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Abstract: Pelvic radiotherapy has been frequently reported to cause acute and late onset
gastrointestinal (GI) toxicities associated with significant morbidity and mortality. Although the
underlying mechanisms of pelvic radiation-induced GI toxicity are poorly understood, they are
known to involve a complex interplay between all cell types comprising the intestinal wall.
Furthermore, increasing evidence states that the human gut microbiome plays a role in the
development of radiation-induced health damaging effects. Gut microbial dysbiosis leads to diarrhea
and fatigue in half of the patients. As a result, reinforcement of the microbiome has become a
hot topic in various medical disciplines. To counteract GI radiotoxicities, apart from traditional
pharmacological compounds, adjuvant therapies are being developed including food supplements
like vitamins, prebiotics, and probiotics. Despite the easy, cheap, safe, and feasible approach to protect
patients against acute radiation-induced toxicity, clinical trials have yielded contradictory results.
In this review, a detailed overview is given of the various clinical, intestinal manifestations after pelvic
irradiation as well as the role of the gut microbiome herein. Furthermore, whilst discussing possible
strategies to prevent these symptoms, food supplements are presented as auspicious, prophylactic,
and therapeutic options to mitigate acute pelvic radiation-induced GI injury by exploring their
molecular mechanisms of action.
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1. Local Radiotherapy as Pelvic Cancer Treatment

Pelvic cancers are among the most frequently diagnosed cancers worldwide [1], and pelvic
radiotherapy is often an essential part of the multimodal therapeutic approaches [2,3]. To comfort
the patients during their treatment, conventional fractionation is favored. Fractions are limited to
1.8–2 Gy/day, administered during five consecutive days. A full course may take up to 7 weeks or
longer, which results in 50 Gy cumulated dose on average. Although it is widely used, a majority
of pelvic cancer survivors suffers from a wide diversity of complications that collectively have been
termed pelvic radiation disease [4].

2. Gastrointestinal Complications Associated with Pelvic Radiotherapy

Gastrointestinal (GI) complications may develop as result of the inevitable exposure of healthy
intestinal tissue with an increased risk for the terminal ileum, colon, or rectum [5]. As a result, patients
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undergoing pelvic radiotherapy suffer from a significantly impaired quality of life, which adds an
extra burden on top of the cost of health care.

In general, radiation-induced GI toxicity is labelled as acute or chronic clinical manifestations,
both having a different pathogenesis. Acute radiotoxicity symptoms (nausea, diarrhea, abdominal
pain, and fatigue) develop within the course of treatment or a period up to 90 days thereafter [5,6].
Nausea typically occurs relatively early, whilst diarrhea and abdominal pain become problematic
2–3 weeks after the start of radiotherapy. Although early events are frequently reported, they are
generally considered reversible. Nevertheless, these symptoms may affect the patient significantly so
that treatment interruption or original treatment plan adaptations may be required, which compromise
the efficacy of tumor control.

Symptoms of chronic radiotoxicity (altered intestinal transit, malabsorption [7], and dysmotility,
which may progress to intestinal obstruction, fistula formation or intestinal perforation) appear after
a latency period of 90 days to many years post-irradiation. They are mainly mediated by complex
chronic processes including vascular sclerosis and transmural fibrosis [8]. Delayed events are less
commonly reported but also less likely to reverse. Of note, acute and chronic radiation toxicities are
not independent events, underlined by the consequential late effect theory saying that late injury is
more likely to develop when severe acute toxicity exists [9–11]. Overall, radiation-induced GI toxicity
is a progressive condition with a substantial long-term morbidity and mortality.

2.1. Mechanisms of Pelvic Radiotherapy-Induced Effects to the Healthy Intestine

Although radiation-induced damage to the healthy intestinal tissue is a dynamic and progressive
process, it is artificially divided into mucosal breakdown and subsequently induced inflammation as
reviewed by François A. et al. [12]. In the following sections, we provide an overview of the underlying
mechanisms of pelvic radiotherapy and its activated processes, highlighting the actions most relevant
to discuss interference possibilities by food supplements.

2.1.1. Pelvic Radiotherapy-Induced Breakdown of Mucosal Homeostasis

The healthy intestine is a self-renewing tissue every 3–5 days throughout life [13,14]. This high
turnover rate is sustained by a sub-population of stem cells that reside at the crypt base [15].
The resulting daughter cells exit the crypt and move to the amplifying transit compartment where
they become precursor or progenitor cells. Subsequently, the cells migrate along the crypt/villus
axis and differentiate into three different cell lineages, i.e., epithelial bordering cells, goblet cells,
and entero-endocrine cells. The fourth cell lineage of Paneth cells moves back into the crypts [16].

Ionizing radiation mainly interacts with water molecules generating reactive oxygen species
(ROS), which are considered as the most reactive molecules and thus capable of damaging DNA and
other macromolecules (Figure 1) [17–19]. This may result in phenotypic modifications, alterations
in downstream biological pathways, cell cycle arrest, and/or cell death by apoptosis, necrosis or
mitotic catastrophe [19].

The sensitivity of any particular cell type to ionizing radiation is directly proportional to its mitotic
rate and thus indirectly proportional to the extent of its differentiation [20]. Therefore, cells lining
the GI tract are particularly vulnerable to the damaging effects of ionizing radiation, with stem cells
being most radiosensitive. Within the intestine, two functionally distinct stem cells are distinguished,
including Lgr5+ and Bmi1+ cells [21]. Lgr5+ stem cells are highly proliferating thereby maturing
into epithelial cells whilst migrating towards the villus top [21,22]. These are highly sensitive to
radiation and—within hours—quantitatively ablated by such procedures (Figure 1). The first two days
following irradiation, an apoptotic phase, characterized by continuous crypt loss, shrinkage in crypt
size, and shortening of the villi during this phase is apparent [23]. In contrast, Bmi1+ stem cells located
at higher positions in the crypts are considered as a stem cell reservoir comprising less mitotically active
and are thus more radioresistant cells [21]. Interestingly, Bmi1+ stem cells are activated two days after
radiation-induced crypt apoptosis [23]. During this regeneration phase, Bmi1+ stem cells dramatically
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proliferate to repopulate intestinal crypts and villi [24]. The resulting, regenerated crypts are enlarged
in size whilst the overall number of crypts decreases [25]. Eventually, during the normalization phase,
the size of the crypts and the length of the villi are restored to pre-irradiation conditions [25].Microorganisms 2018, 6, x FOR PEER REVIEW  3 of 32 

 
Figure 1. Scheme of radiotherapy inducing interactions between epithelial and endothelial radiation injuries in the gastrointestinal tract resulting in acute events 
and late tissue fibrosis. 

