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Role of lncRNAs in aging and age‐related diseases
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Abstract

Aging is progressive physiological degeneration and consequently declined func-

tion, which is linked to senescence on both cellular and organ levels. Accumulating

studies indicate that long noncoding RNAs (lncRNAs) play important roles in cellu-

lar senescence at all levels—transcriptional, post‐transcriptional, translational, and
post‐translational. Understanding the molecular mechanism of lncRNAs underlying

senescence could facilitate interpretation and intervention of aging and age‐related
diseases. In this review, we describe categories of known and novel lncRNAs that

have been involved in the progression of senescence. We also identify the

lncRNAs implicated in diseases arising from age‐driven degeneration or dysfunc-

tion in some representative organs and systems (brains, liver, muscle, cardiovascu-

lar system, bone pancreatic islets, and immune system). Improved comprehension

of lncRNAs in the aging process on all levels, from cell to organismal, may provide

new insights into the amelioration of age‐related pathologies and prolonged

healthspan.
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1 | INTRODUCTION

Aging is progressive physiological degeneration and consequently

declined function, which is characterized by several tentative hall-

marks at molecular and cellular levels.1 Apart from genomic instabil-

ity and telomere attrition, advances in aging research exhibit a lot

more determinants of aging, rendering this physiological process

complex and complicated. Senescence on both cellular and organ

levels gradually causes age‐related diseases, such as cardiovascular

diseases, Alzheimer's disease (AD), cancer, and sarcopenia, most in

forms of comorbidities. Meanwhile, consequent fragility and frailty

result in high mortality. As world population above 60 is expected to

double and reach 22% by 2050, the increases in morbidity and mor-

tality are noted in elderly populations.2,3 Therefore, the boosting

aging global population becomes a critical healthcare issue, which

demands further exploration through explicit mechanisms underlying

the aging process.4-6

Age‐related changes in the cellular proteome and transcriptome

levels are indispensable in physiological alterations in cells, tissues,

and organ systems during aging. Recent advancement in microarrays

and sequencing techniques has lead to a better understanding of vari-

ous important mammalian genomes (eg, human, rat, and mouse) and

their respective cellular, tissue, and organ‐specific transcriptomes. Ser-

ies of multitude projects, including Functional Annotation of the Mam-

malian Genome and Encyclopedia of DNA elements, have revealed

that only about 2% of transcripts are protein‐coding RNAs, and the

reminders are pervasively transcribed into myriad multifunctional

forms of RNA molecules known as noncoding RNAs (ncRNAs).7,8

Based on the transcript length, these ncRNAs are divided into small

(20‐30 nt) ncRNAs and long (>200 nt) ncRNAs (lncRNAs).8 lncRNAs

are poorly conserved but abundant heterogeneous regulatory

ncRNAs. Based on their genomic location, orientation, and mode of

transcription, they are further classified into sense, antisense, bidirec-

tional, promoter‐associated, enhancer‐associated, pseudogene‐associated,
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telomere‐associated, and circular lncRNAs in a broad but mutually

nonexclusive manner.9,10 They act as regulatory players with

versatile roles in different modes. lncRNAs regulate gene expression

virtually at all levels—transcriptional, RNA processing, translational,

and post‐translational—by interacting with DNA, RNA, or proteins11

(Figure 1). The subcellular localization of lncRNAs may also bring

additional complexity to their function.12

lncRNAs are increasingly recognized as essential in various cellu-

lar processes such as proliferation, apoptosis, differentiation, and

senescence for the impact on gene expression.13-18 lncRNAs also

underly important pathologic processes in age‐mediated function,

including metabolic imbalances, neurodegeneration, and cancer.19,20

In this review, the emphasis is given to the association of lncRNAs

with the aging process in cellular and organic levels with the forms

of age‐related frequently occurring diseases.

2 | lncRNAs IN CELLULAR AGING

Senescence is characterized as a stable form of growth arrest in

untransformed cells, triggered by telomere attrition, chromosome

destabilization, DNA damage, mitochondrial dysfunction, oncogene

activation, and other cellular stress linked to cell cycle.21 Senescent

cells are featured in morphological, secretory, and molecular aspects.

F IGURE 1 Cellular functions of long noncoding RNAs (lncRNAs). Genomic location relative to regulatory mechanisms of lncRNAs in the
nucleus, cytoplasm, and extracellular compartments. Nuclear‐localized lncRNAs can act as (A) enhancers to induce transcription in cis or in
trans; or (B) decoy to induce transcription factors and chromatin modifiers, blocking their binding to DNA; or (C) molecular signals to activate
or silence gene expression through signaling to regulatory pathways; or (D) guide to instruct transcriptional elements (eg, chromatin modifiers)
to specific target sites; or (E) scaffolds, binding proteins complexes to affect gene expression, and (F) then can modulate alternative splicing of
pre‐mRNAs. In the cytoplasm, lncRNAs can serve as (G) microRNAs (miRNAs) sponge to block their effect and then can control (H)
translational events, or (I) protein‐protein interaction, or (J) protein phosphorylation and activation of signaling pathways. K, They can regulate
the maturation of ribosomal RNAs. Finally, some lncRNAs can be (L) released in the form of exosomes and transferred to other cells to (M)
function as precursors of miRNAs and other regulatory small RNA
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Distinctive features include flattened, enlarged cell size, increased

