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Abstract

Background and objectives

Acute respiratory distress syndrome (ARDS) is a major cause respiratory failure in intensive

care unit (ICU). Early recognition of patients at high risk of death is of vital importance in

managing them. The aim of the study was to establish a prediction model by using variables

that were readily available in routine clinical practice.

Methods

The study was a secondary analysis of data obtained from the NHLBI Biologic Specimen

and Data Repository Information Coordinating Center. Patients were enrolled between Au-

gust 2007 and July 2008 from 33 hospitals. Demographics and laboratory findings were ex-

tracted from dataset. Univariate analyses were performed to screen variables with p<0.3.

Then these variables were subject to automatic stepwise forward selection with significance

level of 0.1. Interaction terms and fractional polynomials were examined for variables in the

main effect model. Multiple imputations and bootstraps procedures were used to obtain esti-

mations of coefficients with better external validation. Overall model fit and logistic regres-

sion diagnostics were explored.

Main result

A total of 282 ARDS patients were included for model development. The final model includ-

ed eight variables without interaction terms and non-linear functions. Because the variable

coefficients changed substantially after exclusion of most poorly fitted and influential sub-

jects, we estimated the coefficient after exclusion of these outliers. The equation for the fit-

ted model was: g(Χ)=0.06×age(in years)+2.23(if on vasopressor)+1.37×potassium (mmol/

l)-0.007×platelet count (×109)+0.03×heart rate (/min)-0.29×Hb(g/dl)-0.67×T(°C)

+0.01×PaO_2+13, and the probability of death π(Χ)=eg(Χ)/(1+eg(Χ)).
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Conclusion

The study established a prediction model for ARDS patients requiring mechanical ventila-

tion. The model was examined with rigorous methodology and can be used for risk stratifica-

tion in ARDS patients.

Introduction
Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury most com-
monly seen in intensive care unit (ICU) and it is associated with significant morbidity and
mortality. The incidence of ARDS is estimated to be approximately 40–80 per 100,000 patient-
years [1–4]. and the figure can vary with different definitions of ARDS. The mortality rate in
patients with established ARDS is around 50–60% [4–6]. More recently, due to advances in the
management of ARDS such as use of low tidal volume ventilation and extracorporeal mem-
brane oxygenation, the mortality has shown a reduction to around 30% [7, 8]. However, There
is limited supportive evidence that specific interventions can decrease mortality in ARDS, and
the mortality of ARDS does not show significant reduction over time.[9–12] Therefore, ARDS
remains to be a great challenge to clinicians.

The initial step in mortality reduction is to identify risk factors for poor clinical outcomes.
This is an area being extensively studied. For instance, sepsis-induced ARDS has been found to
be associated with increased risk of death as compared with other caused.[13] Patients with
lower BAL levels of procollagen peptide showed lower mortality than those with higher levels.
[14] However, most of these studies investigated risk factors in isolation. Because there are
multiple factors working together to determine the final outcomes of ARDS patients, it is more
clinically useful to develop a prediction model for risk stratification. Gajic O and colleagues
[15] developed a well-calibrated model for mortality prediction for ARDS patients, which how-
ever required information on organ functions three days after intubation. In another study,
risk tertiles model was developed for predicting mortality in ARDS. However, the study catego-
rized continuous variables into tertiles, which is thought to be associated with information loss
[16]. In the present study, we aimed to develop a prediction model for ARDS patients requiring
mechanical ventilation. The principal in developing the model is a balance between parsimony
and model fitting. Furthermore, the variables included in the model should be readily available
in routine clinical practices.