 

Figure 1. Scheme of radiotherapy inducing interactions between epithelial and endothelial radiation
injuries in the gastrointestinal tract resulting in acute events and late tissue fibrosis.

After initial damage of Lgr5+ stem cells residing in the intestinal crypts, a tissue scaring process
is initiated. Consequential late effects involve fibroblasts, which are stimulated upon exposure
to radiation, which then enhance proliferation and collagen deposition, eventually resulting in
tissue fibrosis [11]. Moreover, ionizing radiation is thought to induce a chronic, self-maintained
scaring process driving fibrosis. However, during the acute phase, mucosal breakdown is induced
through reduced expression of tight junctions and epithelial cell death compromising villous integrity,
which leads to the development of inflammation, as described in the following section (Figure 1) [26].

2.1.2. Pelvic Radiotherapy-Induced Inflammation

Ionizing radiation induces an inflammatory profile in healthy intestinal tissue. Due to disruption
of the mucosal barrier, bacterial translocation is enabled, thereby triggering inflammation and
immune cell recruitment (Figure 1) [12]. In addition, damaged vascular endothelium creates a
proinflammatory, prothrombotic, and antifibrinolytic phenotype, which further stimulates increased
secretion of cytokines, chemokines, and growth factors [27]. In parallel, the increased expression of
adhesion molecules including VCAM-1, ICAM-1, PECAM-1, and selectins E and P are favored [28].
This proinflammatory state activates resident macrophages and enhances early extravasation of
polymorphonuclear neutrophils (Figure 1) [29]. The presence of these neutrophils in tissues typically
indicates an acute inflammatory profile, and is a hallmark of irradiated tissues [20,30]. Moreover,
polymorphonuclear neutrophils exhibit microbicidal activity in case of bacterial translocation after
vascular and mucosal breakdown [12]. ROS produced by the so-called neutrophils’ “respiratory
burst” are crucial in the first control action of GI infection and inflammation. However, excessive
and sustained ROS production damages neighboring healthy cells and tissues, and participates in the
progression and the chronicity of radiation injury to the intestinal wall. The primary inflammatory state
is then amplified through the additional recruitment and transmigration of monocytes, as well as the
activation of resident mast cells (Figure 1) [12]. Both will stimulate the production of proinflammatory
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and profibrosing mediators such as IL-1β, IL-6, TGF-β, and TNFα (Figure 1) [12]. Importantly,
the innate immune system recognizes motifs of bacteria, so called pathogen-associated molecular
patterns (PAMPs), through pattern recognition receptors (PRRs) [31]. In addition, damage-associated
molecular patterns (DAMPs) consisting of components of collectively dead/dying cells and damaged
tissues can also activate PRRs. Among the different PRRs, toll-like receptors (TLRs) were the first
family discovered and are best studied in their structure and activation mechanism. After exposure
to ionizing radiation, TLRs present on the surface of multiple cell types including immune cells
and intestinal epithelial cells (IEC) are reported to play an important role in tissue homeostasis and
repair [32]. Of note, the gut microbiome was reported to influence the immune response development
through blockage of specific immune checkpoints, which impacts cancer immunotherapy success [33].
The innate immune response characterized by macrophages, neutrophils, and mast cells is supported
in a complementary way by the adaptive immune response regulated by B and T lymphocytes.

In general, the adaptive immune response is activated after a few days and necessitates the
presentation of a specific antigen by specialized antigen-presenting cells such as dendritic cells (DCs)
to B and T lymphocytes. As the rapid innate response develops within minutes after tissue irradiation
exposure, micro-environmental changes favor the maturation of DCs. Antigen presentation then
stimulates naive CD4+ T cells to differentiate into different T cell subsets such as Th1, Th2, Th17, or Treg
cells [34]. Each of them shows a specific profile of cytokine expression assuming various redundant or
opposed roles in tissue immune responses [35]. Overall, the continuing immune imbalance may play a
significant role in the chronicity of radiation lesions [12].

In conclusion, the response of healthy intestinal tissue to radiation is mediated partly by cell
death as well as activation of a strong oxidative and immune-modulated inflammatory component
within all different tissue compartments (Figure 1). However, the precise roles of the different resident
and attracted immune cells are still vague, as well as the contributions of the innate and adaptive
immune responses.

2.2. Pelvic Radiotherapy-Induced Effects on Gut Microbiota

Recently, microbiome research began to boom due to the development of 16S ribosomal
RNA gene-sequence-based metagenetic methods resulting in major advantages in characterizing
microbial populations [36]. The presence of 1013 bacterial cells in a healthy adult shows the high
complexity and diversity of human microbiota [37]. Starting from the nose and mouth up until the
rectum, microbiota differ in number and composition, whilst being highly susceptible to influences
including the diet. Specifically, anaerobic bacteria represented by the genera Bacteroides, Eubacterium,
Bifidobacterium, Peptostreptococcus, Ruminococcus, Clostridium, and Propionibacterium were characterized
as the predominant (>109 Colony Forming Units (CFU)/g)) microbiota of the human gut [38]. Multiple
functions have been attributed to the gut microbiota including roles in the development of intestinal
structure and morphology, metabolism like vitamin production and fermentation, neuroendocrine
signaling through the gut-brain axis, as well as protection through immune system development and
homeostasis [39,40]. Immune functions are generally based on the interaction of commensal bacteria
with TLRs and subsequent NFκB signaling pathway activation. Furthermore, it has been suggested
that microbiota have a crucial role in immune tolerance induction since germ-free animals lack this
ability with regard to oral tolerance [41,42]. Despite incomplete knowledge regarding the underlying
mechanisms, the mucosal microbiota are capable of limiting growth and even kill certain transient
microbial pathogens that enter their habitat [43–47].

Changes in the gut microbial ecosystem are associated with dysbiosis, which can be defined in
various ways, but generally refers to changes in microbial compositions that cause a drastic imbalance
between beneficial and potentially pathogenic bacteria, which renders the gut more vulnerable to
pathogenic insults [48]. Moreover, an imbalanced microbiome is characterized by changes in its
functionality and metabolic activity, or changes in their local distributions along the GI tract. As a
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consequence, recent insights have linked gut microbiome dysbiosis with various disease states of
which inflammatory bowel disease and cancer are well-known examples [49,50].