SA‐β‐galactosidase activity, production of senescence‐associated
secretory phenotype (SASP), and differential expression of senes-

cence‐associated pathways (eg, upregulated p53, p21, p27 and

downregulated Sirt1).22,23 Cellular senescence is implicated in normal

aging. However, pathological effects of senescent cells could influ-

ence organisms wholly due to the accumulation of them during

aging.24 These influences may possibly be on account of the follow-

ing aspects: (a) impaired regeneration due to exhaustion of stem

cells; (b) malfunction in tissues and organs caused by SASP; and (c)

disturbed energy homeostasis resulted by various stress.12 On the

contrary, cellular senescence plays a protective role against tumori-

genesis, which is consistent with the counterplay of senescence

pathway with tumor response pathway. Based on this counterinter-

action theory, oncogene‐induced senescence (OIS) model is generally

utilized. Recent studies have demonstrated that numerous lncRNAs

mediate cellular senescence in different stages of the cell cycle by

modulating senescence‐associated pathways, such as p53/p21, pRB/

p16, and p14.25

2.1 | Cell cycle–associated lncRNAs

Senescence represents a permanent withdrawal from the normal cell

cycle progression in response to a diverse range of cellular stress,

such as DNA damage, oxidative stress, telomere attrition, and envi-

ronmental stress. Characterized cell cycle inhibitors include p16, p21,

and p53, all of which are also senescence‐related tumor suppressors.

lncRNAs involved in cell cycle could possibly influence senescence

and organismal aging.

2.1.1 | MALAT1

Transcript of metastasis‐associated lung adenocarcinoma transcript 1

(MALAT1) is a cell cycle regulator localized to the nuclear speck-

les.26 Abundantly expressed in several solid tumors, MALAT1 is

involved in cancer metastasis and recurrence.27-29 Tripathi et al

firstly declared the role of MALAT1 in cell cycle progression. He

found that higher level of MALAT1 at G1/S phase and mitosis, but

lower level at G1‐G2 phase.26 Several cell line studies have fur-

ther confirmed that depletion of MALAT1 triggered G1 or G1/S

arrest, thus repressing cell growth and proliferation but enhancing

senescence phenotype.25,26,30,31 However, MALAT1‐knockout mice

showed no obvious phenotype of abnormalities.32-34 The overall

studies have indicated MALAT1 is inessential for organismal

development, but might be pivotal under specific pathological or

environmental condition.

2.1.2 | ANRIL

As an antisense to p15/CDKN2B/CDKN2A/ARF gene cluster, ANRIL

is known to suppress the expression of CDKN2A (p16INK4A, p14ARF)

and CDKN2B (p15INK4B) genes in cis.35 This lncRNA plays an estab-

lished role in cell proliferation, senescence, and aging. Depletion of

ANRIL in WI‐38 and IMR‐90 cells results in upregulation of p15INK4B

with decreased cell growth and induced senescent phenotype.36

Recent studies have focused on its association with inflamma-

tion.37-39 According to the hypothesis of inflammaging, the positive

link with ANRIL to TNF‐α and NF‐κB suggests the role of ANRIL in

aging and age‐related diseases, such as certain cardiovascular dis-

eases and AD.37,38,40,41

2.1.3 | 7SL

7SL has been identified in various cancers.42 As a highly conserved

cytoplasmic lncRNA with six signal recognition proteins, 7SL forms a

partial hybrid with the 3′‐untranslated region of p53 mRNA and

competes with HuR protein for binding to p53 mRNA.43,44 7SL

silencing studies in HeLa and HCT116 cells displayed cell cycle arrest

and senescence by increasing p53 translation through enhanced

interaction between HuR and p53 mRNA.45

2.1.4 | MEG3

Maternally expressed gene 3 (MEG3) is a maternally expressed and

imprinted noncoding transcript.46 This lncRNA participates in bio-

logical processes including central nervous system development,

angiogenesis, and liver metabolism.47-49 MEG3 is highly expressed

in certain normal tissues but repressed in many tumors.48,50-52

MEG3 affects the activities of multiple key cell cycle regulators,

such as p53, MDM2, GDF15, and RB1.53,54 Restoring the expression

of MEG3 in HeLa, C‐33A, MCF‐7, and H4 cell lines rightly sup-

pressed tumor cell growth via inducting G2/M cell cycle arrest and

apoptosis, while downregulating level of MEG3 enhanced autop-

hagy, cell proliferation, and inhibited cell death.55-57 As a tumor

repressor, MEG3 could be a potential target for cancer diagnosis

and prognosis and treatment.53 Decreased levels of MEG3 have

also been observed in some age‐related neurodegenerative disor-

ders including Huntington's disease (HD), whose mechanisms of

epigenetic gene regulation in neurons may seem to contradict with

those in cancer cells.58 Detailed mechanisms on its regulation of

senescence and apoptosis need further elucidation to understand

the role in brain aging.