Methods
The performance of the secondary data analysis was approved by the ethics committee of Jin-
hua municipal central hospital and informed consent was waived. Patient records or informa-
tion was anonymized and de-identified prior to analysis. The study was a secondary analysis of
data obtained from the NHLBI Biologic Specimen and Data Repository Information Coordi-
nating Center. The original randomized controlled trial was entitled “Randomized, Placebo-
controlled Clinical Trial of an Aerosolized b2-Agonist for Treatment of Acute Lung Injury”
(NCT 00434993) and has been published elsewhere.[17]

Patients were enrolled between August 2007 and July 2008 from 33 hospitals of the National
heart, lung, and blood institute ARDS clinical trials network. Inclusion criteria were 1) patient
had to be intubated and receiving mechanical ventilation; 2) bilateral infiltrates consistent with
edema on chest X-ray, 3) had an PaO2/FiO2<300, 4) no clinical evidence of left atrial
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hypertension. The definition of ARDS in the study was made according to the American-Euro-
pean Consensus Conference (AECC) criteria [18]. In Berlin definition, the use of PEEP was
considered and ARDS was categorized into mild, moderate and severe forms [19]. Patients
were excluded if 1) they had coexisting chronic lung disease; 2) unable to obtain consent; 3)
acute myocardial infarction; 4) chronic liver disease; 5) neuromuscular disease.

Data extraction
Data were extracted from the dataset obtained from the NHLBI Biologic Specimen and Data
Repository Information Coordinating Center after approval. The variable name was annotated
in a file named “data dictionary”. The following variables were extracted: age, gender, body
mass index (BMI), past history of cigarette smoking and alcohol consumption, types of ICU
(medical ICU, surgical ICU and mixed ICU), admission type (unscheduled surgery, scheduled
surgery and medical admission), causes of ARDS (sepsis, transfusion, aspiration, pneumonia,
other lung conditions), admission source (operating room, emergency department, floor ward
and others), comorbidities (chronic dialysis, leukemia, immunodeficiency, cirrhosis, diabetes,
hypertension, myocardial infarction, heart failure, vascular disease, dementia, chronic pulmo-
nary disease, arthritis, peptic ulcer), vasopressor use, hemoglobin, white blood cell, platelet
count, creatinine, bilirubin, sodium, potassium, glucose, bicarbonate, phosphate, magnesium,
total protein, albumin, minimal glucose, FiO2, PaO2, PaCO2, pH, lowest and highest tempera-
ture, lowest and highest systolic blood pressure, lowest and highest mean blood pressure, low-
est and highest respiratory rate, urine output (24 hours), transfusion of RBC, FFP transfusion.
All measurements, including laboratory and physiological findings were performed within the
first 24 hours.

Statistical analysis
Univariate logistic regression model was performed to screen factors associated with mortality
in ARDS patients requiring mechanical ventilation. The dependent variable was a binary out-
come with “1” indicated death and “0” indicated survival. Independent variables were catego-
rized into continuous variables and indicator variables. Continuous variables such as age,
laboratory measurements and urine output were reported their ORs for each one unit increase
in the parameter. Indicator variables were reported their ORs for each category as referenced to
the base status. For instance, patients exposed to cigarette smoking were compared to those
without cigarette smoking, and OR was reported for the variable. Alcohol intake was reported
as the frequency and we dichotomized them into patients with and without history of alcohol
intake. Smokers were reported as non-smoker, former smoker and current smoker. We com-
bined the latter two categories as smokers. There were eight categories for the variable of ad-
mission sources. Because too many categories might compromise the statistical power, we
grouped patients from operating room and recovery room together.

Variables with p< 0.3 in univariate analysis are included for automatic stepwise selection of
covariates. Furthermore, variables with prevalence<10% or with>15% missing observations
were excluded from further analysis. In the study, phosphate and bilirubin both showed more
than 30% missing observations and was excluded from multivariable analysis despite their sig-
nificance in univariate analysis. Stepwise forward selection of variable with p<0.1 was per-
formed to screen variables independently associated with mortality. The automatic selection
would finally generate a main effect model. To make full use of data information and improve
statistical power, we use multiple imputation technique other than the conventional complete
case analysis as a sensitivity test to examine the robustness of our result.[20] Overfitting with
optimism in coefficient estimate was another concern in building a prediction model.[21]
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Thus, we use the bootstrapping technique to adjust for coefficients estimated from convention-
al multivariable analysis.[22] Bootstrapping was a technique of resampling with replacement
and here we repeated the sampling for 500 times. The bootstrapping sampling technique
would shrink the estimated coefficient but provide better prediction to future samples.

