
Monteith et al. Int J Bipolar Disord  (2016) 4:10 
DOI 10.1186/s40345-016-0051-7

REVIEW

Big data for bipolar disorder
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Abstract 

The delivery of psychiatric care is changing with a new emphasis on integrated care, preventative measures, popula‑
tion health, and the biological basis of disease. Fundamental to this transformation are big data and advances in the 
ability to analyze these data. The impact of big data on the routine treatment of bipolar disorder today and in the 
near future is discussed, with examples that relate to health policy, the discovery of new associations, and the study 
of rare events. The primary sources of big data today are electronic medical records (EMR), claims, and registry data 
from providers and payers. In the near future, data created by patients from active monitoring, passive monitoring 
of Internet and smartphone activities, and from sensors may be integrated with the EMR. Diverse data sources from 
outside of medicine, such as government financial data, will be linked for research. Over the long term, genetic and 
imaging data will be integrated with the EMR, and there will be more emphasis on predictive models. Many techni‑
cal challenges remain when analyzing big data that relates to size, heterogeneity, complexity, and unstructured text 
data in the EMR. Human judgement and subject matter expertise are critical parts of big data analysis, and the active 
participation of psychiatrists is needed throughout the analytical process.
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Background
The frequency and importance of comorbid mental and 
chronic physical illness have emphasized the need for 
a change in the delivery of psychiatric care, including 
bipolar disorder (Melek et al. 2014, DeHert et al. 2011). 
Bipolar disorder is associated with poor functional out-
come (Conus et  al. 2014), considerable economic cost 
for society (Kleine-Budde et al. 2014; Young et al. 2011), 
and management is often complicated by medical comor-
bidity such as type II diabetes/insulin resistance (Calkin 
et  al. 2015; Calkin and Alda 2015; Carney and Jones 
2006). Responses to improve care delivery include inte-
grating psychiatry with primary care (Butler et al. 2008; 
Manderscheid and Kathol 2014; Cerimele and Strain 
2010; Katon et  al. 2010), collaborative care measures 
(Woltmann et  al. 2012), implementing preventive pro-
grams and quality measurements consistent with a popu-
lation health perspective (Rose 2001; Mabry et al. 2008), 
and increasing emphasis on the genetic and neuroscience 

basis of mental illness (Insel 2009; Reynolds et al. 2009). 
Additionally, precision medicine initiatives are accelerat-
ing interdisciplinary research with a goal of tailoring psy-
chiatric care to the individual (Insel 2014).

Big data and advances in the ability to analyze these 
data are fundamental to this evolving perspective of psy-
chiatry (Monteith et  al. 2015; NRC 2013). Big data can 
be conceptualized as heterogeneous data, unprecedented 
in size and complexity, lacking in structure, and coming 
from many sources (Monteith et  al. 2015). The scale of 
big data in size and complexity makes it difficult to pro-
cess, analyze, and extract useful information (Burkhardt 
2014). Today, the primary source of big data in medicine  
is from providers and payers including electronic medi-
cal records (EMR) created by physicians, claims records, 
pharmacy records, and imaging. However, the data 
for analysis will keep expanding from omics, such as 
genomic, epigenomic, proteomic, and metabolomic data. 
Today, about 95 % of the data for each patient is generated 
by imaging (Hamalka 2011), and genomic data requires 
50-fold greater storage per patient than imaging (Star-
ren et al. 2013). Data will also be coming from non-tradi-
tional sources including patients and non-providers, from 
smartphone applications, sensors, and Internet activities 
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(Glenn and Monteith 2014a). With the addition of data 
from patient devices, it is estimated that every person 
will generate more than 1 petabyte (1 million gigabytes) 
of health information over a lifetime (IBM 2015a). IBM 
envisions a future in which 10 percent of medical data will 
be from medical records, 20 percent from genomics, and 
70 % from patient-created sources (Slabodkin 2015). The 
amount of medical-related data in existence is expected to 
double in size every 2 years (IBM 2015b).

It is still early in the process of converting from paper 
to digital-based medicine. As with other industries, the 
main benefits will be related to future innovations and 
redefined work processes fostered by the technology, and 
increased software usability and usefulness (Fernald and 
Wang 2015; Landauer 1995). However, many initial ben-
efits from digitizing data are already being seen today in 
the analysis of very large databases. The objective of this 
review is to discuss both the promises and challenges of 
using big data to improve the understanding and treat-
ment of bipolar disorder.

