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MTDeepM6A-2S: A two-stage
multi-task deep learning
method for predicting RNA
N6-methyladenosine sites of
Saccharomyces cerevisiae

Hong Wang†, Shihao Zhao†, Yinchu Cheng†, Shoudong Bi* and

Xiaolei Zhu*

School of Sciences, Anhui Agricultural University, Hefei, China

N6-methyladenosine (m6A) is one of the most important RNA modifications,

which is involved in many biological activities. Computational methods have

been developed to detect m6A sites due to their high e�ciency and low

costs. As one of the most widely utilized model organisms, many methods

have been developed for predicting m6A sites of Saccharomyces cerevisiae.

However, the generalization of these methods was hampered by the limited

size of the benchmark datasets. On the other hand, over 60,000 low resolution

m6A sites and more than 10,000 base resolution m6A sites of Saccharomyces

cerevisiae are recorded in RMBase and m6A-Atlas, respectively. The base

resolution m6A sites are often obtained from low resolution results by

post calibration. In view of these, we proposed a two-stage deep learning

method, named MTDeepM6A-2S, to predict RNA m6A sites of Saccharomyces

cerevisiae based on RNA sequence information. In the first stage, a multi-

task model with convolutional neural network (CNN) and bidirectional long

short-term memory (BiLSTM) deep framework was built to not only detect

the low resolution m6A sites but also assign a reasonable probability for the

predicted site. In the second stage, a transfer-learning strategy was used

to build the model to predict the base resolution m6A sites from those

low resolution m6A sites. The e�ectiveness of our model was validated on

both training and independent test sets. The results show that our model

outperforms other state-of-the-art models on the independent test set, which

indicates that our model holds high potential to become a useful tool for

epitranscriptomics analysis.
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Introduction

To date, more than 160 kinds of RNA post-transcriptional

modifications (PTM) have been determined (Maden, 1990;

Wang et al., 2014), among which N6-methyladenosine (m6A)

is the most abundant internal mRNA modification (Liu and

Jia, 2014). This modification was dynamically regulated by

methyltransferase and demethylases (Desrosiers et al., 1974;

Adams and Cory, 1975; Furuichi et al., 1975; Wei et al., 1975).

More than 5,000 different mRNAmolecules containm6A, which

implies that this modification could have a broad effect on gene

expression patterns. It is reported that m6A plays important

roles in various biological processes (Chen et al., 2015a),

such as alternative splicing (Meyer et al., 2012), regulation of

circadian rhythms (Fustin et al., 2013), cell differentiation and

reprogramming (Aguilo et al., 2015; Vu et al., 2017), and primary

microRNA processing (Ma et al., 2017), which are essential

for cell development. Therefore, the accurate identification of

m6A sites is a key step to understand the mechanisms of these

biological phenomena.

Several experimental approaches have been developed to

locate m6A sites. High-throughput sequencing technologies,

such as MERIP (Meyer et al., 2012), M6A-Seq (Dominissini

et al., 2012) and PA-M6A-Seq (Chen et al., 2015a), have

been applied to detect m6A sites in various species, such as

Saccharomyces cerevisiae (Schwartz et al., 2013), Homo sapiens

(Dominissini et al., 2012; Linder et al., 2015), Arabidopsis

thaliana (Luo et al., 2014) andMus musculus (Dominissini et al.,

2012). However, most high-throughput sequencing technologies

cannot determine the exact location of the m6A sites (Chen

et al., 2020). The m6A motif RRACH was often used to further

narrow down the location of m6A sites to base-resolution

within the peaks detected with m6A signal. Other experimental

techniques such as miCLIP-seq (Linder et al., 2015) can

identify the m6A sites at the single-nucleotide resolution level,

however, these kinds of methods depend on m6A-specific

antibodies and have poor reproducibility and complicated

process. Recently, two RNA endoribonuclease based methods

(Garcia-Campos et al., 2019; Zhang et al., 2019) have been

developed to map m6A in single-base resolution, however, these

methods still have their limitations as stated in Garcia-Campos

et al.’s paper (Garcia-Campos et al., 2019). For example, the

quantitative identification of m6A is only referred to a subset

that occurred at ACA sites, the methylation deficient mutants

are not always available, the distribution of insert lengths in the

sequenced libraries can differ from one library to another and

complicate between-sample analyses, and so on. Lately, Zhang

et al. (2021) developed a method to systematically calibrate

post-transcriptional modification sites by using a synthetic

modification-free RNA library. The traditional time-consuming

and expensive experimental methods are far from meeting the

needs (Ditzler et al., 2015). Thus, fast computational methods

would be helpful in identifying the m6A sites.