Radiation has also been defined as a stressor of the GI microbial ecosystem. Radiation-induced
gut microbial dysbiosis was hypothesized to negatively contribute to pelvic radiation disease in cancer
patients with associated mucositis, diarrhea, systemic inflammatory response, and fatigue [51,52].
This key role of gut microbiota in radiotherapy-induced GI toxicity has been known for decades.
For instance, germ-free mice are known to be resistant to radiation-induced enteritis [53–56].
In addition, post-radiotherapy changes in gut microbial diversity have been described [57,58].
Additional clinical studies have shown that cancer patients exposed to radiation therapy exhibit
marked alterations in gut microbiota composition [51,59,60]. Most frequently, a decrease in
potentially protecting Bifidobacterium, Clostridium cluster XIVa, and Faecalibacterium prausnitzii were
observed, together with an increase of Enterobacteriaceae and Bacteroides, which might contribute
to the development of mucositis, and diarrhea in particular [60]. In addition, patients developing
post-radiotherapy diarrhea compared to no diarrhea patients were characterized by an increase in
Actinobacteria and Bacilli, as well as a decrease in Clostridia [57].

Notably, gut microbiota are not only affected by radiotherapy, but as importantly, the pre-exposure
microbial profile is associated with the susceptibility of developing post-radiotherapy diarrhea [51].
For instance, a pilot study revealed that gut microbial diversity richness, and the Firmicutes/
Bacteroidetes ratio were significantly altered prior to pelvic radiotherapy in patients who later developed
diarrhea [51]. Unfortunately, the exact microbial biomarkers (specific taxa or biodiversity markers),
which could predict this susceptibility have not yet been defined due to the highly individualized and
fluctuating microbiome profiles, complex interactions between the host, clinical and environmental
factors, as well as the heterogeneity of reported microbiome studies. In addition to biomarker
discovery, increasing knowledge about important microbiome features will also allow the exploration
of personalized radiotherapy delivery methods.

All this knowledge highlights the importance of re-establishing bacterial homeostasis after pelvic
radiation, as well as prevention of dysbiosis induced by radiotherapy. One favorable way consists of
the use of natural food supplements, being commonly used because of their long-standing positive
association with health. These interventions will be discussed further in this review.

3. Nutritional Interventions for Pelvic Radiotherapy-Induced Side Effects

To maintain a positive balance between the quality of tumor control by pelvic radiotherapy
and the damage posed to healthy surrounding intestinal tissue, different strategies—technical and
biological—have been developed. Here, we will focus on nutritional interventions including vitamins,
prebiotics, and probiotics.

3.1. General Improvements in Gut Health

Vitamins Vitamins are dietary micronutrients acting as cofactors for numerous enzymes essential
for health. Among those, vitamins E, A, C, B6, B9, and B12 have been reported as potent GI
radioprotectors, and will therefore be discussed here [61].

First, vitamin E is an essential nutrient for all animal species with many biological functions of
which its antioxidative property is considered most important [62]. For instance, exogenous provision
of vitamin E was reported to attenuate acute mountain sickness characterized by compromised
intestinal integrity, with physical improvements of mountaineers at high altitudes [63–65].

Vitamin A derivatives are known for their pleiotropic effects on human health and to modulate
several biological processes including intestinal immune and barrier functions [66–68]. Interestingly,
supplementation has been shown to reduce infant mortality due to diarrhea in endemic areas of
vitamin A deficiency [69].

Vitamin C (ascorbic acid) is broadly used as antioxidant and essential for normal cell function,
growth and development and thus indispensable for human health and well-being [70,71]. For instance,
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vitamin C impacts wound healing processes through stimulation of collagen biosynthesis and early
resolution of inflammation and tissue remodeling [72]. In view of this data, pre-operative vitamin C
supplementation was shown to improve colorectal anastomotic healing and biochemical parameters in
malnourished rats [73].

Finally, vitamin B6 (pyridoxine), B9 (folate), and B12 (cobalamin) are provided by food or retrieved
from commensal bacteria that produce them in the gut. Generally, vitamin B6 is involved in various
homeostatic processes in health and disease, including host immune responses [74]. Since their
bioavailability is dependent on the correct function of the GI tract, vitamins B9/B12 deficiencies are
associated with GI diseases including inflammatory bowel disease. Vitamin B9 supplementation on
chemically-induced intestinal stress has yielded contradictory results [75,76].

Prebiotics In 2017, the International Scientific Association of Probiotics and Prebiotics (ISAPP)
updated the definition and scope of prebiotics to “a substrate that is selectively utilized by host
microorganisms conferring a health benefit” [77].

Initially, oligosaccharides were considered as the main prebiotic source, with fructans
(fructooligosaccharides (FOS) and inulin) and galactans (galactooligosaccharides (GOS)) in particular.
Their effects on gut microbiota have been extensively investigated. For instance, preclinical studies
uniformly reported changes in specific gut microorganisms of diet-induced obese and diabetic animals
following prebiotic supplementation. Specifically, a decreased Firmicutes/Bacteroidetes ratio as well as
the proportion of Tenericutes, Cyanobacteria, and Verrucomicrobia was observed. Moreover, this impacted
several important metabolites implicated in metabolic disorders [78,79]. This effect was confirmed in
obese women [80]. In addition to their metabolic influence, dietary FOS and GOS were reported to
affect fecal microbiota by increasing Bifidobacteria abundance, which alleviated functional constipation
in constipated subjects [81–83].

Another class of candidate prebiotics is polyphenolic phyco- and phytochemicals including
anthocyanins, flavonoids, tannins, and lignins amongst others, which are highly enriched in
cyanobacteria, plants, and herbs [84]. Most of them (95–99%) are not absorbed in the small
intestine and reach the colon where they are subjected to microbial biotransformations producing
bioactive metabolites [85]. Overall, these polyphenol-derived metabolites are possibly responsible
for health benefits due to their ability to modulate intestinal bacterial populations [86]. This two-way
interaction between an individual’s gut microbiota and polyphenols to determine health effects
is well-established [87–89]. For instance, the prebiotic potential of cocoa flavanols was assessed
by a cross-over intervention study in healthy volunteers, which reported increased Bifidobacteria
and Lactobacilli, and decreased Clostridia counts [90]. Other studies reported the gut microbiota
shaping potential of polyphenols and enriched food, which further promote health benefits related to
inflammation and obesity [78,91–93].

Probiotics Recently, ISAPP strengthened the FAO/WHO definition of probiotics: “live
microorganisms that, when administered in adequate amounts, confer a health benefit on the host” [94].
The concept of probiotics is becoming increasingly popular, as evidenced by rapidly expanding
research highlighting its beneficial effects, with lactic acid bacteria from the genera Lactobacillus
and Bifidobacterium being the major representatives. General intestinal health effects including
intestinal barrier improvements, inhibition of (opportunistic) pathogens or stimulation of beneficial
microorganisms, and reduction of intestinal inflammation profiles were documented, in healthy and
diseased animals and humans. A sample of in vitro and in vivo research is summarized in Table 1.