Data sources from providers and payers
There are many public and private sources of big data 
from EMR, claims/administrative data, and registries 
that are available for secondary use in medical research. 
These data sources were not designed for research and 
each has strengths and weaknesses, with differences in 
quality, completeness, and potential for bias. In the US, 
claims or administrative encounter data that providers 
(physicians, hospitals, labs, and pharmacies) submit for 
payment to insurers and the government provide the 
most complete picture of patient involvement with the 
healthcare system. Although standardized diagnostic and 
procedure codes are used, claims data lacks clinical detail 
such as test results. The diagnosis on a claim is only for 
the services performed on that date, and may be incor-
rect, incomplete, differential, or driven by reimburse-
ment policies (Sarrazin and Rosenthal 2012; Wilson and 
Bock 2012; West et  al. 2014; Overhage and Overhage 
2013). The time lag for claims processing is often several 
months. About 17  % of commercially insured people in 
the US switch coverage each year posing challenges for 
longitudinal analysis (Sung 2015; Marketscan 2011).

In contrast to claims, EMR provide timely clinical 
details from the providers who use the software, espe-
cially related to patient management. The clinical data 
may include patient history and symptoms, multiple 
diagnoses including those unrelated to the current visit, 
physician assessment and treatment plan, disease sever-
ity, lab results, vital signs, non-prescription drugs and 
results of screening tools such as PHQ-9. Government 
mandates in the US have dramatically increased the use 
of EMR. About half of EMR text is unstructured data 

(Davenport 2014), and many challenges remain to auto-
matically extract information from the rich but distinct 
vocabularies used throughout medicine (Dinov 2016; 
Ivanovic and Budimac 2014). Efforts are underway to 
address standardization with the goal of semantic inter-
operability of data from different providers and software 
systems (IHE 2015; HealthIT.gov 2015; Dinov 2016). 
There are other important quality issues in EMR data 
including inconsistency, redundancy, inaccuracy, miss-
ing data, interoperability between vendor products, and 
potential biases from measured and non-measured con-
founders (Monteith et al. 2015; Bayley et al. 2013; Kaplan 
et al. 2014; Hersh et al. 2013; Hripcsak et al. 2011).

Outside the US, psychiatric register data may be based 
on a country population such as in the Nordic countries 
or Taiwan, or a geographical area such as the South Lon-
don and Maudsley NHS Foundation Trust (SLAM) case 
register, or a provider (Munk-Jorgensen et al. 2014; Alle-
beck 2009; Stewart et al. 2009). These registries provide a 
longitudinal record of all psychiatric contacts, and have 
high coverage and low dropout rates in countries with a 
national health service. However, there are limitations to 
the validity and quality of data in psychiatric registries, 
including over-representation of severe cases or inpa-
tient data, sparse clinical detail, exclusion of variables not 
available from all institutions reporting to the register, 
and insufficient linking to other registries such as cause 
of death (Munk-Jørgensen et  al. 2014). There are also 
questions about the validity of psychiatric diagnoses in 
the register data (Byrne et al. 2005; Øiesvold et al. 2013), 
including bipolar disorder (Øiesvold et al. 2012). Psychi-
atric case registries do not include patients without a psy-
chiatric diagnosis for comparison (Munk-Jørgensen et al. 
2014). Some other types of registries that can be linked 
to psychiatric registries include those for general health, 
prescription drugs, vital statistics, school registries, 
social insurance registries, and biobanks (Allebeck 2009), 
each of which has strengths and weaknesses.

Other sources of data include research databases and 
surveys, such as the US National Comorbidity Survey 
(Kessler et  al. 1994) or the National Epidemiological 
Survey on Alcohol and Related Conditions (NESARC) 
(Grant et al. 2004), which may have a national scope but 
contain a subset of clinical information.

