow of colloidal suspensions through small orifices. Phys. 

Rev. E 97, 012611 (2018).
	 5.	 Hong, X., Kohne, M., Morrell, M., Wang, H. & Weeks, E. R. Clogging of soft particles in two-dimensional hoppers. Phys. Rev. E 96, 

062605 (2017).
	 6.	 Janda, A. et al. Unjamming a granular hopper by vibration. Europhys. Lett. 87, 24002 (2009).
	 7.	 To, K., Lai, P.-Y. & Pak, H. Jamming of granular flow in a two-dimensional hopper. Phys. Rev. Lett. 86, 71 (2001).
	 8.	 Thomas, C. & Durian, D. J. Fraction of clogging configurations sampled by granular hopper flow. Phys. Rev. Lett. 114, 178001 (2015).
	 9.	 Koivisto, J. & Durian, D. J. Effect of interstitial fluid on the fraction of flow microstates that precede clogging in granular hoppers. 

Phys. Rev. E 95, 032904 (2017).
	10.	 Ashour, A., Trittel, T., Börzsönyi, T. & Stannarius, R. Silo outflow of soft frictionless spheres. Physical Review Fluids 2, 123302 (2017).
	11.	 Patterson, G. et al. Clogging transition of vibration-driven vehicles passing through constrictions. Phys. Rev. Lett. 119, 248301 

(2017).
	12.	 Garcimartín, A. et al. Flow and clogging of a sheep herd passing through a bottleneck. Phys. Rev. E 91, 022808 (2015).
	13.	 Lin, P. et al. An experimental study of the “faster-is-slower” effect using mice under panic. Physica A 452, 157–166 (2016).
	14.	 Garcimartín, A., Parisi, D., Pastor, J., Martín-Gómez, C. & Zuriguel, I. Flow of pedestrians through narrow doors with different 

competitiveness. J Stat Mech-Theory E 2016, 043402 (2016).
	15.	 Nguyen, H., Reichhardt, C. & Reichhardt, C. O. Clogging and jamming transitions in periodic obstacle arrays. Phys. Rev. E 95, 

030902 (2017).
	16.	 Stoop, R. L. & Tierno, P. Clogging and jamming of colloidal monolayers driven across a disordered landscape. arXiv preprint 

arXiv:1712.05321 (2017).
	17.	 Merrigan, C., Birwa, S. K., Tewari, S. & Chakraborty, B. Ergodicity breaking dynamics of arch collapse. Phys. Rev. E 97, 040901 

(2018).
	18.	 Hidalgo, R., Parisi, D. & Zuriguel, I. Simulating competitive egress of noncircular pedestrians. Phys. Rev. E 95, 042319 (2017).
	19.	 Pena, A., Garcia-Rojo, R. & Herrmann, H. Influence of particle shape on sheared dense granular media. Granul Matter 9, 279–291 

(2007).
	20.	 Guo, Y. et al. A numerical study of granular shear flows of rod-like particles using the discrete element method. J fluid mech 713, 

1–26 (2012).
	21.	 Azéma, E., Radjai, F., Saint-Cyr, B., Delenne, J.-Y. & Sornay, P. Rheology of three-dimensional packings of aggregates: Microstructure 

and effects of nonconvexity. Phys. Rev. E 87, 052205 (2013).
	22.	 Kanzaki, T. et al. Stress distribution of faceted particles in a silo after its partial discharge. Eur. Phys. J. E. 34, 133 (2011).
	23.	 Börzsönyi, T. et al. Packing, alignment and flow of shape-anisotropic grains in a 3d silo experiment. New J phys. 18, 093017 (2016).
	24.	 Tang, J. & Behringer, R. P. Orientation, flow, and clogging in a two-dimensional hopper: Ellipses vs. disks. Europhys. Lett. 114, 34002 

(2016).
	25.	 Ashour, A., Wegner, S., Trittel, T., Börzsönyi, T. & Stannarius, R. Outflow and clogging of shape-anisotropic grains in hoppers with 

small apertures. Soft Matter 13, 402–414 (2017).
	26.	 Narayan, V., Ramaswamy, S. & Menon, N. Long-lived giant number fluctuations in a swarming granular nematic. Science 317, 