Until now, various computational methods have been

developed to identify the m6A sites in different species. About

14, 7, 6, and 18 methods have been developed to predict m6A

sites in Homo sapiens genome (Xiang et al., 2016a; Zhou et al.,

2016; Chen et al., 2017, 2019; Xing et al., 2017; Qiang et al., 2018;

Zhang and Hamada, 2018; Zhao et al., 2018; Nazari et al., 2019;

Wu et al., 2019; Zou et al., 2019; Liu et al., 2020a,b; Li et al.,

2021),Mouse musculus genome (Xiang et al., 2016a; Zhou et al.,

2016; Chen et al., 2017; Qiang et al., 2018; Zhang and Hamada,

2018; Nazari et al., 2019; Zou et al., 2019), Arabidopsis thaliana

genome (Chen et al., 2016; Xiang et al., 2016b; Xing et al., 2017;

Huang et al., 2018; Qiang et al., 2018; Wang and Yan, 2018), and

Saccharomyces cerevisiae genome (Chen et al., 2015b,c, 2017,

2018; Jia et al., 2016; Li et al., 2016; Liu et al., 2016; Zhang et al.,

2016; Xing et al., 2017; Akbar and Hayat, 2018; Huang et al.,

2018; Qiang et al., 2018;Wei et al., 2018, 2019; Nazari et al., 2019;

Zhuang et al., 2019; Khan et al., 2020; Mahmoudi et al., 2020),

respectively. These methods can be classified into two major

categories, including the traditional machine learning- and deep

learning-basedmethods. At the early stage, themachine learning

algorithms were extensively leveraged to build different models.

SRAMP (Zhou et al., 2016) is a model based on random forest

to predict m6A sites of human and mouse. RFAthM6A (Wang

and Yan, 2018) is another model based on random forest which

is for Arabidopsis thaliana. iRNA-methyl (Chen et al., 2015b) is

a model based on support vector machine (SVM) to detect m6A

sites of Saccharomyces cerevisiae. In recent years, deep learning

methods have been used to predict m6A sites. DeepM6ASeq

(Zhang and Hamada, 2018) is a method based on convolutional

neural network (CNN) and long short-term memory (LSTM) to

identify m6A sites for human, mouse and zebra fish. iMethyl-

Deep (Mahmoudi et al., 2020) is a model based on CNN to

predict m6A sites of Saccharomyces cerevisiae.

As one of the most widely utilized model organisms, many

methods (Chen et al., 2015b,c, 2017, 2018; Jia et al., 2016; Li

et al., 2016; Liu et al., 2016; Zhang et al., 2016; Xing et al.,

2017; Akbar and Hayat, 2018; Huang et al., 2018; Qiang et al.,

2018; Nazari et al., 2019; Wei et al., 2019; Wu et al., 2019;

Zhuang et al., 2019; Khan et al., 2020; Mahmoudi et al., 2020)

have been developed for predicting m6A sites of Saccharomyces

cerevisiae. However, these methods are mainly based on a

small dataset which contains only 1,307 m6A sites that are

based on base resolution sequencing, and the equal number

of negative samples were selected randomly. Because of the

limited size of the dataset, the power of deep learning methods

cannot be fully exerted. However, over 60,000 low-resolution

and 10,000 base resolutionm6A sites of Saccharomyces cerevisiae

have been recorded in RMBase (Sun et al., 2016; Xuan et al.,

2018) and m6A-Atlas (Tang et al., 2021), respectively, which

are not fully used for developing computational methods. As

mentioned above, the high resolution m6A sites have been

identified by post calibration. Inspired by these multi-stage

processes for identifying high resolution m6A sites, we proposed
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a two-stage deep learning strategy to predict m6A sites of

Saccharomyces cerevisiae.

In the first stage, we developed a multi-task deep learning

method for detecting low-resolution m6A sites. To this end, the

m6A sites and the corresponding “SupportNum” information

recorded in RMBase were collected for classification and

regression tasks, respectively. Multi-task learning algorithm has

been used both for classification and regression (Cipolla et al.,

2018; Vandenhende et al., 2022), which improves the learning

effect of each task by sharing datasets, feature representation

and other information and obtaining task-related output layers

(Caruana, 1998). Because of its high efficiency and accuracy for

dealing with related tasks, multi-task learning has been applied

in biometric sites recognition. MTTFsite (Zhou et al., 2019) is

a multi-task learning framework that includes a shared CNN to

learn common features of all cell types. In MTDsite (Sun et al.,

2021), a multi-task deep learning strategy was used to develop a

novel sequence-based approach for simultaneous prediction of

binding residues/sites for multiple important molecular types.

However, multi-task learning has not been applied in the

prediction of m6A sites.