Even very large databases containing millions of 
individuals may not be representative of the general 
population (Riley 2009). For example, the US claims/
administrative data from a Medicaid population will 
include more younger women and children, data from 
an employer-offered HMO may include more younger 
and healthier people, and data from Veterans Affairs 
(VA) will include mainly males and be older (Overhage 
and Overhage 2013; Medicaid 2015). In a US multistate 
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EMR database with 84 million patients, psychiatric and 
behavioral diagnoses were less frequent as compared to 
the US National Inpatient Sample, an established popu-
lation estimate based on claims (HCUP 2015; DeShazo 
and Hoffman 2015). Population-based registries from 
small homogenous countries may not be representa-
tive of the population in larger diverse countries. Due to 
the heterogeneity among very large databases, the data 
source selected may challenge the results of observa-
tional studies, including even finding contradictory sta-
tistical significance (Madigan et al. 2013; Goldstein and 
Winkelmayer 2015; Crump et al. 2013a). However, with a 
clear understanding of the strengths and weaknesses of a 
database, some findings from observational analyses can 
now be verified in many national and regional settings. 
For example, in a systematic review of 25 international 
population or community-based studies using different 
diagnostic criteria, the prevalence of bipolar disorder 
type I and type II was consistently low (Clemente et al. 
2015).

The addition of complementary data sources may 
improve the accuracy and usefulness of data from any 
one source. Even when using validated algorithms, it 
is difficult to determine an episodic diagnosis such as 
depression when analyzing US claims data, and combin-
ing another data source such as EMR may improve accu-
racy (Townsend et al. 2012; Fiest et al. 2014). However, in 
the US, linking of data from unrelated sources that were 
de-identified to meet privacy regulations is challenging 
(West et  al. 2014, Li and Shen 2013). In contrast, many 
European countries have a unique person identifier that 
is present on all medical data (Allebeck 2009). The use 
of complementary linked databases may also expand the 
types of research questions that may be addressed. Exam-
ples of useful linkages include register population data 
linked with biobank data in a study that found no asso-
ciation between markers of prenatal infection and the 
risk of bipolar disorder (Mortensen et al. 2011), and in a 
study that found elevated C-reactive protein was associ-
ated with an increased risk of late-onset bipolar disorder 
(Wium-Andersen et al. 2015).

Uses for data from providers and payers
The analysis of very large databases has provided fun-
damental information about bipolar disorder includ-
ing the incidence, prevalence, decreased life expectancy 
(Munk-Jørgensen et  al. 2014; Allebeck 2009; Laursen 
et al. 2007; Chang et al. 2011; Kessing et al. 2015c; Kes-
sing et  al. 2015d), and trends in prescribing medication 
(Baldessarini et  al. 2007; Hayes et  al. 2011; Bjorklund 
et al. 2015). Results from the analysis of large data sources 
are continuously being incorporated into patient care and 
research, and some key areas are discussed below.

Health policy decisions
Health policy decisions focus on outcome and cost. Big 
data is fundamental to the increasing importance of 
clinical guidelines, defining and measuring metrics that 
reflect the quality of care delivered, and meeting per-
formance standards based on quality metrics. For the 
treatment of bipolar disorder, big data studies are help-
ing to characterize problems and evaluate the results of 
policy changes. Of great concern are repeated findings 
of excess mortality in patients with bipolar disorder due 
primarily to physical illness, and of continuing disparities 
in the treatment of physical illness as compared with the 
general population (Roshanaei-Moghaddam and Katon 
2009; McGinty et al. 2015). Some examples of suboptimal 
care for medical illness for people with bipolar disorder 
found using big data are shown in Table 1. In addition to 
health services and physical illness, socioeconomic fac-
tors and patient behaviors contribute to excess morbid-
ity and mortality in bipolar disorder (Druss et al. 2011). 
The linking of psychiatric data with other databases, such 
as government financial databases, will help to clarify the 
complex, cumulative impacts of diverse socioeconomic 
factors, as shown in Table 2. Examples of studies directly 
related to health policy and bipolar disorder using big 
data are given in Table 3.

Evaluation of rare events
Big data allows the study of rare events and outcomes 
that may require data from multiple sources to provide 
an adequate sample size for detection. Randomized con-
trolled trials are not powered to detect rare events or 
long-term effects, and case control and retrospective 
cohort study designs of observational databases collected 
from clinical practice are often used (Chan et  al. 2015; 
Rodriguez et  al. 2001). For example, there have been 
several recent large or population-based studies of renal 
related events in patients who were treated with lithium, 
as shown in Table  4. Big databases are being used for 
pharmacovigilance of many drugs prescribed for bipo-
lar disorder, such as studies of the potential for anti- 
psychotics to increase risk of a seizure (Bloechliger et al. 
2015), pulmonary embolism (Tournier 2015; Conti et al. 
2015), and a Torsades de pointes ventricular arrhythmia 
(Poluzzi et al. 2013).