2.1.5 | H19

H19 is a highly conserved and maternally expressed lncRNA, whose

location is near the paternally expressed insulin‐like growth factor 2

(IGF2) genes.59 As an epigenetic regulatory RNA, H19 positively

affects cell growth and proliferation and delays senescence, thus

promoting tumorigenesis.60-62 Due to the adjacent localization of

H19 and IGF2 (H19‐IGF2) genes, expressions of both genes are

always balanced, which is necessary in cell growth, proliferation,

senescence, and apoptosis.63,64 Loss of imprinting at H19‐IGF2 locus

has been involved in the onset of cellular senescence. Interestingly,

erasure (hypomethylation) of imprinting at this locus observed in

aging is accompanied by enhanced expression of H19 but by
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reduced expression of IGF2, which indicates longevity and low inci-

dence of tumor growth. Contrarily, imprinting loss (hypermethylation)

in aging leads to overexpression of both genes, which may

correspond to a higher incidence of cancer in advanced age.64,65

Additionally, H19 is also associated with the development of other

age‐related diseases, such as fat deposition and skeletal muscle

regeneration.66,67

2.1.6 | UCA1

Firstly identified in bladder transitional cell carcinoma, urothelial can-

cer‐associated 1 (UCA1) has been demonstrated to promote cell pro-

liferation and attenuate apoptosis as precursors to multiple miRNAs

in malignant tumors.68,69 As cellular senescence is considered as

tumor suppression, UCA1 overexpression could induce cellular senes-

cence.70 Relevant mechanism studies highlight the role of CAPERα/

TBX3 repressor complex, which is required to prevent senescence in

primary cells and mouse embryos. Certain stress induces separation

of CAPERα and TBX3, thus activating production of UCA1 RNA, and

causes senescence. Furthermore, CAPERα/TBX3 is known to regulate

chromatin structure and to repress transcription of p16INK4A and the

RB pathway. In proliferating cells, hsRNPA1 binds and destabilizes

p16INK4A mRNA, whereas during senescence, UCA1 stabilizes

p16INK4A mRNA by sequestering hsRNPA1 from the binding with

p16INK4A.70,71

2.1.7 | FAL1

Focally amplified lncRNA on chromosome 1 (FAL1) was firstly identi-

fied among somatic copy number alterations of lncRNAs in 2394

tumor specimens from 12 cancer types through a genomewide sur-

vey. FAL1 displays striking oncogenic activity partly by suppressing

p21 through association with BM1. On the contrary, FAL1 silencing

or downregulation leads to G0/G1 arrest and cellular senescence.72,73

2.1.8 | Gadd7

Gadd7 was isolated from Chinese hamster ovary cells, whose levels

were detected in response to DNA damage.74 Overexpression of

gadd7 results in G1 arrest and promotes apoptosis by directly bind-

ing to TAR DNA‐binding protein (TDP‐43) and interfering with its

interaction with Cdk6 mRNA.75 As consequent Cdk6 degradation

induces cell cycle arrest and senescent phenotype, the possible

impact of gadd7 on aging is expecting.76

2.1.9 | MR31HG

MR31HG (MIR31 host gene/LOC554202) is located 400 kb

upstream of the p16INK4A locus in humans. MR31HG harbors miR‐
31, which is upregulated in senescent human umbilical vein

endothelial cells (ECs) but downregulated in various cancers.77,78

Previous studies have shown that MR31HG could modulate cell

growth and suppress tumorigenesis via miR‐31.79-82 Interestingly

but intriguingly, a recent study reported that MR31HG was upregu-

lated in OIS, whereas silencing of this lncRNA promoted p16INK4A‐
dependent senescence phenotype.83 MR31HG is present in both

nucleus and cytoplasm in presenescent cells, but then located

mainly in the cytoplasm after BRAF activation. MR31HG binds to

both p16INK4A and MR31HG genomic regions with polycomb group

(PcG) proteins. During OIS, PcG proteins and enhanced MR31HG

are required for PcG‐mediated repression of p16INK4A locus.83

2.1.10 | PANDA

p21‐associated ncRNA DNA damage activated (PANDA), a bidirec-

tional transcript from the p21 promoter induced upon DNA

damage via p53, modulates cell proliferation, apoptosis, and senes-

cence in human fetal lung fibroblasts and neonatal foreskin, as a

decoy for pro‐proliferative transcriptional factor, NF‐YA.84-86

Additionally, PANDA induced by p53 results in G1 cell cycle arrest

in lymphoma through inactivation of MAPK/ERK pathway.87

Surprisingly, it has been demonstrated to determine entry and exit

from senescence via dual regulation. PANDA at low level inhibits

expressions of multiple prosenescence genes through the formation

of PANDA‐SAFA‐PRC‐BMI complex in proliferative cells, whereas

increased PANDA dissociated from this complex in senescent cells

induces senescence arrest by repressing proliferation‐promoting

genes and enforcing prosenescence genes.88 Consistently, depletion

of PANDA by siRNA results in exit from senescence in senescent

fibroblasts.88 The flexibility in switching between proliferation and

senescence enables PANDA as a potential target for senescence

and age‐related intervention.