In addition to general intestinal health support, there is also convincing evidence supporting
the efficacy of probiotics in the treatment of acute diarrhea, especially in children with rotavirus
infection, likely attributed to the stimulation of IgA-specific antibody secreting cells [95,96]. Frequently
studied probiotics in that field are L. rhamnosus GG and Saccharomyces boulardii. Guarino, Guandalini,
and Lo Vecchio (2015) reviewed the modern perspective on the potential use of probiotic agents in the
management of infectious diseases, with special emphasis on diarrheic symptoms [97].
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Table 1. Overview of experimental studies on probiotic strategies for improving general gastrointestinal functioning.

Probiotic Gut Improving Effect Type of Study References

Individual L. acidophilus strains ADH or N2, or L.
bulgaricus (strain not mentioned), or Streptococcus
thermophiles (strain not mentioned)

Survival in human stomach and adhesion to IECs † In vitro
In vivo (healthy pigs and humans) [98]

L. rhamnosus GG ATCC 53103

Prevention of cytokine-induced apoptosis in IECs † In vitro [99]

Prevention of E. coli-induced changes in epithelial barrier function In vitro [100]

Restoration of intestinal integrity of murine ileum through occludin expression In vivo (mice with alcoholic liver disease) [101]

Prevention of increased intestinal paracellular permeability in Caco-2 cells;
Restoration of tight junction proteins such as ZO-1 †, claudin-1, and occludin In vitro [102]

Induction of inflammatory tolerance of the intestinal mucosa In vitro
In vivo (healthy mice) [103,104]

Local dampening of innate immune responses with desensitization towards
luminal antigens In vitro [105]

Effective treatment of acute gastroenteritis In vivo (children with acute gastroenteritis) [106]

Faster recovery of acute non-bloody diarrhea In vivo (children with acute diarrhea) [107–109]

B. bifidum G9-1
Induction of mucosal protective factors including MUC2-4 †, TGFβ1 † and TFF3 †;
Alleviation of diarrhea partly through protection against human rotavirus
induced lesions

In vivo (mice pups with rotavirus gastroenteritis) [110]

L. plantarum WCFS1 Restoration of tight junction proteins ZO-1 † and occludin
In vitro
In vivo (healthy humans) [111]

L. reuteri I5007 Restoration of tight junction proteins claudin-1, occluding, and ZO-1 † In vitro
In vivo (healthy piglets) [112]

L. casei DN-114 001
Prevention of transcription of numerous pro-inflammatory genes encoding
cytokines, chemokines and adherence molecules In vitro [113]

Restoration of tight junction protein ZO-1 † in Caco-2 cells In vitro [114]

Ultrabiotique®

(L. acidophilus + B. lactis + L. plantarum + B. breve)

Improvement of clinical symptoms and histological alterations;
Down regulation of nitric oxide production by peritoneal macrophages;
Enhancement of mucus production with modification of microflora

In vivo (mice with colitis) [115]

L. acidophilus (strain not mentioned)
Overall attenuation of the severity of DSS †-induced colitis, specifically by
suppressing
pro-inflammatory cytokines

In vitro
In vivo (mice with colitis) [116]

Mixture of Streptococcus thermophilus + L.
acidophilus + L. bulgaricus (strains not mentioned) No improvement of acute diarrhea In vivo (children with acute diarrhea) [117]

† IEC = intestinal epithelial cell; ZO-1 = zonula occludens-1; MUC2 = mucin 2; TGFβ1 = transforming growth factor 1; TFF3 = trefoil factor 3; DSS = dextran sulfate sodium.
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3.2. Preclinical Evidence for Reduction of Radiation-Induced GI Toxicity

Since food supplements have been reported to improve general gut health as well as diarrheal
diseases, it is of interest to investigate whether they can preserve surrounding, healthy tissues during
radiotherapy and reduce radiation-induced GI toxicities. Both preclinical and clinical studies exploring
their radioprotective properties are discussed in the following sections (summarized in Tables 2 and 3).

Vitamins Since ionizing radiation produces free radicals, antioxidative vitamins have been
explored for their radioprotective potential [118]. For instance, dietary vitamin E (alpha tocopherol)
pre-treatment preserved general small intestinal morphology of rodents against high doses of
radiation [119–121]. Notably, the starting point of diet supplementation matters as lethality was
only mitigated when antioxidant vitamin E supplementation was started 24 h after 8 Gy whole-
body irradiation [122].

Pyridoxamine, one of the natural forms of vitamin B6, was shown to prevent apoptosis in
small intestinal epithelium of mice exposed to 4 or 8 Gy whole body irradiation [123]. Preclinical,
radioprotective effects of vitamins B9/B12 on the GI tract have not yet been reported.

Radioprotection by vitamin A is questionable. For instance, vitamin A had no effect on clinical
parameters and could not protect mice against 7–10 Gy whole body irradiation-induced changes in
intestinal sugar transport [124]. However, a combined cocktail of antioxidant vitamins A, C, and E
before irradiation protected the absorptive function of the small intestine when tested in an identical
experimental setup by the same research group [125].

Improved survival was reported with oral vitamin C pre-treatment, either by preventing
small intestinal apoptosis in mice exposed to 14 Gy whole-body irradiation [126] or by reducing
inflammatory cytokines and free radical metabolites after 7–8 Gy whole-body irradiation of mice [127].
In addition, vitamin C protected rats form radiation-induced liver damage through activation of the
antioxidant defense system including glutathione-s-transferase (GST), superoxide dismutase (SOD)
and catalase (CAT) [128].

Prebiotics Whilst oligosaccharides have not yet been tested for their radioprotective applications
in preclinical settings, several flavonoids have been identified as potent radioprotectants [129,130].
For instance, radioprotective capacities of bioflavonoid propolis were seen in mice exposed to 9 Gy
whole-body irradiation. This effect was confirmed by diminished primary DNA damage in leukocytes
as well as delayed onset of mortality [131,132].

Interestingly, prebiotics can be delivered locally by probiotic bacteria. For instance, it was
suggested that L. reuteri strain 121 produces prebiotic FOS and is therefore able to stimulate beneficial
intestinal microbiota [133]. In addition, increased fecal abundance of butyrate-producing bacteria
was reported to be associated with increased resistance against respiratory viral infections [134].
Alternatively, cyanobacterium Arthrospira platensis products (Spirulina) are rich in vitamins A, B6,
B9, E, and C as well as polyphenolic phycochemicals, and have been shown to protect murine bone
marrow cells exposed to γ rays [135].