In the second stage, the model was developed to identify

the base resolution m6A sites from those low-resolution m6A

sites predicted by the first stage model. So, we employed the

base resolution m6A sites of Saccharomyces cerevisiae recoded

in m6A-Atlas as positive samples and the low-resolution m6A

sites recorded in RMBase as negative samples of which the

duplicates to the sites of m6A-Atlas were removed. Considering

the similarity between the classification tasks of the two stages,

specific layers and weights of the deep network for the first stage

model were transferred to build the second stage model.

Materials and methods

Datasets

To build a reliable deep learning predictor, the large-scale

dataset is essential. For the first stage model, we collected

low resolution m6A sites of Saccharomyces cerevisiae from

an extensive database RMBase v2.0 (http://rna.sysu.edu.cn/

rmbase/) (Xuan et al., 2018), in which 67,582 m6A sites were

recorded. The RNA segments with k upstream and downstream

nucleotides were obtained from the genome. Two types of

central motif patterns exist in these segments which are AAC

and GAC. Because the dataset Met2614 (Chen et al., 2015b)

which was used to build the existing methods for predicting

m6A sites of Saccharomyces cerevisiae contains only GAC central

motif, we divided the original RNA segments into two parts: one

contains the segments with GAC central motif and the other one

contains the segments with AAC central motif. The numbers

of segments with GAC and AAC central motifs are 23,581 and

44,001, respectively. The negative segments were collected from

TABLE 1 Benchmark datasets demonstration.

Datasets Positive samples Negative samples

Stage 1 GAC21874 10,937 10,937

GAC_train 8,749 8,749

GAC_test 2,188 2,188

AAC27464 13,732 13,732

AAC_train 10,985 10,985

AAC_test 2,747 2,747

Stage 2 GAC_9378 4,689 4,689

GAC_2344 1,172 1,172

the genome which include 35,296 and 77,484 segments with

central GAC and AAC motifs, respectively. Thus, we built two

original datasets with central GAC andAACmotifs, respectively.

To determine the optimal segment length, we extracted

segments with lengths of 51, 201, 401, 601, 801, 1,001, and

1,201 nt for the data with AAC central motif, respectively.

The data with AAC central motif was used as the dataset to

select the optimal segment length, because the data with AAC

central motif is larger than the data with GAC central motif and

the larger dataset would be better for training and optimizing

a deep learning network. Supplementary Table S1 shows the

parameters for each layer for optimizing the segment length. To

avoid overfitting, CD-HIT (Fu et al., 2012) was used to remove

redundant segments with a threshold of 0.7. The redundancies

of positive and negative samples were removed, respectively.

Then, the under-sampling was used to select the same number of

negative samples as that of positive samples to ensure the balance

of the datasets. Preliminary result shows that the segments with

601 nt achieved the best performance. Therefore, we selected the

optimal sequence length of 601 nt for building our models.

By using the segments with 601 nt, the AAC dataset contains

13,732 negative samples and positive samples, respectively.

And the GAC dataset contains 10,937 positive samples and

negative samples, respectively. We named these two datasets as

GAC21874 and AAC27464. The two datasets were randomly

divided into training datasets and independent test datasets

according to the ratio of 4:1, so that the training dataset of

the GAC21874 contains 8,749 positive and negative samples,

respectively. The independent test dataset contains 2,188

positive and negative samples, respectively. On the other hand,

the training dataset of AAC27464 contains 10,985 positive and

negative samples; the independent test dataset contains 2,747

positive and negative samples, respectively. Table 1 shows the

datasets used in this study.

In addition, the “SupportNum” for each m6A site recorded

in RMBase v2.0 was used as the target for regression task.

Although the m6A sites recorded in RMBase database can

be used to train models for classification, the locations of

m6A sites in the database were determined based both on the
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FIGURE 1

The histogram of “SupportNum” on di�erent datasets. (A) AAC_train; (B) GAC_train; (C) AAC_test; (D) GAC_test.

experimentally measured peak values and the RRACH motif.

For each m6A site recorded in the database, the “SupportNum”

represents how many experiments have demonstrated that

the corresponding adenine can be modified. Intuitively, the

more times the m6A site was identified by experiments, the

higher confidence we have for the m6A site to be a realistic

m6A site. Figure 1 shows the “SupportNum” distribution

in our datasets. To take advantage of the information

of “SupportNum” and give reasonable confidence for the

predicted m6A sites of the classification model, we set a

regression task in our multi-task learning architecture with

the “SupportNum” as the target. Since the value range

of “SupportNum” is relatively large, we first normalized

it to [0,1]. Sklearn’s Minmax Scaler was used for this

normalization process.