2.1.11 | lincRNA‐p21

P53‐mediated lincRNA‐p21 is firstly identified as a regulator of p21

by recruiting hnRNP‐K to the promoter region of p21, thus diminish-

ing cell proliferation in mouse embryonic fibroblasts.89,90 Meanwhile,

lincRNA‐p21 is proved to provide positive feedback to p53 transcrip-

tion via interacting with multiple factors, including MDM2 and

Rck.89,91 HuR/Ago2/let‐7 complex destabilizes lincRNA‐p21 and

relieves its translational inhibition on target mRNAs.92 Further stud-

ies have found that lincRNA‐p21 impaired somatic cell reprogram-

ming through cell senescence or apoptosis epigenetically.89,93 This

lncRNA participates in various cancers and age‐related coronary

artery diseases, such as atherosclerosis and myocardial infarc-

tion.91,94-96

2.1.12 | PINT

p53‐induced noncoding transcript (PINT) is also controlled by p53

and in turn affects p53, MAPK, and TGF‐β signaling by PRC2‐
mediated modulation on relevant gene promoter regions.97 PINT

negatively associates with senescence and age‐related diseases.97
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2.1.13 | TUG1

Taurine upregulated gene 1 (TUG1) is primarily known as a growth

regulator induced by p53 upon DNA damage.98,99 Apart from p53‐
mediated growth arrest and apoptosis, TUG1 disrupts the expres-

sions of HOX genes family (eg, HOXB7), which results in aging.99

Moreover, TUG1 controls glycolysis in proliferation and metastasis of

tumor cells through regulation of hexokinase 2 via miR‐455‐3p/
AMPKβ2.100 As TUG1 is highly expressed in the human subependy-

mal zone, it has been involved in age‐related neurodegenerative dis-

eases, such as ischemic stroke and HD.101-103 TUG1 also has an

impact on other tissue‐specific aging, such as intervertebral disk and

age‐related cataract, through Wnt/β‐catenin or caspase path-

ways.104,105 TUG1 is upregulated in the murine retina,106 but its

influence in retinal degenerative diseases is not clear.

HEIH and HULC are both highly expressed in hepatitis B virus‐
related hepatocellular carcinoma.107-109 They are involved in tumori-

genesis by promoting hepatoma cell growth and proliferation. Sup-

pression targets for HEIH are p15, p16, p21, and p57, while the

target for HULC is p18.108,109 BRAF‐activated noncoding RNA exerts

oncogenic function in cancers via epigenetic regulation on various

genes, such as p38 MAPK, MEK1/2, ERK1/2, JNK, NF‐κB, and p38.110

Abundant studies of BRAF in last 6 years have already revealed

complex signaling pathways involved in tumor cell growth, prolifera-

tion, and apoptosis, yet findings on senescent phenotypes are sel-

dom reported. As target genes for BRAF contain those involved in

regulation of cell cycle and metabolism, its role in senescence calls

for future exploration.

2.2 | Telomere‐associated lncRNAs

Telomeres are the protective nucleoprotein caps at the end of chro-

mosomes, which shorten with every cell division. Preservation of the

telomere lengths requires telomerase reverse transcriptase combined

with telomere RNA component (TERC).111 Telomere attrition is char-

acterized as a key hallmark in cellular senescence and organismal

aging.1,22 lncRNAs play roles in the organization of telomere dynam-

ics, indicating a possible correlation with telomere‐associated dis-

eases.

2.2.1 | TERC

TERC functions as a template for telomeric DNA synthesis by

telomerase. Its involvement in senescence and aging is probably

due to gradual loss of telomerase activity. TERC‐deficient mice dis-

played pulmonary premature aging and osteoporosis.112,113 The

pulmonary senescence‐associated inflammatory phenotype could

partly be explained by telomerase‐mediated NF‐κB transcription.114

Introduction of TERC in telomerase‐deficient mice was confirmed

to rescue premature aging phenotypes by restoring functional

telomerase.115 Apart from that, TERC could affect angiogenesis and

metastasis‐related genes’ expression without affecting telomere

length.116

2.2.2 | TERRA

Since the identification of telomeric repeat‐containing RNA (TERRA) in

yeast, roles of this lncRNA have been highlighted in telomere functions

throughout senescence and aging process.117-119 TERRA is transcribed

by RNA polymerase II in a conserved manner.120 Altered expression of

TERRA affects the formation of telomeric heterochromatin and the reg-

ulation of telomerase activity.121 However, the association between

telomere length and TERRA expression is heterogeneous according to

types of cells or species observed and methods or protocols applied.122

Therefore, conflicting results have been published on TERRA expression

in cancers. TERRA levels were elevated in various cancers but

decreased in advanced stages of them.118,123,124 Again, conflicting

results have been uncovered on the relationship between TERRA and

cellular senescence. Some studies revealed that overexpression of

TERRA triggered premature senescence by the accumulation of itself

and defective telomeric recombination.111,119,125 On the other hand,

increased TERRA expression in telomerase‐negative cells was reported

to delay the onset of senescence.126,127 Another study even found no

difference in TERRA expression between early and late passage human

primary fibroblast, even in the state of repressed telomeric mainte-

nance during senescence.128 The mystery of TERRA in senescence is

expecting to be unveiled.