Probiotics Table 2 provides an overview of preclinical studies investigating the effects of
probiotic supplementation on radiation-induced GI toxicities. Of interest, although many health
benefits of probiotics appear to be strain-specific [136], little variation is seen in the types of bacteria
applied as probiotics in radiation research, with predominant use of Lactobacilli. This implies that
Lactobacilli could have some core properties, which mediate protection against radiation-induced
GI complications. To illustrate, preventive effects towards radiation-induced GI toxicities were
seen with Microflorana®-F, an active probiotic mixture composed of L. acidophilus, L. helveticus, and
Bifidobacterium spp., which improved both overall survival as well as bacterial contamination, even
after abdominal exposure to 20 Gy [137]. In addition, improvements of small intestinal morphology
were observed with probiotic L. acidophilus (strain not mentioned) supplementation in rats locally
irradiated with ≤15 Gy [138]. Furthermore, reduced epithelial apoptosis and improved crypt survival
was demonstrated upon probiotic L. rhamnosus GG ATCC 53103 supplementation without causing
drastic shifts in bacterial compositions, following 12 Gy whole-body γ radiation [139]. Even more
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interesting, these effects of L. rhamnosus GG ATCC 53103-mediated small intestinal radioprotection
extended to fractionated dosing regimens [140]. Besides preventive applications, therapeutic effects of
L. delbrueckii subspecies bulgaricus B3 strain were observed in rats following a dose of 11 Gy directed
to the abdominal-pelvic area [141,142]. Finally, L. plantarum 299v was shown to reduce GI injury
and inflammation in rats exposed to 10 Gy lower abdominal radiation and even improved colonic
anastomotic healing [143].

3.3. Clinical Evidence for Reduction of Radiation-Induced GI Toxicity

Vitamins Due to preclinical success and overall safety, vitamins may be investigated for
their radioprotective potential in clinical settings. A pilot study investigating vitamin E and C
supplementation in prostatic or gynecologic cancer patients exposed to radiotherapy was shown
to improve diarrhea and other symptoms, despite rectal pain. Furthermore, continuation of this
supplementation up to 1 year resulted in sustained improvements of the symptoms [144]. To our
knowledge, there have been no studies performed on the sole effect of vitamin A, B6, B9, or B12 in
clinical settings of pelvic radiotherapy.

Prebiotics A recent, placebo-controlled clinical trial investigated oligosaccharide supplementation
in patients with gynecological cancers who received radiotherapy with a cumulated dose of 52.2 Gy
after surgery [145]. Although radiotherapy is well-reported to cause a decrease in fecal Lactobacillus and
Bifidobacterium counts, administration of this prebiotic supplement was able to improve the recovery of
both genera afterwards.

Although most of the data provide preclinical evidence, human clinical studies investigating
polyphenolic phyco- and phytochemicals are scarce and often controversial, partly due to
inter-individual variability in responsiveness.

Probiotics Table 3 summarizes evidence, which exists on probiotic applications in cancer patients
exposed to radiotherapy, with a focus on the reduction of diarrhea and viral gastroenteritis [146].
Meanwhile, a meta-analysis and several randomized clinical trials have studied a plurality of probiotics
and their therapeutic and preventive effects in radiotherapy-exposed patients [146]. Most of these trials
primarily focused on radiotherapy-induced diarrhea and its effects on lower parts of the GI tract [147].
For instance, Delia et al. (2002, 2007) organized multiple clinical trials investigating a high-potency
probiotic preparation VSL#3® composed of four strains of Lactobacilli (L. paracasei BP07, L. plantarum
BP06, L. acidophilus BA05, and L. delbruekii subsp. bulgaricus BD08), three strains of Bifidobacteria (B.
longum BL03, B. breve BB02, and B. infantis BI04), and Streptococcus salivarius subsp. thermophiles BT01.
Results suggested the effectiveness of VSL#3® in preventing the occurrence of diarrhea in patients
submitted to radiotherapy with direct and indirect improvements of their quality of life, as well as
a good tolerance [148,149]. Other probiotics were also reported to have various beneficial effects on
radiotherapy-induced diarrheic complications [150–157].
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Table 2. Overview of preclinical studies on probiotic strategies for improving radiation-induced GI toxicity in tumor-free rodents.

Probiotic Radiation Dose Method of Supplementation Duration of
Supplementation Results of Supplementation References

Microflorana®-F
(L. acidophilus + L.
helveticus +
Bifidobacterium spp)

Abdominal X
irradiation with
1 × 20 Gy

Oral gavage of 1 mL of probiotic
solution three times daily

Started seven days before the
irradiation procedure and
maintained until 14 days
thereafter

Improved overall survival;
Improved endotoxin levels;
Reduced incidence of bacterial
contamination

[137]

L. acidophilus (strain
not mentioned)

Abdominal-pelvic
irradiation with either 1
× 10, 15 or 20 Gy

Oral gavage of 2 mL of probiotic
solution (108 CFU †)

Started six days before
irradiation and maintained
until three days thereafter

Improved morphology of the small
intestine after 10 or 15 Gy;
No improvements of jejunal villi
height when irradiated with 15 Gy;
No improvements when irradiated
with 20 Gy

[138]

L. rhamnosus GG
ATCC 53103

Whole body γ

irradiation with
1 × 12 Gy

Oral gavage of probiotic solution
(5 × 107 CFU †), daily

Three consecutive days before
irradiation

Reduced epithelial apoptosis
particularly at crypt bases;
Improved crypt survival;
No detectable shifts in bacterial
compositions

[139]

Oral gavage or intraperitoneal
injection of lipoteichoic acid
(5 mg/kg), a radioprotective
agent in L. rhamnosus GG, daily

Three consecutive days before
irradiation

Improved small intestinal crypt
survival

[140]

Total abdominal X
irradiation with
7 or 8 × 4 Gy

Intraperitoneal injection of
lipoteichoic acid (5 mg/kg), a
radioprotective agent in L.
rhamnosus GG, daily

One hour before each
fractionated radiation dose

Improved post-radiation weight
recovery and survival

L. delbrueckii subsp.
Bulgaricus B3 strain

Abdominal-pelvic γ

irradiation with
1 × 11 Gy

Oral gavage of 2 mL of
probiotic solution
(1010 CFU †/mL), daily

Seven consecutive days after
irradiation

Reduced scores for inflammation
and vascularity;
Accelerated healing;
Decreased bacterial translocation;
Reduced diarrhea

[141,142]

L. plantarum 299v
Lower abdominal X
irradiation with
2 × 10 Gy

Oral gavage of probiotic
solution (2 × 109 CFU †),
twice daily

Started one day after
irradiation and was continued
throughout the experiment
for a maximum of 15 days,
except for the operation day

Increased collagen content;
Decreased mucosal
myeloperoxidase activity

[143]

† CFU = colony-forming units.
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Table 3. Overview of clinical studies on probiotic strategies for treating radiation induced gastrointestinal toxicity in cancer patients.