For the second stage model, we collected base resolution

m6A sites of Saccharomyces cerevisiae from m6A-Atlas

(www.xjtlu.edu.cn/biologicalsciences/atlas) (Tang et al., 2021)

as positive samples. Totally, 10,562 m6A sites were obtained,

which are all with the central motif of GAC. Because the second

stage model is used to identify base resolution m6A sites from

low-resolution m6A sites, we used the low-resolution m6A

sites recorded in RMBase 2.0 but not in m6A-Atlas as negative

samples in the current study. Note, the negative samples

were also with central motif of GAC. Thus, we obtained 10,562

positive samples and 14,810 negative samples. The redundancies

of both positive and negative samples were removed by CD-HIT

with a cutoff of 0.7. Thus, we got 5,861 positive samples and

8,924 negative samples. To obtain a balanced dataset, 5,861

negative samples were randomly selected to build the final

dataset. The dataset was further divided into training and

independent test set at a ratio of 4:1 (Table 1).

Model construction

Overall framework of the two-stage model

To fully use the existing experimental data and simulate

the calibration process, we proposed a two-stage predictor. The

flowchart for building our model is shown in Figure 2. The

benchmark datasets collected from RMBase v2.0 were used to

train and test our first stage model. A multi-task model was built

in the first stage to classify the low resolutionm6A sites and other

non-m6A sites, which can also give a reasonable confidence for

the classification result based on the regression task. For the

second stage, we collected the data from m6A-Atlas to build

our model which is used to identify the base resolution m6A

sites from the low resolution m6A sites. The second-stage model

was trained by using a transfer learning strategy based on the

first-stage model.
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FIGURE 2

The overall flow chart of MTDeepM6A-2S. (a) The diagram of the two-stage model. The stage I model is used to discriminate low-resolution

m6A sites from non-m6A sites and the stage II model is used to identify high-resolution m6A sites from low-resolution m6A sites. Three deep

networks were used to build the stage I model which are (b) CNN network, (c) CNN+TRANSFORMER network and (d) CNN+LSTM network.

The framework for the first stage model

The previous methods used to predict RNA m6A sites

were mostly single-task learning for classification. However, we

used a multi-task architecture to build the first-stage model. As

shown in Figure 2a, the input for our model is the sequences

of the RNA segments, then the sequences were transformed

as numerical matrices by the one-hot encoding with A, U, C,

G, N represented as (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1) and
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(0,0,0,0), respectively, where N is a padding pseudo nucleotide

when the RNA segment is out of the genome. Then, the 4∗601
matrix obtained by one-hot encoding was fed into the shared

deep network of the multi-task model, and then the latent

features encoded by shared deep networks were fed to the

two task-specific networks. In this study, we compared three

different shared deep networks which are CNN, CNN+BiLSTM

and CNN+TRANSFORMER to select a better shared deep

network. The three deep networks were explained as follows.

For the shared CNN network (Figure 2b) of the multi-task

model, we used a 1D convolution layer to extract the global

information of the sequence. The number of kernels was set to

16 but the size of the kernel used in the 1D CNN was optimized.

Next, the output of the 1D CNN was normalized with a layer of

Group normalization (GN) (Wu and He, 2018), for which the

number of groups was set to 4.

For the shared CNN+BiLSTM network (Figure 2d) of the

multi-task model, we added a BiLSTM layer based on the CNN

network. The hidden unit of the cell of the BiLSTM was set as

8. BiLSTM overcomes the problem of not being able to retrieve

information from upstream and downstream sequences.

For the shared CNN+TRANSFORMER network (Figure 2c)

of the multi-task model, we added a position embedding layer

and an Encoder of the Transformer (Vaswani et al., 2017) based

on the CNN network. The Encoder is composed of a position

embedding layer, a multi-head self-attention mechanism and a

position-wise fully connected feed-forward network. The head

number was set to 2. The “elu” activation function was used in

all the three deep networks.

After the three deep networks, we used a 1D pooling layer to

reduce the dimension of the features, the size of the kernel of the

1D pooling layer was optimized. After the pooling layer, a fully

connected layer with 64 hidden nodes was added. To prevent

overfitting, a dropout layer was added after the fully connected

layer, and the dropout ratio was also optimized.

In the output layer, there are two outputs. For the

classification task, the “softmax” activation function was used,

and the categorical cross entropy was used as the loss function.

For the regression task, the activation function “elu” was used

and the “logcosh” was used as the loss function. Thus, the loss

function of the whole multi-task can be expressed as follows:

Lossmulti = − 1

N

N
∑

i=1

(

yci log p
c
i + (1− yci

)

log
(

1− pci
)

+
N

∑

i=1

log (cosh (yri − ŷi)),

where, N represents the number of samples in the dataset, yci and

pci mean the real label and predictive probability of the ith sample

for the classification task, respectively. yri and ŷi show the real

label and the predictive values of the ith sample for the regression

task, and the former part of the multi-task loss (Lossmulti) is the

categorical cross entropy for the classification task, and the latter

part is the log-cosh loss for the regression task. According to this

loss function, the information of the label of the auxiliary task

(regression task) might be able to help improve the predictive

accuracy of the classification task.