2.3 | Chromatin‐modulating lncRNAs

Chromatin remodeling occurs within senescence and aging process.

Alterations in chromatin features include epigenetic changes, hete-

rochromatinization, histone modification, and DNA methylation.

lncRNAs usually serve as modifiers, decoys, or guides, by recruiting

various histone and DNA methyltransferase to the site of chromo-

some inactivation (eg, Xist, HOTAIR, and lncRNA‐p21) or by directing

transcriptional factors to bind with regulatory DNA elements (eg,

AIR). Several representative lncRNAs are mentioned in the previous

parts, such as H19, ANRIL, and TERRA. In this part, we will focus on

those unmentioned related lncRNAs.

2.3.1 | Xist

Transcribed from the inactive X chromosome, Xist is responsible for

gene imprinting and X chromosome inactivation in females by block-

ing the access of RNA polymerase II.129,130 Level of Xist declines in

senescent cells,131 yet its function in senescence is unclear.

2.3.2 | Kcnq1ot1

KCNQ1‐overlapping transcript 1 (Kcnq1ot1) is a paternally expressed

antisense lncRNA to Kcnq1ot1 gene.132 It exerts an impact on

nearby imprinted genes, including CDKN1C and KCNQ1, by recruiting

chromatin remodeling complexes to the paternal DMR‐LIT1
locus.133,134 As the role of CDKN1C in cell cycle progression,

Kcnq1ot1 affects cellular senescence and aging process. Moreover,

the suppressed level of Kcnq1ot1 is relevant to age‐related diseases,
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such as type 2 diabetes, atherosclerosis, myocardial infarction, and

various cancers.135-138

2.3.3 | ANRASSF1

As a member of poorly characterized RNAs, ANRASSF1 is an

unspliced, nuclear‐localized, intronic antisense lncRNA targeting to

the tumor suppressor gene, Ras‐associated domain‐containing pro-

tein 1A (RASSF1A), which is involved in G1/S cell cycle arrest and

apoptosis upon DNA damage.139 Increasing DNA methylation of

RASSF1A is observed in tumors, aging noncancerous liver, and

chronic gastritis relevant to age.140-142 ANRASSF1 could reduce the

transcription of RASSF1A by forming a DNA‐RNA hybrid and recruit-

ing PRC2 to RASSF1A promoter region,139 indicating the role of

ANRASSF1 in senescence and aging.

There are another couple of lncRNAs whose target genes have

unambiguous roles in senescence and age‐related processes, yet the

indirect involvement of these lncRNAs in the same field is not clear.

Like Air, or antisense Igf2 receptor (Igf2r) RNA, is a paternally

expressed and imprinted antisense lncRNA to maternally derived

Igf2r promoter region.143 Air controls transcription of Igf2r in cis via

allele‐specific methylation.144 Igf2 is directly linked to senescence

and longevity.145,146 Another example is ecCEBPA, or extra coding

CEBPA, which recruits DNMT1 to silence C/EBP gene.147 The

encoded C/EBP family proteins could promote growth arrest by

inhibiting CDK2 and CDK4.148 C/EBP is dramatically decreased in

aged tissues and causes age‐related liver injury and impaired adipo-

genesis and altered fat tissue function, whereas restoring aged‐like
isoform of C/EBPα favors liver proliferation.149,150 Heterodimeriza-

tion of C/EBPβ and C/EBPγ promotes cell proliferation and suppress

senescence.151 Similarly, pRNA serves to silence repeated nucleolar

ribosomal RNA (rRNA) through the formation of DNA‐RNA triplex

and subsequent repressive DNA methylation at the rRNA pro-

moter.152 As levels of rRNA are tightly correlated with senescence,

aging process and age‐related neurodegenerative diseases (eg, AD

and Werner syndrome), and symptoms (eg, depression),153-155 the

implication of pRNA in this field remains to be confirmed. PTENpg1

negatively regulates PTEN level, the latter of which is known sup-

pressor of senescence, aging, and tumor.

2.4 | SASP‐associated lncRNAs

SASP is a critical trait of senescent cells. Also, the accumulation of

senescent cells during aging provokes production of SASP factors,

facilitating low‐grade chronic inflammation and age‐related diseases.

Regulation of lncRNAs contributes to innate immune responses, such

as macrophage polarization and inflammatory factor secretion.

2.4.1 | 17A

17A controls the alternate spicing of GABA receptor and subsequent

downstream signaling.156,157 It was reported to be triggered by inflam-

mation in AD brains, leading to increase in Aβ accumulation.157

2.4.2 | FIRRE

Functional intergenic repeating RNA element (FIRRE) is a newly dis-

covered, conserved lncRNA, which has an impact on the nuclear

architecture across chromosome through interacting with hnRNP‐
U.158 Controlled by NF‐κB signaling in macrophages, FIRRE positively

regulates several inflammatory genes following LPS stimulation by

affecting the stability of relevant mRNAs.159

2.4.3 | lnc‐IL7R

lnc‐IL7R is remarkably upregulated in THP‐1 cells with stimulation of

LPS and then, in turn, diminishes LPS‐mediated proinflammatory

cytokine secretion, characterized by reduced expression of E‐selec-
tin, VCAM‐1, IL‐6, and IL‐8 through epigenetic regulation.160 This

finding indicates contribution of lnc‐IL7R to SASP factor production.