Exploration and hypothesis generation from large 
databases
The exploration of big data offers unique opportunities 
to find correlations that may trigger the investigation 
of new areas and generation of new hypotheses (Var-
ian 2014; Khoury and Ioannidis 2014). These new cor-
relations may or may not have meaning, do not measure 
causality, and may be further investigated by traditional 
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or data-intensive experimental methods as appropri-
ate. There are many computational and statistical chal-
lenges associated with the analysis of big data related to 
the number of patients, number of variables per patient, 
and the quality and technical complexity of the databases 
(Monteith et al. 2015; Fan et al. 2014; Grimes and Schulz 
2002). Both the variables included and the analytic tech-
niques used may lead to variation in the associations 
detected in big data studies (Abrams et al. 2008; Fan et al. 
2014; Patel et al. 2015a).

Additional correlations detected include an associa-
tion between epilepsy and bipolar disorder (Wotton and 
Goldacre 2014; Clarke et  al. 2012), an increased risk of 
pneumonia in patients with bipolar disorder taking anti- 
psychotics (Yang et al. 2013), an increased risk of bipolar  
disorder in those with a diagnosis of autism spectrum 
disorder (Selten et al. 2015), and finding that the prema-
ture risk of cardiovascular disease in bipolar disorder is 
not explained by traditional risk factors including ciga-
rette smoking, obesity, or hypertension (Goldstein et al. 
2015). In a study using medical records from 110 million 
patients, new associations were found between Mende-
lian diseases and complex psychiatric diseases, including 
bipolar disorder (Blair et al. 2013).

Defining phenotypes
There is considerable interest in using EMR to automate 
the process of defining phenotypic cohorts for genetic 
studies of bipolar disorder, since sample sizes of tens of 
thousands are needed (Pathak et al. 2013; Potash 2015). 
In addition to the study of phenotype-genotype relation-
ships and gene-disease associations, phenotypic cohorts 
will enable a wide range of clinical research. Despite 
many challenges, semi-automated methods are now 
being used to define phenotypes from EMR for psychi-
atric disorders, including bipolar disorder (Lyalina et al. 
2013; Castro et  al. 2015a). The methodology used to 
automate phenotype detection in EMR is evolving, and 
includes data mining, natural language processing, sta-
tistical techniques, and human expertise (Hripcsak and 
Albers 2013; Pathak et al. 2013). More standardization is 
expected in the future.

Predictive models
Predictive models are widely used in medicine, such 
as cardiovascular risk prediction, to estimate the pres-
ence of a diagnosis or event, or if the diagnosis or event 
will occur in a specific time period (Moons et al. 2012). 
The results of validated predictive models may assist the 
physician and patient with decision making to mitigate 
risks, and help to limit spending on unnecessary proce-
dures. Before adoption for clinical use, predictive models 
require considerable testing and re-adjustment, including 

internal validation, external validation with other popu-
lations, followed by determination if the validated model 
provides actionable information to the clinician and 
patient (Moons et al. 2012). Most predictive models are 
based on a small number of variables collected in cohort 
studies such as the Framingham Heart Study (D’Agostino 
et  al. 2008). In general, models used in medicine today 
have limited predictive power, and access to the large 
number of variables and patients in EMR and other data-
bases may improve their accuracy in the future (Berger 
and Doban 2014; de Lissovoy 2013). With the frequent 
use of heuristics in medical decision making, complex 
predictive models also need practical input requirements 
for routine use in clinical situations (Marewski and Gig-
erenzer 2012).

Many technical issues impede the development of 
predictive models from EMR data, including quality, 
multidimensional complexity, bias, comorbidities, and 
confounding medical interventions (Paxton et  al. 2013; 
Wu et  al. 2010; Wang et  al. 2014). The temporal nature 
of EMR data also poses a significant challenge for predic-
tion (Singh et al. 2015; Binder and Blettner 2015). In con-
trast to a controlled longitudinal study, data entries into 
an EMR only occur when a patient initiates or a physi-
cian recommends and documents care. There are great 
differences in the time between visits for one patient, 
and across all patients, in the number of visits and length 
of time each patient is tracked. New variables detected 
in EMR data may be associated with but not predictive 
of disease (Ware 2006). A variety of machine learning, 
data mining, classification algorithms, and statistical 
approaches are currently being researched for the future 
(Singh et al. 2015; Wu et al. 2010, Wang et al. 2014).