105–108 (2007).
	27.	 Baskaran, A. & Marchetti, M. C. Enhanced diffusion and ordering of self-propelled rods. Phys. Rev. Lett. 101, 268101 (2008).
	28.	 Bechinger, C. et al. Active particles in complex and crowded environments. Rev. Mod. Phys 88, 045006 (2016).
	29.	 Thompson, P. A. & Marchant, E. W. A computer model for the evacuation of large building populations. Fire Saf J. 24, 131–148 

(1995).
	30.	 Löhner, R. & Haug, E. On critical densities and velocities for pedestrians entering a crowd. Transp. Res. Proc. 2, 394–399 (2014).
	31.	 Chraibi, M., Seyfried, A. & Schadschneider, A. Generalized centrifugal-force model for pedestrian dynamics. Phys. Rev. E 82, 046111 

(2010).
	32.	 Alonso-Marroquin, F., Busch, J., Chiew, C., Lozano, C. & Ramrez-Gómez, Á. Simulation of counterflow pedestrian dynamics using 

spheropolygons. Phys. Rev. E 90, 063305 (2014).
	33.	 Alonso-Marroquin, F. Spheropolygons: a new method to simulate conservative and dissipative interactions between 2d complex-

shaped rigid bodies. Europhys. Lett. 83, 14001 (2008).
	34.	 Rubio-Largo, S., Lind, P., Maza, D. & Hidalgo, R. Granular gas of ellipsoids: analytical collision detection implemented on gpus. 

Comput. Part. Mech. 2, 127–138 (2015).
	35.	 Rubio-Largo, S., Alonso-Marroquin, F., Weinhart, T., Luding, S. & Hidalgo, R. Homogeneous cooling state of frictionless rod 

particles. Physica A 443, 477–485 (2016).
	36.	 Liao, W. et al. Measuring the steady state of pedestrian flow in bottleneck experiments. Physica A 461, 248–261 (2016).
	37.	 Helbing, D., Farkas, I. & Vicsek, T. Simulating dynamical features of escape panic. Nature 407, 487 (2000).
	38.	 Pastor, J. M. et al. Experimental proof of faster-is-slower in systems of frictional particles flowing through constrictions. Phys. Rev. 

E 92, 062817 (2015).
	39.	 Clauset, A., Shalizi, C. R. & Newman, M. E. Power-law distributions in empirical data. SIAM review 51, 661–703 (2009).

Acknowledgements
This work was funded by Ministerio de Economía y Competitividad (Spanish Government) through FIS2014–
57325 and FIS2017-84631 MINECO/AEI/FEDER, UE Projects; and PID 2015-0003 (Agencia Nacional de 
Promoción Científica y Tecnológica, Argentina; Instituto Tecnológico de Buenos Aires; Urbix Technologies S.A.).

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.



www.nature.com/scientificreports/

9Scientific REPOrts |  (2018) 8:9133  | DOI:10.1038/s41598-018-27478-y

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Active particles with desired orientation flowing through a bottleneck

	The Model

	Simulated Scenarios

	Results

	Flow rates. 
	Desired vs. achieved orientation. 

	Discussion

	Acknowledgements

	Figure 1 Sketches of the different type of particles’s orientation implemented in this work (A–D) and pictures of the emerging collective configurations (E–H).
	Figure 2 Number of particles that have left the room versus time for W = 0.
	Figure 3 (A) Global flow rate versus desired velocity for W = 0.
	Figure 4 The most probable alignment of the particles analysed over a squared grid of 50 × 50 cm2.
	Figure 5 (A) Average of the absolute value of the deviation between actual and desired orientation as a function of the distance to the center of the door measured in sections of δr = 0.
	Figure 6 (A) g(r) and (B) Q(r) of particles laying in the area between 0 and 2 m from the exit when flowing out of the W = 0.
	Table 1 Power-law exponents (α) for the the longitudinal propelled cases shown in Fig.