2.4.4 | lncRNA‐LET

lncRNA‐LET (low expression in tumors) is poorly expressed in multi-

ple tumors. Further study has shown silencing this lncRNA allows

accumulation of nuclear factor 90 (NF90), the latter of which sup-

presses the translation of MCP1, CXCL1, and IL‐6.161,162 As downreg-

ulated NF90 is observed in senescent cells, lncRNA‐LET has a

positive link to low levels of SASP through actions of NF90.162

2.4.5 | lincRNA‐COX2

lincRNA‐COX2 is a broad‐acting regulatory component of the TLR/

MyD88/NF‐κB pathway upon TLR activation. lincRNA‐COX2

represses transcription of a series of proinflammatory genes by inter-

acting with hnRNP‐A/B and A2/B1.163 This lncRNA could form a com-

plex with the switch/sucrose nonfermentable to modulate the

assembly of NF‐κB and subsequently transactivate downstream

inflammatory response genes.164 lincRNA‐COX2 enhances TLR‐
induced IL‐6 and simultaneously suppressing chemokines CCL5, the

latter of which is still controversial.163,164

2.4.6 | Lethe

The pseudogene, Lethe, is selectively induced by TNF‐α and IL‐1β
upon NF‐κB activation. On the other hand, Lethe regulates NF‐κB
pathway by interacting with the NF‐κB subunit p65 (RelA) to inhibit

DNA binding to downstream cytokines genes.165 Age‐related reduc-

tion in Lethe could be explained by increased NF‐κB in aging

tissues.166

2.4.7 | NEAT1

Localized in nucleus’ interchromatin space, nuclear‐enriched abun-

dant transcript 1 (NEAT1) is an essential component of nuclear

paraspeckles.167 Paraspeckles can sequester many transcripts or mul-

tifunctional protein complex in the nucleus, and inhibit the
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translation or biological activity of these captives. NEAT1 serves as a

novel inflammatory regulator by affecting the formation of

paraspeckles.168 NEAT1 facilitates the expression of IL‐8 by relocat-

ing SFPQ, a repressor of IL8 transcription, to the paraspeckles.169

NEAT1 partly mediates LPS‐induced cytokine expressions via the

NF‐κB pathway, as well as TLR4‐activated inflammatory process via

MAPK pathway.170,171 Recent studies have revealed the involvement

of NEAT1 in osteoarthritis (OA) and formation and inflammation

of foam cells,172,173 suggesting its potential role in age‐related
treatment.

2.4.8 | PACER

p50‐associated COX‐2 extragenic RNA (PACER) is expressed in the

upstream region of COX‐2 and regulates COX‐2 expression in mono-

cyte‐derived cells upon LPS stimulation. PACER is modulated by

CTCF/cohesion complex, which favors PACER transcription, and in

turn, PACER functions to activate COX‐2 expression by directly

sequestering the repressive NF‐κB p50 subunit from the COX‐2 pro-

moter.174 PACER is reported to be induced in OA chondrocytes by

multiple proinflammatory cytokines, suggesting its involvement in

inflammation‐driven age‐related diseases.175

2.4.9 | THRIL

Identified in human monocyte cell line THP1 macrophages, TNF and

hnRNPL‐related immunoregulatory lincRNA (THRIL) promotes TNF

transcription by forming THRIL‐hsRNPL complex through binding to

TNF promoter.176

2.5 | Other lncRNAs in cellular aging

2.5.1 | HOTAIR

HOX transcript antisense RNA (HOTAIR) has been involved in senes-

cence via multiple mechanisms. Transcribed from intergenic region

between HOXC11 and HOXC12 within the homeobox (HOXC) gene

cluster, HOTAIR regulates genes on HOXC foci epigenetically by

acting as a scaffold and guide for various histone modification

complexes.177-179 HOTAIR can activate senescence through NF‐κB
pathway after DNA damage and even maintains the activation of this

pathway in the presence of a positive feedback loop.180 HOTAIR can

be suppressed by HuR in the way similar to lincRNA‐p21.181 As

HOTAIR is upregulated in senescent cells, HuR deficiency in various

cells leads to dramatically increased HOTAIR expression, characteristic

senescent phenotypes, and HOTAIR‐mediated ubiquitination and pro-

teolysis of ataxin‐1 and snurportin‐1.181 Yet, the role of protein ubiq-

uitination and degradation in cellular senescence is still unknown.

2.5.2 | ASncmtRNA‐2

Mitochondria play a significant role in the onset of senescence, as

accumulated mitochondrial‐derived ROS induces senescence by

adaptive modulation on the transcription of nuclear‐encoded fac-

tors.182 Antisense noncoding mitochondrial RNA‐2 (ASncmtRNA‐2) is

exported from mitochondria to nucleus, whose flow direction is con-

sistent with the mitochondria retrograde signaling. This lncRNA is

involved in replicative senescence in ECs by maintaining the cell

cycle arrest in G2/M phase through the production of has‐miR‐4485

and has‐miR‐1973. Meanwhile, p16 displayed similar ASncmtRNA‐2

pattern in the senescent cells, suggesting a possible coregulation of

the two genes.183 Expression of ASncmtRNA‐2 was preponderant in

aged murine aortas,183 indicating its impact on vascular aging.