While the primary benefits of prediction will be in 
the future, in some recently developed models, bipolar 
disorder is a risk factor for readmission to a psychiatric 
hospital within 30 days of discharge (Vigod et al. 2015), 
readmission to a safety-net hospital within a year (Ham-
ilton et al. 2015), and suicide by veterans (McCarthy et al. 
2015). The addition of variables relating to a diagnosis of 
bipolar disorder or schizophrenia improved the accuracy 
of a predictive model of cardiovascular risk for those with 
these diagnoses (Osborn et al. 2015).

Data sources from patients and non‑providers
Digital technologies that are widely accepted by the gen-
eral public are being integrated into the routine care of 
bipolar disorder to increase patient involvement and 
expand clinician oversight between visits. Many technol-
ogies are suitable platforms for active or passive patient 
monitoring including computers, smartphones, and even 
clothing with embedded sensors. Today, the patient-cre-
ated data are not generally integrated into the EMR.
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Data actively created by patients outside of medical 
settings
Many applications are available today to monitor bipolar 
disorder away from medical settings that require active 
patient participation. These include validated products for 
mood charting such as the ChronoRecord on a computer 
(Bauer et al. 2004; Bauer et al. 2008), the Life-Chart on a 
smartphone and web site (Scharer et al. 2015), weekly text 
messaging of responses to Quick Inventory of Depres-
sive Symptomatology and Altman self-rating manic scale 
(Bopp et al. 2010), and weekly or monthly use of an inter-
active voice response (IVR) system to complete the PHQ-9 
(Piette et  al. 2013). In all cases, the patients respond to 
questions or prompts directly related to their illness. In 
addition to clinical use, data collected from these systems 
is often aggregated for research (Bauer et al. 2013a, 2013b; 
Moore et al. 2014). A large number of parameters may be 
accumulated for each patient, such as from daily medica-
tions taken (Bauer et al. 2013a), but data are not routinely 
integrated into the EMR. Although challenges remain 
regarding the interpretation of self-reported data, much 
of the understanding about the long-term course of bipo-
lar disorder is due to the daily recording efforts of patients 
worldwide, starting with paper-based instruments (Bauer 
et al. 1991; Kupka et al. 2007).

Data passively created by patients outside of medical 
settings
With passive monitoring, patients do not directly pro-
vide information about their illness, and much of the 
data collected are non-medical. For example, data from 
Internet and smartphone activities, and from sensors 
in smartphones and wearable technology, are routinely 
being used to monitor mental state and behavior for non-
medical purposes such as behavioral advertising (Glenn 
and Monteith 2014b; Geller 2014; FTC 2009). There are 
a variety of passive monitoring projects for bipolar dis-
order, mostly in the pilot phase, with examples shown 
in Table 5. The implementation of routine passive moni-
toring for large numbers of patients faces many hurdles, 
including patient acceptance, physician usability, and 
processing large volumes of data from sensors (Red-
mond et  al. 2014; Muench 2014). Many passive moni-
toring projects involve smartphones. Both the differing 
physical characteristics of the standard devices available 
to consumers such as sensor accuracy and memory size, 
and methods selected for analysis may impact the find-
ings (Banaee et al. 2013; Redmond et al. 2014). The sales 
of smartphones are flat in developed countries with satu-
ration reached, and usage patterns vary among countries 
(Thomas 2014, Waters 2015). In the US in 2015, 64 % of 
adults in the US use a smartphone with 7 % relying pri-
marily on it for Internet access (Smith 2015).

Commercial processing of data
Provider-created data are traditionally processed by the 
provider or their contractors. In contrast, commercial 
firms unrelated to medicine may be involved in both 
active and passive patient monitoring. Many behavioral 
related apps are available for Apple and Android smart-
phones, and commercial firms may receive, store, and 
analyze data using proprietary and unvalidated algo-
rithms. Any potential combination of data processed by 
commercial firms with EMR data needs to be carefully 
evaluated as the firms may not be covered by national 
privacy regulations (Glenn and Monteith 2014b). An 
analysis of 79 mobile health apps certified as trustworthy 
by the UK NHS found a multitude of privacy and security 
flaws (Huckvale et al. 2015).