Potential interactions among included covariates in the main effect model were tested by in-
cluding them one by one. To simplify this process, we created a local macro called “covariate”
to store all covariates in the main effect model and thereafter the process can be automated by
using foreach syntax. Interaction terms with p<0.1 would be included in the model. Linearity
of covariates on logit scale is a fundamental assumption in model fitting. Therefore, we em-
ployed multivariable fractional polynomials (MFP) to test whether other power terms were su-
perior to the linear term.[23, 24] Firstly, the best fitting one-term and two-term models were
modeled by choosing power transformations from the set<-2, -1, -0.5, 0, 0.5, 1, 2, 3>, where 0
denoted the log transformation. Next, the closed test procedure was performed in which the
best fitting two-term model was compared with the linear model. If the two-term model was
significantly better than the linear one (p<0.05), two-term model was then compared to the
best fitting one-term model. Otherwise, linear model was adopted. The procedure continued
until there was no statistical significance and the best fitting model was chosen.

Model fit would be assessed from two aspects: a summary measure and regression diagnos-
tics. The Hosmer-Lemeshow tests would be employed in which grouping of covariate pattern
was based on the estimated probability.[25] The Hosmer-Lemeshow goodness-of-fit statistic
was obtained by calculating Pearson Chi-square statistic from the g×2 table of observed and es-
timated frequencies. The variable g refers to the number of groups. A statistical significance
level p<0.05 indicates that the model is significantly different from the observed outcome. Fur-
thermore, the discrimination of the fitted model was assessed graphically. Logistic regression
diagnostics were calculated to see if the model fit over the entire set of covariate patterns.[26]
Statistics including leverage, change in Pearson Chi-square (Δχ2), change in deviance (ΔD) and

Cook’s distance (Δb̂) would be plotted against the estimated probability of death (p̂).[27] The
aim was to examine cases lied far away from the others. New model fitting would be performed
by excluding these outliers. However, diagnostics statistics were used to identify influential sub-
jects and the decision on exclusion should incorporate subject matter considerations.

All statistical analyses were performed by using the STATA 13.1 (StataCorp, College Sta-
tion, Texas 77845 USA).

Results
A total of 2688 patients were initially screened. Then 2406 patients were excluded, remaining
282 ARDS patients who required invasive mechanical ventilation. The most common reasons
for exclusion were chronic lung disease (19.2%), unable to obtain consent (15.2%) and time win-
dow exceeded (14.7%). There were 61 non-survivors and 221 survivors, with an overall mortality
rate of 21.63%. Univariate logistic regression analysis (Table 1) showed that age (OR: 1.04, 95%
CI: 1.02–1.06), admission from floor ward (OR: 3.70, 95% CI: 1.02–13.46), leukemia (OR: 7.68,
95% CI: 1.37–43.01), vascular disease (OR: 11.38, 95% CI: 1.16–111.42), vasopressor use (OR:
5.08, 95% CI: 2.60–9.92), platelet count (OR: 0.996, 95% CI: 0.993–0.999), potassium (OR: 1.98,
95% CI: 1.27–3.08), bicarbonate (OR: 0.93, 95% CI: 0.88–0.98), phosphate (OR: 1.40, 95% CI:
1.09–1.81), pH (OR: 0.028, 95% CI: 0.002–0.41), lowest temperature (OR: 0.70, 95% CI: 0.53–
0.93), highest temperature (OR: 0.63, 95% CI: 0.45–0.88), lowest systolic pressure (OR: 0.98,
95% CI: 0.96–0.99), urine output (OR: 0.9997, 95% CI: 0.9995–0.9999). Five variables contained
missing values: bilirubin (49), phosphate (129), PaO2 (9), pH (9), mean blood pressure (2),
urine output (2). Because the variables bilirubin and phosphate had too many missing values
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Table 1. Univariate analysis by mortality.