3 | SPECIFIC EXPRESSION Of lncRNAs IN
DIFFERENT TISSUES /ORGANS DURING
AGING

Changes in morphology and physiology determine specific age‐
related diseases in different tissues and organs. We firstly summa-

rized the various changes and characterized diseases found in the

elderly. Then, we reviewed the reported specific expressed lncRNAs

according to the localization or diseases (Table 1).

3.1 | Brain

Brain aging is characterized by declined cognition, reduced neuroge-

nesis, and neurodegeneration. Neurogenesis occurs even in adult life,

but generally declines throughout aging. Current studies have

revealed multiple functions of lncRNAs in embryonic and adult neu-

rogenesis from different species (eg, MALAT1, TUG1, RMST, Dlx1as,

Six3os, Pnky, TERC, and TERRA). Firstly, lncRNAs influence self‐
renewal of neural stem cells (NSCs) and amplification of intermedi-

ated progenitors and neuroblasts. Secondly, lncRNAs determine the

fate specification of NSCs, as this progenitor can generate astrocytes

and oligodendrocytes, aside from neuroblasts. Lastly, lncRNAs are

known key regulators of telomere dynamics in NSCs.

Impaired cognition is supposed to be a direct consequence of

the alterations in synaptic connectivity.184 lncRNAs modulate patho-

logical protein aggregation, and the subnuclear compartment‐specific
lncRNAs regulate neuronal splicing, transcription, and sponging of

ion channels in aging (detailed lncRNAs seen in Figure 1). Relative

abundance of specific lncRNAs allows for beneficial functional pro-

cesses. On the contrary, shifts in their abundance may trigger alter-

ations in pretranscriptional and post‐transcriptional regulations of

neuronal genes and consequent age‐related neurodegenerative dis-

eases, including AD and Parkinson's disease (PD), which are featured

by impaired cognitive and motor function. In AD, lncRNAs are

known to contribute to Aβ aggregation and dysregulated synaptic

plasticity. Certain differentially expressed antisense lncRNAs, includ-

ing BACE1‐AS, SORL1‐AS, UCHL1‐AS, and LRP1‐AS, modulate expres-

sion or splicing of proteins involved in the generation and trafficking

of Aβ.185-188 On the other hand, 17A is involved in Aβ accumulation

through local inflammatory responses.157 ANRIL regulates the

expression of CDKN2B that accumulates in neurofibrillary tangles
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TABLE 1 List of lncRNAs potentially implied in the aging process and age‐related diseases

lncRNAs (References) Samples studied Processes Effect during aging or other implications

Six3os, Dlx1as258 Adult mice brain Neurogenesis Upregulated in neuroblasts; downregulated in NSCs

Pnky259 Postnatal mice brain Neurogenesis Depletion of Pnky potentiates neuronal lineage commitment

MALAT1, GOMAFU,

NEAT1, TUG1101
Human brain Neurogenesis Upregulated in the subependymal zone with age

RMST260 Human cell line Neurogenesis Required to promote neuronal differentiation

TERC261 Embryonic and postnatal

mice brain

Neurogenesis Balanced pattern with telomerase reverse transcriptase to

determine NSC proliferation and survival

TERRA123 Postnatal mice brain Neurogenesis Upregulated in proliferating cerebellar neuronal progenitors

BC200190,262–264 Rat/human brain, cell line Cognitive decline Act as a scaffold to bind with translational factors to repress

neuronal protein synthesis; downregulated in the aged brain;

upregulated in aging brain

BC1262–265 Rat brain, human cell line Cognitive decline Act as a scaffold to bind with translational factors to repress

neuronal protein synthesis; maintain neuronal excitability, mood,

and exploratory behavior

BDNF‐AS, GDNF‐AS,
EPHB2‐AS266

Mice brain, human

brain neurons

Cognitive decline Suppress protein synthesis (BDGF, GDNF, and EPHB2) involved

in neurite elaboration

GOMAFU267 Human brain Cognitive decline Instruct alternate splicing in synaptic plasticity

NEAT1268 Mice brain Cognitive decline Modulate ion channel components

BACE1‐AS186 Human and Mice brain Neurodegeneration Modulate BACE1 expression and Aβ aggregation

SORL1‐AS187 Human brain Neurodegeneration Direct alternate splicing of SORL1 and Aβ formation

UCHL1‐AS188,269,270 Human brain Neurodegeneration Regulate UCHL1 expression, which facilitates pathogenic protein

aggregation in AD and PD

LRP1‐AS185,271 Human brain Neurodegeneration Regulate LRP1 expression and Aβ metabolism in AD

17A157 Human brain, cell line Neurodegeneration Induce alternate splicing of GABA protein isoform

Enhance Aβ secretion in AD

ANRIL189 Human brain Neurodegeneration Regulate CDKN2B expression, which is accumulated in

neurofibrillary tangles and amyloid plaques in AD

SNHG1191 Mice brain, human cell line Neurodegeneration Promote α‐synuclein in PD by targeting miR‐15b‐5p