Changing world of technology
Passive monitoring should be considered in the con-
text of the ongoing changes in digital technology, espe-
cially in relation to mobile devices for consumers. First, 
the devices used to access the Internet will change the 
online activities of the public. For example, the use of a 
search engine is much lower from a smartphone than 
from a computer (Arthur 2015; MacMillan 2015). Sec-
ond, the widespread use of mobile technology has trig-
gered a push toward developing artificial intelligence (AI) 
interfaces for devices, as evidenced by the near simulta-
neous announcements of open source AI software tools 
from Google, Microsoft, IBM, and Facebook (Simonite 
2015). The vision of Larry Page of Google is for Google 
to tell you what you want before you ask the question 
(Varian 2014, Page 2013). In an international survey of 
6600 smartphone users by Ericsson, half of all smart-
phone users expect AI interfaces to replace the smart-
phone screen within 5  years, and one-third want AI to 
keep them company (Boulden 2015). Messaging chatbots 
(computer-generated responses based on AI) are start-
ing to replace search engines on mobile devices (Elgan 
2015). In the future, consumer mobile devices will rou-
tinely incorporate voice and gesture input, and as hard-
ware features change, the AI algorithms will also evolve. 
In the background, there is an industry-wide effort to 
develop AI algorithms based on massive databases to 
predict behavior and emotions for uses such as for tar-
geted marketing.

Other provider data sources
Massive amounts of data will be coming from genom-
ics, proteomics, and image processing, and the ongoing 
efforts of large-scale consortia will help to elucidate the 
neuropathology of bipolar disorder and define new treat-
ment targets. The ENIGMA Consortium detected sub-
cortical brain volumetric changes using brain structural 
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MRI scans from 1710 patients with bipolar disorder and 
2594 controls (Thompson et al. 2014, Hibar et al. 2016). 
The ConLiGen Consortium identified genetic variants 
associated with lithium response in a GWAS study of 
2563 patients with bipolar disorder (Hou et al. 2016). The 
Psychiatric Genomics Consortium (PGC) found a new 
susceptibility locus in a GWAS study of 7481 individu-
als with bipolar disorder and 9250 controls (Sklar et  al. 
2011). Recent technology allows large-scale comparison 
of proteome profiles (Gold et al. 2010; SomaLogic 2016), 
and findings may improve predictive models for bipolar 
disorder. These data are not expected to be incorporated 
into the EMR or impact the routine care of bipolar dis-
order in the near future but suggest future directions for 
data integration.

General considerations
There are a wide range of anticipated and unanticipated 
complications related to the use of big data in the study 
of bipolar disorder some of which are mentioned briefly 
below.

Privacy and confidentiality
The privacy and confidentiality of big data are a major 
concern. Many technical issues affect the privacy and 
confidentiality of big data related to hardware and soft-
ware implementations, mobile devices and wireless 
networks, shared resources, and shared control over 
monitoring systems (Ko et al. 2010). Breaches of provider 
medical data occur frequently with about 90 % of health 
care providers reporting at least one data breach over 
the last 2 years in an international study in 2015 (Expe-
rian 2015). The use of commercial apps for monitoring 
also complicates privacy issues. Patients may incorrectly 
assume that national medical privacy regulations apply 
to data collected and processed by non-providers (Glenn 
and Monteith 2014b). Patient posting of private medical 
data online, such as in support groups, is another com-
plication, and online data cannot really be deleted due to 
the distributed and redundant storage of Internet data 
(President’s Council 2014). Preserving privacy in big data 
research is particularly difficult, since this often includes 
multiple international collaborators, and data are copied 
and shared around the world. The legal framework for 
medical privacy varies among countries (Dove and Phil-
lips 2015).

Ethical considerations
There is disagreement about the importance of informed 
consent for big data research (Rothstein 2015), with some 
wanting to ease regulations (Larson 2013). The consent 
process is of particular importance for bipolar disor-
der due to the highly sensitive information in the EMR 

(Clemens 2012), and since some patients have cognitive 
impairment (Daglas et al. 2015).

De-identification is frequently used to protect indi-
vidual privacy. De-identified data are not covered by 
US federal privacy laws and are sold commercially. Yet 
the general public cares about using de-identified data 
without consent (McGraw 2013), and about the spe-
cific purpose for secondary use (Grande et  al. 2013). 
The released data may be vulnerable to re-identification 
since current de-identification methods are inadequate 
for high-dimensional data (Narayanan et al. 2016). There 
is a growing confluence of the interests of academic and 
commercial organizations in big data projects, leading to 
questions about ownership of the data and any benefits 
created, and about disposition of data if a firm goes out of 
business or is purchased.