Variable Odds ratio 95% CI P

Gender (male as reference) 0.83 0.46–1.47 0.512

Age 1.04 1.02–1.06 <0.001

BMI 0.99 0.94–1.03 0.521

Cigarette smoking (50.35%) 1.02 0.58–1.81 0.935

Alcohol (56.38%) 0.89 0.50–1.57 0.684

Location (MICU as reference)

SICU 0.96 0.46–2.00 0.910

Mixed ICU 0.60 0.27–1.33 0.210

Admission type

Unscheduled surgery Reference

Scheduled surgery 1.54 0.38–6.21 0.543

Medical 1.87 0.74–4.69 0.181

Causes of ARDS

Sepsis 1.44 0.81–2.58 0.217

Transfusion 0.59 0.13–2.71 0.498

Aspiration 1.19 0.63–2.26 0.585

Pneumonia 0.94 0.53–1.67 0.839

Other lung condition 0.31 0.07–1.34 0.117

Admission source

OR Reference

ED 1.95 0.54–7.04 0.305

Floor ward 3.70 1.02–13.46 0.047

Others 2.08 0.53–8.18 0.293

Comorbidity

Chronic dialysis (3.19%) 1.04 0.21–5.12 0.965

Leukemia (2.13%) 7.68 1.37–43.01 0.020

Immunodeficiency (6.74%) 2.88 1.10–7.52 0.031

Cirrhosis (4.27%) 1.86 0.54–6.40 0.325

Diabetes (21.63%) 1.10 0.56–2.17 0.777

Hypertension (39.15%) 1.20 0.68–2.14 0.530

Myocardial infarction (4.98%) 1.47 0.45–4.87 0.525

Heart failure (3.90%) 2.15 0.61–7.58 0.236

Vascular disease (1.42%) 11.38 1.16–111.42 0.037

Dementia (2.84%) 2.23 0.52–9.63 0.281

Chronic pulmonary disease (5.32%) 1.88 0.62–5.73 0.265

Arthritis (5.69%) 1.22 0.38–3.91 0.743

Peptic ulcer (3.91%) 3.18 0.94–10.82 0.063

Vasopressor use (50%) 5.08 2.60–9.92 <0.001

Hemoglobin (with 1 unit increase) 0.86 0.74–1.01 0.068

WBC 1.00 0.99–1.01 0.375

Platelet count 0.996 0.993–0.999 0.010

Creatinine 1.09 0.93–1.28 0.297

Bilirubin 1.35 1.16–1.57 <0.001

Sodium 1.00 0.95–1.05 0.997

Potassium 1.98 1.27–3.08 0.003

Glucose 1.00 0.99–1.003 0.402

Bicarbonate 0.93 0.88–0.98 0.006

(Continued)
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(>15%), they were excluded from analysis. Furthermore, the comorbidity variables including
leukemia, immunodeficiency and vascular disease were excluded because the prevalence was less
than 10%. There was no significant difference on PEEP (9.1±3.7 vs.9.3±3.3 cmH2O; p = 0.71)
and FiO2 (0.58±0.19 vs.0.57±0.17; p = 0.69) between survivors and non-survivors (Fig. 1).