At last, we used Stochastic Gradient Descent (SGD) as the

optimization algorithm. Our deep learning network was built

based on Keras version 2.2.4

Transfer learning for building the second stage
model

Considering the similarity between the classification tasks of

the two stages, we transferred the feature extraction layers of the

first-stage model to build our second-stage model. Specifically,

during transfer learning, the feature extraction layers (all layers

except the output layer) and corresponding weights of the first-

stage model were used as the initial parameters for the second-

stage model and then all the weights of the second stage model

were optimized without freezing in the training process.

To train our model, we needed to determine the network

hyperparameters mentioned in Section Model construction

such as dropout ratio, pool size and kernel size. We also

needed to determine some general hyperparameters such

as learning rate, batch size, and epochs. In this study,

we used the module GridSearchCV of sklearn package to

determine the hyperparameters of the first-stage model by 5-

fold cross-validation. Supplementary Table S2 shows the ranges

of hyperparameters that were optimized by GridSearchCV.

Supplementary Table S3 shows the optimized values for the

hyperparameters of the deep network.

Evaluation criteria

To evaluate the performance of the predictors, we calculated

four metrics which are sensitivity (Sn), specificity (Sp), accuracy

(Acc), and Matthews correlation coefficient (MCC). The four

parameters were defined as follows:































Sn= TP
TP+FN 0 < Sn < 1

Sp= TN
TN+ FP 0 < Sp < 1

Acc= TP+TN
TP+FP+TN+FN 0 < Acc < 1

MCC= (TP×TN)−(FN×FP)√
(TP+FN)×(TN+FP)×(TP+FP)×(TN+FN)

−1 < MCC < 1

where TP, TN, FP, and FN represent the number of true positive,

true negative, false positive, and false negative, respectively.

Sensitivity and specificity indicate the ratios of correctly

predicted positive samples and negative samples, respectively.

Accuracy represents the ratio of correctly predicted samples.

The Matthews correlation coefficient is a balanced measurement
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TABLE 2 Performance of three multi-task deep learning models on the two training datasets.

Datasets GAC_train dataset AAC_train dataset

Models CNN+TRANSFORMER CNN CNN+BiLSTM CNN+TRANSFORMER CNN CNN+BiLSTM

Acc 0.7829 0.7735 0.7919 0.7930 0.7757 0.8002

Sp 0.6942 0.7792 0.7632 0.7573 0.7394 0.7705

Sn 0.8715 0.7679 0.8206 0.8286 0.8119 0.8299

MCC 0.5771 0.5480 0.5869 0.5894 0.5537 0.6019

AUPRC 0.8539 0.8380 0.8592 0.8518 0.8369 0.8636

AUROC 0.8684 0.8496 0.8728 0.8699 0.8504 0.8787

Corrcoefa 0.5994 0.5910 0.6186 0.5937 0.5901 0.6131

aPearson correlation coefficient.

FIGURE 3

The ROC curves and PRC curves based on the cross-validation results of the three network frameworks on GAC_train and AAC_train. (A) ROC

curves for GAC_train; (B) PRC curves for GAC_train; (C) ROC curves for AAC_train; (D) PRC curves for AAC_train.

index, which can be used even when the category data

is unbalanced.

In addition, we plotted Receiver Operating Characteristic

(ROC) curves and Precision-Recall curves (PRC). ROC curve

is a comprehensive index to reflect the continuous variables

of sensitivity and specificity, thus revealing the relationship

between sensitivity and specificity. PRC reflects the balance

between the accuracy of positive samples recognition and the
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TABLE 3 Performance of CNN+BiLSTMmodel on GAC_test under multi-task learning.

Models Acc Sp Sn MCC AUPRC AUROC Corrcoef

AAC-CNN+BiLSTM* 0.7938 0.6914 0.8961 0.6002 0.8753 0.8842 0.6175

GAC-CNN+BiLSTM* 0.7947 0.6987 0.8906 0.6005 0.8652 0.8740 0.6077

AAC-CNN+BiLSTM* : The CNN+BiLSTMmodel built using AAC_train.

GAC-CNN+BiLSTM* : The CNN+BiLSTMmodel built using GAC_train.

TABLE 4 Performance of CNN+BiLSTMmodel on AAC_test under multi-task learning.

Models Acc Sp Sn MCC AUPRC AUROC Corrcoef

AAC- CNN+BiLSTM* 0.7968 0.7143 0.8793 0.6019 0.8698 0.8792 0.6056

GAC- CNN+BiLSTM* 0.7955 0.7266 0.8644 0.5967 0.8670 0.8752 0.5989

AAC-CNN+BiLSTM* : The CNN+BiLSTMmodel built using AAC_train.

GAC-CNN+BiLSTM* : The CNN+BiLSTMmodel built using GAC_train.