Probiotic Summary of Study Method of Supplementation Duration of Supplementation Results References

L. acidophilus NCDO 1748 Patients (n = 24) with gynecological
tumors, 80 Gy

A formulated drink
(≥2 × 109 CFU †) and 6.5%
lactulose as bacterial substrate,
once daily

Started five days prior to
radiotherapy, daily throughout
the radiotherapy period
including the interval, and
continued for 10 days thereafter

Reduced diarrhea [150]

L. casei DN-114 001
Patients (n = 85) with gynecological
tumors, 45–50 Gy with weekly
cisplatin treatment (40 mg/m2)

A formulated drink
(108 CFU †/g), three times daily

Started one week prior to
radiotherapy

Improved stool consistency;
No significant differences in need for
rescue anti-diarrheal therapy, neither
diarrhea severity

[156]

Infloran®

(L. acidophilus and
B. bifidum)

Patients (n = 63) with locally
advanced cervical cancer receiving
50 Gy with additional
brachytherapy of four times 7 Gy
with weekly cisplatin during
radiotherapy procedure

Two oral capsules (2 × 109 CFU
†/g of each bacteria), twice daily

Started 7 days prior to
radiotherapy and maintained
during radiotherapy

Reduced severity of diarrhea;Reduced
need of rescue anti-diarrheal therapy;
Improved stool consistency

[152]

VSL#3®

(Streptococcus thermophilus BT01, B. breve BB02,
B. longum BL03, B. infantis BI04, L. acidophilus
BA05, L. plantarum BP06, L. paracasei BP07, L.
delbrueckii subsp. bulgaricus BD08)

Patients (n = 190) with pelvic
tumors, 60–70 Gy

A formulation (450 × 109 CFU
†/g), three times daily

Started on the first day of
radiotherapy, for 6 to 7
consecutive weeks of therapy

Reduced number of patients suffering
from radiation induced toxicity;
Reduced severity of toxicity

[148,149]
Patients (n = 239) with
postoperative cervical, sigmoid or
rectal tumors, 60–70 Gy

Improved number of bowel movements;
Delayed need for additional
anti-diarrheal therapy

Bifilact®

(L. acidophilus LAC-361 and B. longum BB-536)

Patients (n = 246) with rectal,
cervical, endometrial or prostatic
cancers that had radiotherapy with
or without surgery or
chemotherapy

Oral capsules (1.3 × 1012 CFU †),
twice daily or three times daily

Started on the first day of
radiotherapy and maintained
up until the last day of
radiotherapy

Reduced severity of diarrhea with
standard dosing [154,155]

“5” Strain Dophilus®

(L. rhamnosus HA-111, B. Breve HA-129, L.
acidophilus HA-122, B. longum HA-135, L. Casei
HA-108)

Patients (n = 42) with
abdominal-pelvic cancers who
received post-operative
radiotherapy or radiotherapy with
chemotherapy, 50–67 Gy

Oral capsules (6 × 1012 CFU †),
twice daily

Started on the first day of
radiotherapy and maintained
up until the last day of
radiotherapy

Reduced incidence and severity of
diarrhea [157]

Antibiophilus®

(L. rhamnosus LCR 35)

Patients (n = 206) with several
lower abdominal and pelvic
tumors, 50 Gy

Oral capsules (1.5 × 109 CFU †),
plus lactulose as bacterial
substrate, three times daily

Started in case of diarrhea and
maintained up to one week,
depending on the response of
the diarrhea

Improved number of bowel movements;
Improved fecal consistency; [151]

Gefiluss®

(L. rhamnosus GG ATCC 53103)

Patients (n = 39) with colorectal
cancers receiving 45–50.4 Gy and 24
weeks of 5-FU chemotherapy

Oral capsules (1–2 × 1010 CFU †),
twice daily

Started at the start of adjuvant
5-FU chemotherapy and
maintained for 24 weeks

Reduced severity of diarrhea;
Less abdominal discomfort reported;
Lower need for hospital care;
Reduced need for chemotherapy dose
adjustments due to bowel toxicity

[153]

† CFU = colony-forming units.
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All this evidence as listed in Table 3 suggests that probiotics may have a beneficial role in
prevention of radiation-induced diarrheic symptoms. However, most studies could only report
modest effects, without affecting all diarrheic parameters including stool frequency, consistency, bowel
movements, and the needs for anti-diarrheal medications simultaneously. In addition, no overall
improvements in all study participants were reported suggesting inter-individual variability for
probiotics’ success. Moreover, limited underlying modes of action or objective observations of
protection against radiation-induced GI injuries have been described. Of note, the absence of
serious adverse events reported in clinical trial reports should be interpreted with caution, especially
since systemic infections associated with specific probiotic intake have been described elsewhere.
For example, cases reporting sepsis or endocarditis and bacteremia following L. rhamnosus GG and
L. casei, supplementation were recorded by Doron and Snydman (2015) [158]. Bifidobacteria are rarely
associated with negative effects, yet bacterial sepsis and cholangitis were reported due to Bacillus subtilis
intake [159]. Overall predisposing risk factors include immunosuppression, prior hospitalization,
severe underlying comorbidities, previous antibiotic therapy, prior surgical interventions, critically
ill patient status, and central venous catheters. Another study showed an increased risk of mortality
associated with enteral administration of a multispecies probiotic preparation to prevent infectious
complications in patients with predicted severe acute pancreatitis [160]. Therefore, cautious intake
of probiotics is encouraged, especially in critically ill patients or in those at risk of non-occlusive
mesenteric ischemia.

3.4. Mechanisms of Radioprotection

There is only limited knowledge on the underlying mechanisms by which food supplements
elicit their radio-protective effects. In the case of probiotics, general modes of action for Lactobacillus
have been reviewed by Lebeer et al. [136,161]. In summary, its probiotic application assumes that
the mechanisms underlying health-promoting capacities include pathogen inhibition and restoration
of microbial homeostasis through microbe-microbe interactions, enhancement of epithelial barrier
function, and modulation of immune responses. However, given the complexity of these three main
functions, more experimental work is still required.

3.4.1. Antimicrobial Capacities

Vitamins Interestingly, vitamin A has been associated with antiviral efficacy towards murine
norovirus, acting through a significant increase in relative abundance of Lactobacillus sp. [162,163].
In addition, vitamin B6 was shown to eliminate Salmonella Typhimurium from the gut [164]. However,
to our knowledge, antimicrobial actions for vitamins E, C, B9, and B12 have not yet been reported.

Prebiotics Although prebiotics are—according to their definition—selectively used by host
microorganisms to confer a health benefit, no direct antimicrobial actions have been reported. However,
prebiotic research showed stimulated mucus production by Goblet cells and competitive interference
with enteropathogens [165–168].