As a result, a total of 21 covariates were entered into the full model. After stepwise forward
selection with p = 0.1, eight covariates remained in the model (Table 2), including age (coeffi-
cient: 0.05, 95% CI: 0.027–0.077), vasopressor (coefficient: 1.47, 95% CI: 0.70–2.23), potassium
(coefficient: 0.78, 95% CI: 0.22–1.34), platelet (coefficient: -0.005, 95% CI: -0.008, -0.001), he-
moglobin (coefficient: -0.20, 95% CI: -0.41–0.004), highest heart rate (coefficient: 0.028, 95%
CI: 0.01–0.046), highest temperature (coefficient: -0.45, 95% CI: -0.87, -0.02) and PaO2 (coeffi-
cient: 0.007, 95% CI: -0.00021–0.013). These coefficients were obtained by using complete case
analysis. After multiple imputations procedure, the estimated coefficients shrunk towards zero
for all covariates. The coefficients remained unchanged as compared to the original analysis
with bootstrap estimation. At this stage, we would like to use the original complete case analysis
as the main effect model because of the parsimony principal in estimation analysis.

Interaction terms were evaluated for all possible interactions, which showed no statistically
significant interactions among variables. Linearity assumption for continuous variables in the
main effect model was assessed by using multiple fractional polynomials, which showed that
other non-linear functions were no better than the linear one. As a result we adopted the origi-
nal main effect model as the final model. Overall model fit was assessed by using Hosmer-
Lemeshow goodness-of-fit test, which showed a χ2 (df = 8) of 6.54 (p = 0.59). Graphical

Table 1. (Continued)

Variable Odds ratio 95% CI P

Phosphate 1.40 1.09–1.81 0.009

Magnesium 1.34 0.46–3.88 0.593

Total protein 0.80 0.52–1.24 0.326

Albumin 0.73 0.37–1.46 0.375

Minimal glucose 0.997 0.98–1.01 0.694

FiO2 1.13 0.33–3.81 0.845

PaO2 1.003 0.998–1.008 0.242

PaCO2 0.99 0.97–1.02 0.622

pH 0.028 0.002–0.41 0.009

Lowest temp. 0.70 0.53–0.93 0.014

Highest temp. 0.63 0.45–0.88 0.007

Lowest systolic pressure 0.98 0.96–0.99 0.044

Highest systolic pressure 0.998 0.987–1.009 0.689

Lowest mean blood pressure 0.98 0.95–1.005 0.103

highest mean blood pressure 0.99 0.98–1.001 0.366

Lowest heart rate 0.997 0.982–1.012 0.708

Highest heart rate 1.007 0.994–1.020 0.299

Lowest respiratory rate 1.02 0.98–1.06 0.438

Highest respiratory rate 0.99 0.96–1.02 0.469

Urine output 0.9997 0.9995–0.9999 0.027

Transfusion of RBC (23.05%) 1.55 0.82–2.93 0.178

FFP transfusion 1.43 0.71–2.93 0.316

Abbreviations: OR: operating room; ED, emergency department; WBC, white blood cell; RBC, red blood cell; FFP, fresh frozen plasma.

doi:10.1371/journal.pone.0120641.t001
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assessment of the overall fit was shown in Fig. 2. The discrimination of the model was good
with an area under operating characteristics curve of 0.85. In survivors, the predicted probabili-
ty of death (p̂) gathered below 0.2, indicating a good negative predictive power of the model.
However, the p̂ scattered evenly in non-survivors, indicating a limited power of positive predic-
tive value. Plot of Logistic regression diagnostics versus estimated probability of death (p̂) were
shown in Fig. 3. From the figures we identified five covariate patterns with large values of ΔD

Fig 1. Graphical presentation of PEEP and FiO2 in survivors and non-survivors at the onset of ARDS.
There was no significant difference on PEEP (9.1±3.7 vs.9.3±3.3 cmH2O; p = 0.71) and FiO2 (0.58±0.19
vs.0.57±0.17; p = 0.69) between survivors and non-survivors.

doi:10.1371/journal.pone.0120641.g001
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or Δχ2 (poorest fit) and two with outlying values of Δb̂ (largest influence). These covariate pat-
terns (#72, 126, 137, 147, 171, 207) were shown in table 3. Because there were many continuous
covariates, one covariate pattern corresponded to one subject. For instance, the subject #137
was characterized by old age, vasopressor use, hyperkalemia and thrombocytopenia, which was
a covariate pattern of high probability of death. However, the subject was observed to survive
which violated the fitted model and thus it was considered as an outlier. We examined how the
exclusion of these outliers could influence the estimation of coefficients (Table 4). The result

Table 2. Main effect model after stepwise selection of covariates†.