In countries without a national health service, predic-
tive models of costs may increase coverage disparities of 
vulnerable groups (Wharam and Weiner 2012). Predic-
tive models being developed by commercial, non-med-
ical companies can create ethical conflicts (Glenn and 
Monteith 2014a). For example, privacy and non-discrim-
ination laws in the US that impact decisions about credit, 
employment, or housing do not prohibit discrimination 
against the predisposition of disabilities (Horvitz and 
Mulligan 2015).

Unreasonable expectations for predictive models
The expectations of the general public regarding pre-
dictive models may be inappropriate. People are famil-
iar with personalized recommendations from Netflix or 
Amazon, search results from Google, and advertising 
on Apple and Android smartphones. These predictive 
models are based solely on the available data, are uncon-
nected to causal inference and underlying mechanisms, 
and focus on predicting the present rather than the future 
(Hand 2013; Curtis 2014). The validity of predictive mod-
els in business is judged by increased overall sales and 
profits, not by accuracy of the prediction for individual 
customers (McAfee et al. 2012).

Physicians may also have unrealistic expectations for 
models that predict behavior based on big data. Big data 
is non-sampled, and from sources with a purpose other 
than statistical inference (Horrigan 2013). Data that are 
created and collected by humans reflect physical place 
and culture, and contain hidden biases (Pope et  al. 
2014, Crawford 2013). More data does not necessar-
ily improve predictions over those made using smaller 
datasets as data must be relevant to the question at hand 
(Monteith et  al. 2015; Guszcza and Richardson 2014). 
Big data is also without context (Boyd and Crawford 
2012; Bilton 2013). Furthermore, malware or denial of 
service attacks occur frequently, change overall Internet 
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behavior patterns, and further complicate interpretation 
of human behavior (NRC 2013). Predictive models can 
be wrong as shown repeatedly with Google Flu (Lazer 
et al. 2014a, b). Predictive models in medical and related 
settings can be inconsistent and biased (Singh et  al. 
2014), have little clinical impact (Hochster and Nied-
zwiecki 2016), and may be most appropriate for health 
policy and risk stratification rather than individual risk 
prediction (Harris et al. 2015; Wray et al. 2013; Wharam 
and Weiner 2012).

Analytical challenges
In the future, data from all provider and patient sources 
will be integrated, creating massive datasets for analysis. 
Massive datasets have issues of scale, heterogeneity, mul-
tidimensional complexity, error handling, privacy, prov-
enance, and many types of biases (NRC 2013; Monteith 
et  al. 2015). If analysis of big data is based on the clas-
sical methods, underlying assumptions are likely to be 
violated. Researchers with different backgrounds tend to 
have different perspectives on data analysis, using either 
statistical (model-based focus on variability) or algo-
rithmic (data mining for patterns and rules) (NRC 2013; 
Mahoney et al. 2008) techniques. New algorithms for big 
data are combining the complementary strengths of both 
approaches.

Human judgment is an absolutely critical component 
of big data analysis (Wyss and Stürmer 2014; NRC 2013). 
To optimize the studies of big data for bipolar disor-
der, participation of those with expertise in psychiatry 
is required throughout the analytical process, such as 
for parameter selection and exclusion, interpretation of 
results, and hypothesis generation. For example, just as 
Captcha demonstrates the difference between human 
and machine image resolution (Datta et  al. 2009), psy-
chiatrist input is needed during the development of 
algorithms to interpret the use of language by those with 
bipolar disorder.

Conclusions
Big data projects based on the data collected by providers 
in EMR, claims, registries, and active patient monitor-
ing are providing valuable information on many aspects 
of bipolar disorder for research and clinical care. In the 
near future, data from passive patient monitoring will be 
available and integrated with the EMR, and diverse data 
sources from outside of medicine such as government 
financial data will be linked for research. This is only the 
beginning. Further on, data from genetics, other omics, 
and imaging will also be integrated with the EMR, and 
lead to new levels of understanding and improvement in 
routine care. Many significant challenges remain for big 
data projects, and the active collaboration of psychiatrists 

is required throughout the analytical process. Big data 
will provide the basis for transforming the understanding 
and management of bipolar disorder.
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