Probiotics Probiotics were suggested to beneficially affect the host through direct effects on
microbiota. Traditionally, probiotics—like commensal bacteria—can exert anti-pathogenic activities
through nutrient competition, production of antimicrobials and/or competitive exclusion. For instance,
metabolic cross-feeding is extremely interesting when Lactobacilli-produced lactic acid is converted into
butyric acid by butyrate-producing colonic bacteria since butyrate exerts intestinal health-promoting
capacities [169–174]. In addition to the general antimicrobial metabolite lactic acid, many probiotics
may also produce bacteriocins, which are strain-specific peptides with direct antimicrobial activity
either through membrane permeabilization, pH lowering, and/or capture of elements essential for
microbial growth [175–182]. Furthermore, some L. reuteri strains produce additional antimicrobial
reuterin [183]. Recently, oral administration of probiotic L. casei CRL 431 and L. paracasei CNCM I-1518
was described to increase Paneth cells as well as intestinal antimicrobial activity [184]. As Paneth cells
contribute to small intestinal remodeling following whole-body γ irradiation, they should be explored
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in further detail for probiotic-induced radio-protective evidence [185]. Interestingly, antibacterial
activity of probiotic L. rhamnosus GG and L. acidophilus LA towards Salmonella Typhimurium C5 was
observed, both in vitro and in germ-free mice, without affecting the normal gut microbiota [186,187].
Besides nutrient competition, probiotics may compete for binding to host mucosa and thereby
exclude intestinal pathogens and thus prevent bacterial translocation [188]. Intermicrobial binding or
co-aggregation is thought to be another possible mechanism by which clearance of pathogens during
mucus flushing is enhanced [189,190]. Whether these intermicrobial interactions by probiotics are able
to reduce infections in vivo, remains to be largely determined.

3.4.2. Barrier-Enhancing Capacities

Vitamins Antioxidative capacities of vitamin C were reported to significantly reduce the
complaints of breast cancer patients one year post-surgery [191]. In parallel, antioxidative actions
of vitamin E as well as vitamins B6 and B9/B12 were shown by reduced oxidative stress when rats’
intestinal barrier was subjected to different stressors [64,123,192].

Barrier protection by vitamin A was proposed by enhanced mucin synthesis [67,168]. In addition,
vitamin A might regulate and maintain the intestinal epithelial barrier through IL-22 [193]. Specifically,
retinoic acid, the most biological form of vitamin A, was reported to promote tolerance and reduce
inflammation in rodent colitis models [194,195]. Other studies have described vitamin A as a stimulating
agent for migration and proliferation of IECs whilst balancing the gut microbiome [193,196].

A combined cocktail of vitamins A, C, and E before irradiation was reported to reduce oxidative
stress in small intestinal crypt cells, which then protected absorptive transport of sugars, amino acids,
bile acids, and peptides [124,197]. Still, many gaps remain in our understanding of vitamin interactions
with gut microbiota, mucosal immunity, and intestinal barriers, which are today’s research subjects.

Prebiotics Similar to vitamins, prebiotics are studied for their antioxidant capacities to
delay or prevent radiation-induced oxidative stress and consequent mucosal damage. Despite
limited knowledge about prebiotic oligosaccharide antioxidant actions, FOS antioxidative and
hepato-protective effects were observed in mice that were chronically exposed to oxidative
stress mimicking accelerated ageing [198]. Furthermore, supplementation of FOS to constipated
nursing-home elderly residents reduced lipid peroxidation levels, likely mediated by colonic bacteria
in humans [199]. On the contrary, a large number of phytochemicals were reported to possess
antioxidant properties by averting the continuation of the free radical chain reaction upon contact [200].
In humans, a phytonutrient mix tested as an ageing defense mechanism in UV radiation-induced skin
damage was evaluated positively as it provided antioxidant protection and cellular repair as well as
modulated inflammation [201].

Although the role of prebiotic oligosaccharides in barrier enhancement through tight junctions
is rather disputable [202–204], in vitro research could show induced transcription and assembly of
tight junction proteins following incubation with the most abundant flavonoid quercetin [205,206].
Unfortunately, their applications as protectants of the intestinal mucosal barrier in radiation-induced
GI toxicity have not yet been investigated.

Probiotics A possible way by which probiotics may exert radioprotection is through
intestinal barrier enhancing modalities. For instance, safe and natural antioxidant additives
that delay or prevent radiation-induced oxidative stress and consequent damage are of high
interest. Probiotic antioxidant actions can be obtained through their metal ion chelating
capacities [207,208]. Besides this, exopolysaccharides (EPS) of probiotic lactic acid bacteria have
shown promising biological activities including antioxidant, antitumor, anti-biofilm formation by
pathogens, and immunomodulation [209–215]. Furthermore, potential roles in stress resistance,
adhesion, colonization, and host-bacteria interactions have been suggested [216–218]. Animal studies
investigating the effects of feeding EPS-producing Lactobacilli demonstrated gut health benefits in
part through altered gut microbiota composition and functioning, as well as favored antioxidant
activities [219,220]. Another defense approach involves stimulation of the complex inherent antioxidant
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enzymatic systems, including SOD, CAT GST, glutathione peroxidase (GSH-Px) and glutathione
reductase (GR), which are present in both the host and probiotic bacteria. Despite promising,
preliminary results, therapeutic application of antioxidant enzymes is limited due to its short circulatory
half-life, which restricts its bioavailability. Consequently, probiotics are now being exploited for their
capacity of local antioxidant enzyme delivery. In the past, engineered L. casei BL23 strains producing
SOD and CAT were shown to reduce or even prevent intestinal pathologies caused by ROS [221,222].
Recent comparative genome analysis suggests that also endogenous enzymatic activities could be
used, with SOD being specific for L. paracasei strains and CAT for L. casei strain [223]. Similar beneficial
observations of specific probiotic strains carrying antioxidant enzymes may also apply for cases of
radiation-induced oxidative stress in the intestine. Alternatively, food supplements can also stimulate
the host’s defense system through efficient activation of antioxidant actors, which was proven effective
for a variety of probiotic bacteria tested in vivo [224–230]. On the other hand, probiotics can also
produce diverse, non-enzymatic antioxidant metabolites such as glutathione (GSH), short chain fatty
acids (SCFAs), and vitamin B9 [104,161]. This is highly interesting as radiation induces GSH depletion
whilst maintaining ROS levels. This then increases the host’s susceptibility to oxidative tissue damage
and hinders recovery of intestinal mucosa [231–233]. Unfortunately, it is difficult to increase circulating
glutathione to a clinically beneficial amount through oral administration [234] and the applicability
of GSH precursors (e.g., N- acetylcysteine) is limited by their toxic side effects [235,236]. To our
knowledge, no studies in the context of intestinal radiation injury have been performed investigating
probiotics that locally produce radio-protective GSH. Another feature shared by many probiotics is the
ability of locally producing SCFAs of which butyrate has received particular attention for its beneficial
effects on intestinal health [169,237]. For instance, butyrate was reported to stimulate a variety of
colonic mucosal functions such as inhibition of inflammation and carcinogenesis, re-establishment of its
defense barrier and decreasing oxidative stress whilst positively balancing gut microbiota [170–172,238].
For these reasons, lactate- and butyrate-producing bacteria are extremely interesting in the context
of intestinal radiation injury, despite conflicting data obtained by randomized trials organized so
far [173,174]. In addition, folate-producing Bifidobacterium strains tested in animal and human trials
confirmed folate production and absorption upon intake, as well as enhanced fecal folate levels,
without further investigations of their intestinal effects [239,240].