TABLE 5 Performance of the CNN+BiLSTMmodel built on the combined dataset of GAC_train and AAC_train.

Datasets Acc Sp Sn MCC AUPRC AUROC Corrcoef

Training dataseta 0.8076 0.7557 0.8594 0.6196 0.8738 0.8871 0.6369

GAC_test 0.7990 0.6892 0.9088 0.6130 0.8793 0.8867 0.6429

AAC_test 0.8052 0.7172 0.8931 0.6200 0.8789 0.8877 0.6338

aThese are the cross validation results on the training dataset.

coverage ability of the classifier. AUROC (area under ROC

curve) and AUPRC (area under PRC curve) are the area under

the ROC curve and the area under the precision-recall curve,

respectively. The larger the AUROC and AUPRC are, the better

the classifier is.

Pearson correlation coefficient is used as the index to

evaluate the regression task, which can be calculated as follow:

r=
∑n

i=1 (Xi−X)(Yi−Y)
√

∑n
i=1 (Xi−X)

2
√

∑n
i=1 (Yi−Y)

2

where, Xi and Yi represent the predicted target value and

the actual target value of the sample i, respectively. Pearson

correlation coefficient, also known as Pearson product-moment

correlation coefficient, is a statistical quantity used to reflect the

similarity degree of two variables. Its value range is [−1, 1], and

when it equals 0, it indicates no correlation.

Results

Results for the first-stage model

The performance of CNN, CNN+BiLSTM and

CNN+TRANSFORMER frameworks under multi-task

learning was evaluated by 5-fold cross validation. As shown in

Table 2 and Figure 3, for the classification task, the model with

CNN+BiLSTM framework achieved the highest Acc, MCC,

AUPRC, and AUROC for both GAC_train and AAC_train. The

Acc, MCC, AUPRC and AUROC for GAC_train are 0.7919,

0.5869, 0.8592, and 0.8728, respectively, and the Acc, MCC,

AUPRC and AUROC for AAC_train are 0.8002, 0.6019, 0.8636,

and 0.8787, respectively. For the regression task, the model with

CNN+BiLSTM framework also performed best, which achieved

the highest Pearson correlation coefficient of 0.6186 and 0.6131

for GAC_train and AAC_train, respectively. The details of

the predictive result for each fold based on CNN+BiLSTM

framework are shown in Supplementary Tables S4–S6 for the

three training datasets, respectively. Thus, the model with

CNN+BiLSTM framework was selected as the final model

for multi-task learning. We inferred that the CNN+BiLSTM

model performs better than other models because we used

a long sequence of RNA segment of 601 nucleotides. As

shown in Tang et al.’s work (Tang et al., 2018), the bi-

deep RNN-based model slightly outperforms CNN and

Transformer models on modeling subject-verb agreement over

long distances.

Table 3 shows the performance of CNN+BiLSTM model

on GAC_test under multi-task learning. The model built based

on GAC_train performs well on its test dataset with values of

0.7938, 0.6914, 0.8961, 0.6002, 0.8753, and 0.8740 for Acc, Sp,

Sn, MCC, AUPRC, and AUROC, respectively. Moreover, the

performance of the model established on AAC_train is superior

to the model established on GAC_train on GAC_test. However,

the difference is small.
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FIGURE 4

The Pearson correlation coe�cient of multi-task models on

di�erent training datasets. Blue: The Pearson correlation

coe�cient obtained by regression task of multi-task models;

Yellow: The Pearson correlation coe�cient values obtained

based on the predicted probability of the classification task of

multi-task models and the target values of the regression task of

multi-task models.

Table 4 shows the performance of CNN+BiLSTM model

on AAC_test under multi-task learning. The model established

with AAC_train also performs well on its test dataset with

values of 0.7968, 0.7143, 0.8793, 0.6019, 0.8698, and 0.8792

for Acc, Sp, Sn, MCC, AUPRC, and AUROC, respectively.

Again, the model established on AAC_train has achieved better

performance on AAC_test than the model established on

GAC_train.

Tables 3, 4 indicate the model with CNN+BiLSTM

framework trained on AAC_train outperforms the

corresponding model trained on GAC_train for the two

independent test sets. One of the possible reasons is that

AAC_train is bigger than GAC_train. To validate this

hypothesis, we built a model based on the combined dataset

with both GAC_train and AAC_train. Table 5 shows that

the performance of the model established on the combined

dataset is superior to the model built on single training dataset

according to the Acc, MCC, AUPRC, and AUROC values for

classification and Pearson correlation coefficient values for

regression. Supplementary Figure S1 shows the corresponding

ROC curves and PRC curves.