Covariates Coefficient (95% confidence interval) p‡

Original complete case analysis Multiple imputation Shrunken with bootstrap

Age 0.05 (0.027, 0.077) 0.05 (0.026, 0.075) 0.05 (0.027, 0.077) <0.001

Vasopressor 1.47 (0.70, 2.23) 1.35 (0.61, 2.09) 1.47 (0.58, 2.36) <0.001

Potassium 0.78 (0.22, 1.34) 0.69 (0.15, 1.22) 0.78 (0.06, 1.50) 0.012

Platelet -0.005 (-0.008, -0.001) -0.004 (-0.008, -0.001) -0.005 (-0.009, -0.0007) 0.010

Hemoglobin -0.20 (-0.41, 0.004) -0.18 (-0.37, 0.022) -0.20 (-0.41, 0.012) 0.081

Highest heart rate 0.028 (0.01, 0.046) 0.027 (0.009, 0.044) 0.028 (0.008, 0.048) 0.003

Highest temperature -0.45 (-0.87, -0.02) -0.43 (-0.85, -0.012) -0.45 (-0.90, 0.009) 0.044

PaO2 0.007 (-0.00021, 0.013) 0.006 (-0.0004, 0.013) 0.007 (-0.0008, 0.014) 0.064

† Covariates were selected by using stepwise forward selection at a significance level of 0.1.

‡ Coefficients were reported after multiple imputations for missing values.

doi:10.1371/journal.pone.0120641.t002

Fig 2. Four diagnostic plots to describe discrimination in a model fit with an area under operating
characteristics curve of 0.85. In survivors, the predicted probability of death (p̂ ) gathered below 0.2,
indicating a good negative predictive power of the model. However, p̂ scattered more evenly in non-
survivors, indicating a limited power of positive predictive value.

doi:10.1371/journal.pone.0120641.g002
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showed that all coefficients changed significantly after exclusion of outliers. We would like to
use this model as the prediction model for probability of death in future ARDS patients requir-
ing mechanical ventilation:

p Χð Þ ¼ eg Χð Þ

1þ eg Χð Þ

where

g Χð Þ ¼ 0:06� age in yearsð Þ þ 2:23 if on vasopressorð Þ þ 1:37� potassium
mmol

l

� �

� 0:007� platelet count �109
� �þ 0:03� heart rate =minð Þ � 0:29� Hb

g
dl

� �

� 0:67� T �Cð Þ þ 0:01� PaO2 þ 13:

The prediction model was compared with APACHE III score for its discrimination in pre-
dicting mortality (Fig. 4). The result showed that the prediction model had better discrimination
than APACHE III (AUC: 0.85, 95% CI: 0.79–0.90 vs. AUC: 0.77 95% CI: 0.70–0.84; p = 0.037).

Fig 3. Logistic regression diagnostics plotted against estimated probability of death (p̂ ). The upper left
shows the leverage versus p̂ . The influence diagnostic Δb̂ is plotted versus p̂ in upper right panel. We noted
two points lie somewhat away from the rest of the data. The lower right panel shows the change in Pearson
Chi-square as a function of the estimated probability of death, which is helpful in identifying poorest fit points.
In this figure, five points are poorly fitted in the top left and top right corner of the plot (Δχ2>10). The size of the
symbol is proportional to Δb̂ , allowing us to more clearly ascertain the relative contribution of residual and
leverage to Δb̂ . The largest circle in the right corner correspond to a moderate leverage and a large Δχ2,
indicating that high leverage might not be a contributing factor. The same five points are shown in lower right
panel, but note that the range of Δχ2 is much greater than the change in deviance (ΔD). As a result we
identified five covariate patterns with large values of ΔD or Δχ2 (poorest fit) and two with outlying values of Δb̂
(largest influence).