Radiation also negatively affects the expression of tight junctions-related proteins in an intestinal
segment specific fashion contributing to the impairment of intestinal barrier integrity [26,241–243].
Both commensal bacteria and probiotics have been shown to enhance and restore intestinal barrier
integrity in vitro and in vivo through tight junction regulation [244–251]. Specifically, probiotic
L. plantarum WCFS1-mediated activation of TLR2 was reported to improve the intestinal barrier
through changes in tight junction expression in human tissue [111]. A final intestinal barrier protection
mechanism involves the mucus layer that is affected by external beam irradiation [252,253]. Adherence
to IECs and mucosal surfaces has been suggested to be an important qualification for colonization of
bacteria along the GI tract providing a competitive advantage in this ecosystem [161,254]. As such,
probiotics can also minimize biofilm formation in which pathogens can aggregate [255]. Researchers
have shown mucus production to be stimulated by Goblet cells as well as competitive interference with
enteropathogens through the use of probiotics [256–261]. However, their applications as protectants of
the intestinal mucosal barrier in radiation-induced GI toxicity have not yet been widely investigated.

3.4.3. Immunomodulatory Capacities

Vitamins Although vitamins mainly exert radioprotective potential through antioxidant
mechanisms, they have been shown to modulate the immune response, likely mediated by TLRs [194].
For instance, survival of 10 to 12 Gy whole-body irradiated mice was enhanced by vitamin E inhibiting
pro-inflammatory cytokines IL-1β and -6, and reducing apoptosis in IEC [262]. In addition, vitamins
B6 and B9 were shown to ameliorate the severity of murine colitis through reduction of Salmonella
Typhimurium loads or augmentation of cellular methylation, respectively [263].
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Prebiotics Generally, little is known about immunomodulatory capacities of prebiotics in humans,
and even less is reported in clinical radio-therapeutic settings. However, some preclinical studies
showed possible immunosuppressive roles in cases of inflammatory bowel diseases [91,203,264].
The natural bioflavonoid propolis revealed successful, protective effects when mice were exposed to
9 Gy of γ rays, through an augmented activity of multiple immune cells [131,132].

Probiotics Finally, current probiotic research is extremely interested in its ability to influence
the immune response evoked by radiation. To this regard, probiotic interventions with Lactobacilli
and/or Bifidobacteria have been shown to influence immune responses, likely mediated by
TLRs [139,140,265–269]. Applications during radiotherapy showed, for example, that diarrhea could
be prevented by live L. acidophilus plus B. bifidum (Infloran®), likely because of an improved immune
status of the patients involved [152].

4. Discussion

With cancer survival rates improving over recent years, more patients are frequently suffering
from treatment-induced side effects. For instance, cancer patients have reported GI symptoms
due to pelvic radiotherapy, which induces injuries in healthy surrounding tissues. Unfortunately,
our understanding of the biological complexities that underlie GI toxicity of healthy intestinal tissues
initiated by pelvic radiotherapy is still limited. In all, there is still a long way ahead to provide patients
with actual, effective prevention or treatment.

Current advances in linking the pathobiology of radiation-induced GI symptoms with gut
microbial dysbiosis have encouraged research on food supplements as promising actors for prevention
and/or treatment of these symptoms. The scientific basis for studies applying dietary interventions
in humans can be found in a large number of animal experiments that have identified potential
pathophysiological mechanisms in the small and large intestine. For instance, interventional, preclinical
trials have shown that some of these mechanisms can be blocked, leading to a significant reduction in
radiation-induced GI damage.

Given their safe character, food supplements like probiotics, prebiotics, and vitamins are very
attractive to investigate for their potential in modulating the intestinal response to pelvic irradiation.
In addition, research has shown evidence for their barrier enhancing, immunomodulatory and
intermicrobial activity. Initial attempts in applying food supplements appear safe in the context of
radiation-induced diarrhea, although the patient’s health status (e.g., immunocompromised patients)
can affect this response. In addition to these negative complications of food supplement use, there is
the issue of high inter-individual variability for its success. In future scenarios, patients may be
screened to characterize their microbiome profile to subscribe the most appropriate food supplement,
or a symbiotic combination, to the patient.

Altogether, future research investigating the effects of radiation on the GI tract and the microbiome
is warranted. First, it is important to stress that applied single fraction radiotherapy does not adequately
reproduce the conditions of fractionated radiotherapy as used in patients. Therefore, the acute induced
GI toxicity studied in experimental models may not fully represent clinical outcomes of patients.
In addition, findings obtained from animal studies remain to be translated to diagnostic, prophylactic,
or therapeutic treatments for humans. One caveat concerns a potential different radiosensitivity
between animals and humans. Another hurdle is that microbiota members differ not only among
host species but also between individual host organisms, and fluctuate in time. In addition, diet and
different treatments (e.g., chemotherapy, surgery) are important confounding factors that differentiate
and modulate the composition of the gut microbiota in an individual over time. Furthermore, it remains
unclear whether an altered microbiome associated with a disease in humans causes, contributes to or
merely is a consequence of the disease state. Hence, it will be a major challenge to explore strategies
to translate the experimental data into a clinical therapy. To make further progress within the field
of food supplement research, a number of basic issues still needs to be addressed, including optimal
strain characterization together with quality control, dose optimization, clear definition of the desired
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effects, as well as (combined) formulation. Then, study endpoints—other than diarrhea—have to be
defined accurately and a clinically meaningful study duration described. In parallel, regulatory aspects
have to be clarified and appropriate guidelines for the evaluation of food supplements, whether as
food or drug, need to be developed. Although the road of developing a good food supplement for
radiotherapy patients seems long, promising evidence gathered from (pre)clinical studies should be a
scientist’s driving force.
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