For the regression task, we compared the Pearson

correlation coefficient obtained by our regression task with that

obtained based on the predicted probability of the classification

task and the target values of the regression task. Figure 4

shows the Pearson correlation coefficient values under different

conditions. It indicates that the Pearson correlation coefficients

obtained by our regression task are significantly better than the

Pearson correlation coefficients obtained based on the predicted

probability of the classification task.

FIGURE 5

Cross-validation performances of three di�erent learning

strategies by using di�erent epochs for the second-stage

model. TF: Transfer learning; Scratch1: Learning from scratch

with epochs from 16 to 256; Scratch2: Learning from scratch

with epochs from 76 to 316.

TABLE 6 Performance of di�erent models on GAC_test.

Models Acc Sp Sn MCC AUPRC AUROC

iRNA-

Methyl

0.5260 0.5350 0.5171 0.0521 0.5163 0.5360

M6Apred 0.5367 0.7509 0.3225 0.0812 0.5587 0.5482

iRNA(m6A)-

PseDNC

0.4906 0.1681 0.8131 −0.0246 0.5249 0.4941

Our model 0.6813 0.7099 0.6527 0.3632 0.7455 0.7431

Results for the second-stage model

Transfer learning was used to build the second-stage model

based on the model built in the first stage. In this stage, the

hyperparameter “epochs” were optimized to build our model

whose range was from 16 to 256. Figure 5 shows the cross

validation AUROCs of different epochs, which indicates the

highest AUROC (0.7304) is obtained when epochs is 64. To

investigate if the performance of transfer learning is superior to

that of training from scratch, the same network without using

the weights obtained from the first-stage model was trained. We

set up two groups of epochs, one is from 16 to 256 and the

other one is from 76 to 316 as the epochs used for building the

first-stage model is 60. Figure 5 shows that the highest AUROCs

obtained for the two groups of parameters are 0.7059 and 0.7030,

respectively, which are lower than the AUROC obtained from

transfer learning. Thus, our results demonstrate that transfer

learning outperforms learning from scratch in this study. The

details of the predictive result for each fold based on the final

second-stage model are shown in Supplementary Table S7, and

Frontiers inMicrobiology 09 frontiersin.org

https://doi.org/10.3389/fmicb.2022.999506
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fmicb.2022.999506

FIGURE 6

The ROC curves and PRC curves based on the predictive results of the independent test set GAC_2344 by our model and the other three

methods. (A) ROC curves; (B) PRC curves.

TABLE 7 Performance comparison between the single-task classification models and the classification task of the multi-task models based on

GAC_train, AAC_train, and GAC_train and AAC train, respectively.

Datasets GAC_train AAC_train GAC_train and AAC_train

models Single-task Multi-task Single-task Multi-task Single-task Multi-task

Acc 0.7928 0.7919 0.7997 0.8002 0.8069 0.8076

Sp 0.7608 0.7632 0.7840 0.7705 0.7872 0.7557

Sn 0.8248 0.8206 0.8154 0.8299 0.8267 0.8594

MCC 0.5877 0.5869 0.6000 0.6019 0.6153 0.6196

AUPRC 0.8598 0.8592 0.8605 0.8636 0.8711 0.8738

AUROC 0.8740 0.8728 0.8766 0.8787 0.8864 0.8871

the ROC and PRC curves for the cross validation results are

shown in Supplementary Figure S2.

Comparison with existing predictors

Because most of the existing predictors were built

based on the dataset which is composed of 1,307 base

resolution data with GAC motif in the center, we decided

to compare our second-stage model with these methods

on the independent test set GAC_2344. Although several

models such as BEMRP (Huang et al., 2018), m6Apred (Chen

et al., 2015c), iRNA(m6A)-PseDNC (Chen et al., 2018) and

iRNA-methyl (Chen et al., 2015b) have been developed to

predict m6A sites of Saccharomyces cerevisiae. However, only

m6Apred, iRNA(m6A)-PseDNC and iRNA-methyl are available

now, Table 6 and Figure 6 show that our model substantially

outperforms these three models on all the evaluation metrics

except sensitivity. We noted that the model iRNA(m6A)-

PseDNC even got a negative MCC. In the work for building

the model iRNA(m6A)-PseDNC (Chen et al., 2018), the 1,307

negative samples were specifically selected according to the

Euclidean distance (based on the 22 features) to the center of all

33,280 negative samples.

Discussions

Results of single-task models

In order to evaluate the efficacy of multi-task learning

architecture, we conducted the two single-task learnings,

i.e., classification task learning and regression task learning,
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TABLE 8 The cross-validation Pearson correlation coe�cient of

single-task regression models and multi-task models on GAC_train,

AAC_train and GAC_train and AAC_train, respectively.

Datasets GAC_train AAC_train GAC_train

and

AAC_train

Corrcoef of the

regression task

of multi-task

models

0.6186 0.6131 0.6369

Corrcoef of the

single-task

regression

models

0.6165 0.6070 0.6326

based on the selected CNN+BiLSTM network, respectively.