doi:10.1371/journal.pone.0120641.g003
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Discussion
The study, by using a prospectively collected dataset, established a prediction model for ARDS
patients requiring mechanical ventilation. The model included eight covariates without inter-
action and non-linear functions. The parsimony of the model may improve the prediction

Table 3. Covariate patterns that do not fit or have considerable influence on estimated coefficient.

P#† 72 126 137 147 171 207

Mortality (1 = non-survivor) 1 0 0 1 1 1

Age (years) 49 54 89 72 54 43

Vasopressor use 0 1 1 0 0 0

Potassium (mmol/l) 4.70 6.50 6.20 3.90 3.60 3.70

Platelet (×109) 134.00 103.00 40.00 331.00 190.00 103.00

Highest heart rate (/min) 140.00 122.00 72.00 86.00 130.00 140.00

Hemoglobin (g/dl) 14.00 11.20 9.70 10.30 11.30 11.20

Temperature (°C) 38.90 36.40 37.50 37.50 38.50 38.60

PaO2 (mmHg) 68.00 104.00 137.00 75.00 73.00 83.00

p̂ 0.07 0.89 0.93 0.04 0.05 0.06

Δχ2 13.93 8.61 14.14 22.31 20.35 15.88

ΔD 5.49 4.73 5.60 6.35 6.16 5.69

leverage 0.02 0.07 0.05 0.01 0.01 0.01

Δb̂ 0.32 0.65 0.67 0.28 0.17 0.17

Notations: p̂ , estimated probability of death; Δχ2, change in Pearson Chi-square; ΔD, change in deviance; Δb̂ , Cook’s distance.

† The number of covariate pattern is equivalent to the number of observations as there are several continuous covariates. The number itself was

meaningless in itself but simply reflected the sequence of enrollment in the dataset.

doi:10.1371/journal.pone.0120641.t003

Table 4. Estimated coefficients from all data, the percent change when covariate patterns with poorest fit and largest influence were deleted.

variable All data coefficients Percent change from all data coefficient when outlying covariate patterns were
deleted

Poorest fit 72,137,147,171,207 largest influence 126,137 All six

Age 0.052 0.060 (15.4%) 0.057 (9.6%) 0.061(17.3%)

Vasopressor use 1.469 2.121 (44.4%) 1.600 (8.9%) 2.231(51.9%)

Potassium 0.777 1.071 (37.8%) 1.204 (54.9%) 1.366(75.8%)

Platelet -0.005 -0.006 (20%) -0.006 (20%) -0.007(40%)

Highest heart rate (/min) 0.028 0.029 (3.6%) 0.029 (3.6%) 0.031(10.7%)

Hemoglobin (g/dl) -0.201 -0.301 (49.8%) -0.201 (0) -0.294(46.3%)

Temperature (°C) -0.446 -0.545 (22.2%) -0.546 (22.4%) -0.666(49.3%)

PaO2 (mmHg) 0.007 0.009 (28.6%) 0.008 (14.3%) 0.010(42.9%)

_cons 7.646 10.078 (31.8%) 9.374 (22.6%) 12.965(69.6%)

Model statistics

Chi-squared 76.92 97.13 88.02 103.61

log likelihood -105.31 -88.80 -99.26 -85.33

pseudo-R-squared 0.27 0.35 0.31 0.38

In the last column of the table five of the coefficients changed >40%, indicating that deleting all six covariate patterns had a significant effect on estimated

coefficients. The six subjects whose patterns of data go against the prediction model should be dropped out from the model, and the final coefficients

were as listed in the last column of the table.

doi:10.1371/journal.pone.0120641.t004
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accuracy for future cohort with similar characteristics.[28] The model discrimination was good
as reflected by an area under ROC of 0.85. Parameters incorporated into the model were all col-
lected within 24 hours of ICU entry, allowing for early recognition of patients at high risk
of death.

For a prediction model to be clinically useful, it should be easy to use. In the study we incor-
porated variables that were readily available in routine clinical practice. In the model, we found
that old age was a significant independent risk factor for death. This is consistent with other
studies and prediction models.[29–31] Vasopressor use was also found to be an independent
risk factor for mortality. Vasopressor use indicates circulatory failure which is established to be
associated with multiple organ failures (e.g. acute kidney injury) in critically ill patients.[32, 33]
Organ failure such as acute kidney injury is a well-known mortality risk factor that is also sup-
ported by our previous study.[34] Platelet count was also found to be associated with mortality
risk in this cohort. However, our previous study showed that it was platelet distribution width
and mean platelet volume, rather than platelet count that were independently associated with
mortality risk.[35] In that study, we included unselected critically ill patients, and the mortality
was slightly higher. The difference in study population and severity of illness may partly ex-
plain the disparity between these two cohorts.

Because the prediction model was established with single cohort without external validation,
overfitting is a major concern. We employed bootstraps procedure to shrink coefficient and
chose model with the principal of parsimony. However, the result showed that the bootstrap
procedure did not change the coefficient, indicating that the estimated coefficient is less likely

Fig 4. Comparison of area under ROC for APACHE III and predictionmodel. The result showed that the prediction model had better discrimination than
APACHE III (AUC: 0.85, 95% CI: 0.79–0.90 vs AUC: 0.77 95% CI: 0.70–0.84; p = 0.037).

doi:10.1371/journal.pone.0120641.g004
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to be biased. There is no evidence of substantial problem with model fit as reflected by the non-
significance of Hosmer-Lemeshow goodness-of-fit test. However, such overall model fit cannot
exclude some outlying observations. We therefore further examined model fit over the entire
set of covariate patterns. As a result, six covariate patterns showed large values in diagnostic
statistics, indicating they are either poorly fitted or influential. After exclusion of these six sub-
jects, the coefficients were substantially changed and we choose to retain the model with the
outliers excluded. The strength of this technique is to exclude the influence of minority of out-
lying covariate patterns. However, the shortcoming is certainly that our model cannot be used
for subjects with those covariate patterns.

Several limitations need to be acknowledged in the study. First, the major methodological
flaws of this secondary analysis is the use of subjects enrolled in a RCT, instead of using data
from an observational cohort of consecutive patients. Patients included in a RCT are a selected
population that differs from the common patient with the diagnosis under study. For example,
the overall mortality rate of this selected group of patients (21%) is below other figures reported
in recent epidemiological studies[4–6]. Second, the present analysis is the lack of a validation
cohort to test the model. The trial was stopped early due to futility of the intervention. Thus
the sample size was small and the dataset cannot be split to training subset and validation sub-
set. However, we examined the overall model fit, as well as the influence of outliers. Further-
more, the problem of overfitting was addressed by using bootstraps procedure to shrink
coefficient and the final model was chosen with the principal of parsimony. Third, the reported
model is not specific for ARDS patients. In fact, all predictive variables are not specific for
ARDS. Thus it would be interesting to test our prediction model in patients without ARDS.
Forth, The study suffers slightly from using a single, local cohort, such that international gener-
alisability is questionable. This can be addressed by validating our prediction model in ARDS
cohorts from other institutions.

In aggregate, the present study established a prediction model for ARDS patients requiring
mechanical ventilation. The model contained eight covariates that are readily available in rou-
tine clinical practice and can be applied to all critical care settings. Interaction terms or non-
linear functions are not included in the model for parsimony.
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