Table 7 shows the cross validation results of the single-task

classification models on the two training datasets. According

to AUROC, the performance of the multi-task model is a

bit better than that of the single-task classification model

on AAC_train, however, the performance of the multi-

task model is a little worse than that of the single-task

classification model on GAC_train. To further demonstrate

the effectiveness of multi-task architecture, we also evaluated

the performance on the dataset including both AAC_train

and GAC_train. As shown in Table 7, the AUROC (0.8871),

AUPRC (0.8738), MCC (0.6196) of the multi-task model are

all better than that of the single-task classification model on

this dataset.

Table 8 shows the cross validation results of the single-

task regression models on AAC_train, GAC_train and the

combined dataset of AAC_train and GAC_train. It shows

that the performance of multi-task models is a little bit

better than that of the single-task regression models on

the three datasets according to the Pearson correlation

coefficients.

By comparing the performance between multi-task learning

and single-task learning on the three datasets, GAC_train,

AAC_train and the combined dataset. Our results show

that the AUROCs of the classification-task are 0.8728 and

0.8740 based on multi-task learning and single-task learning

for GAC_train, respectively, and the correlation coefficients

of the regression task are 0.6186 and 0.6165 based on

multi-task learning and single-task learning, respectively. On

AAC_train, the AUROCs of the classification-task are 0.8787

and 0.8766 based on multi-task learning and single-task

learning, respectively, and the correlation coefficients of the

regression task are 0.6131 and 0.6070 based on multi-task

learning and single-task learning, respectively. On the combined

dataset with GAC_train and AAC_train, the AUROCs of

FIGURE 7

The performance comparison between the model with

task-specific dense network and our original model.

the classification-task are 0.8871 and 0.8864 based on multi-

task learning and single-task learning, respectively, and the

correlation coefficients of the regression task are 0.6369 and

0.6326 based on multi-task learning and single-task learning,

respectively. Thus, the multi-task learning outperforms the

single-task learning for 5 of the 6 tasks on the three

datasets. In addition, the multi-task learning framework is

more efficient than single-task model because it can complete

the two tasks simultaneously. Overall, our results indicate

that the multi-task model slightly outperforms the single-

task models.

Performance of the first-stage model
based on di�erent loss weights and
task-specific networks

To evaluate the effectiveness of different loss weights on

our first-stage model, we used the strategy developed in Cipolla

et al.’s work (Cipolla et al., 2018) to optimize the weights by using

uncertainty and obtained a weights ratio of 0.06:1.85. Based on

these weights, we validated the model based on AAC dataset and

obtained a 5-fold cross validation AUROC of 0.8517, which is

less than the value (0.8787) obtained based on the weight ratio

of 1.0:1.0.

In addition, we set up two dense layers with 64 nodes as the

task-specific networks for the two tasks, respectively, to check

if the performance could be improved. Figure 7 shows that the

model with task-specific dense network achieves similar results

to our original model.
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Analysis of sequences in the benchmark
datasets of the two stages

Table 2 and Figure 5 show the AUROC of the first-stage

model is higher than the second stage model, one possible

reason is the discrepancy between positive and negative samples

in the benchmark datasets of the two stages is different.

Supplementary Figure S3 shows the graphical sequence logo

generated by Two Sample Logo (Vacic et al., 2006) for the two

benchmark datasets, which indicates the discrepancy between

positive and negative samples of the training dataset of the first

stage (upper panel) is larger than that of the second stage (lower

panel). Thus, a two-stage model would be helpful for predicting

m6A sites.

Conclusions

In this study, we built a two-stage model, MTDeepM6A-2S,

which can serially predict low resolution and base resolution

m6A sites of Saccharomyces cerevisiae in the first and second

stages. We used both the extensive low resolution data and the

less extensive base resolution data to build our model, so as

to simulate the process of wet experiments in which the base

resolution m6A sites can be identified by post-calibration. To

use the “SupportNum” information recorded in RMBase, we

adopted a multi-task learning algorithm to build our first-stage

model through which we can not only predict m6A sites of

Saccharomyces cerevisiae but also give a reasonable confidence

for the predictive results. Three deep learning networks were

tried in this study, which are based on CNN, CNN+BiLSTM

and CNN+TRANSFORMER frameworks. Our results indicate

that the model with CNN+BiLSTM framework achieves the best

performance. Further analysis also shows that the model based

on multi-task learning is superior to the single-task learning. In

the light of the similarity between the classification tasks of the

two stages, transfer learning was employed to build the second-

stage model so that the network weights obtained from the first

stage could be used. In addition, the generalization of our model

was evaluated on an independent test dataset, which indicates

our model is substantially superior to the existing predictor, so

that our model could be a useful tool for the community.
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