G069488192 Human cell line Neurodegeneration Regulate neurite regeneration and neural restoration by

suppressing NEDD9 under α‐synuclein accumulation in AD

RP11‐142J21.2192 Human cell line Neurodegeneration Promote apoptosis by suppressing SEMA6D via MAPK under α‐
synuclein accumulation in AD

NEAT1, MEG3,

Rian, Mirg198
Mice liver Liver aging Upregulated in healthy aging liver

H1960,67 Mice cell line Myogenesis Modulate myoblast differentiation and muscle regeneration

lncMD1202,203 Mice cell line Myogenesis Modulate myoblast differentiation during aging

SIRT1‐AS206 Mice cell line Myogenesis Modulate myoblast differentiation

MALAT1204,205 Mice muscle, Mice

and human cell

Myogenesis Promote myoblast proliferation and differentiation in aging

muscle

YY1209 Mice cell line Myogenesis Upregulated in myoblasts but downregulated during

differentiation

Regulate myogenesis at the transcriptional level

Glt2/Meg3210 Mice cell line Myogenesis Maintain muscle development

MAR1208 Mice cell line Myogenesis Attenuate muscle atrophy induced by aging

MALAT1212-216 Human and mice cell Angiogenesis, v

ascular

remodeling

Control EC proliferation and senescence; mediate angiogenesis

and vascular inflammation

MEG3217,218 Mice vessel, human cell Angiogenesis Upregulated in senescent ECs; depletion of MEG3 promotes

sprouting and EC proliferation

ANRIL219-223 Human artery and cell Atherosclerosis Distinct modulation on VSMC proliferation and plaque formation

according to different splicing variants

(Continues)
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and amyloid plaques in AD brain.189 Expression of BC200 was

decreased in the normal aging brain, but elevated in AD brain.190

The accumulated pathological protein in PD brain is α‐synuclein, con-
tained in Lewy body. The identified genes involved in PD pathology

include Parkin, PINK1, PARK‐7, and LRRK2. Therefore, further investi-

gations regarding lncRNAs targeting these genes or linked to the

pathogenesis of α‐synuclein would be a promising strategy in PD

therapy.103,188,191,192

3.2 | Liver

Liver blood flow is estimated to be reduced by 20%‐40%, which

seems to be consistent with the shrinkage of liver volume.193,194

Accumulated lipofuscin in hepatocytes contributes to chronic oxida-

tive stress, and vacuolation of hepatocyte nuclei is linked to diabetes

and nonalcoholic fatty liver diseases (NAFLD), both of which are

possible markers of hepatocyte senescence.195,196 Age‐related
decline in drug metabolism and regeneration capacity, and abnormal

immune responses enhance vulnerability to acute liver injury, liver

fibrosis, hepatitis C, NAFLD, alcoholic liver diseases, and liver tumor.

Alterations in C/EBP family and telomere reverse transcriptase by

repressive chromatin remodeling are observed in aged drug‐induced
liver injury, resulting in impaired regenerative capacity and fibro-

sis.197 A group of differentially expressed lncRNAs in mouse have

been identified in the above pathophysiologies, including NEAT1,

MEG3, Rian, and Mirg.198 Rian and MEG3 could regulate proliferation

TABLE 1 (Continued)

lncRNAs (References) Samples studied Processes Effect during aging or other implications

H19272–274 Rat artery, human cell Atherosclerosis Modulate EC and VSMC proliferation and homeostasis

ASncmtRNA‐2183 Mice cell Vascular aging Upregulated in aortas from aged mice and senescent ECs

HOTAIR225 Human artery, cell line Atherosclerosis Downregulated in ECs form atherosclerotic plaques; regulate EC

proliferation and migration

MIAT224 Rat artery, human cell Angiogenesis Regulate EC function

TUG1226,227 Rat and mice cell Atherosclerosis Regulate EC apoptosis and VSMC homeostasis

linc‐p2191,95,228 Mice cell Atherosclerosis Promote apoptosis and suppress proliferation in VSMCs and

macrophages

Gas5229-231 Rat artery, human cell Atherosclerosis,

vascular

remodeling

Promote VSMC proliferation and migration; guide macrophage

polarization

HOXC‐AS232 Human artery Atherosclerosis Downregulated in atherosclerotic plaques through inflammatory

responses

linc00305233 Human cell Atherosclerosis Promote monocyte activation and vascular inflammation

lncRNA

OTTHUMT00000387022234
Human plasma and cell, Atherosclerosis Promote inflammation in macrophages

lncRNA RP5‐833A20.1275 Mice artery and cell Atherosclerosis Regulated cholesterol homeostasis and inflammatory responses in

foam cells

H19235 Human cell Osteogenesis Promote osteoblast differentiation

MALAT1236 Human cell Osteogenesis Induce osteogenic differentiation

HOTAIR237 Human cell Osteogenesis Suppress osteogenic differentiation

DANCER238 Human cell Osteogenesis Suppress osteogenic differentiation

MEG3239,240 Human cell Osteogenesis Suppress osteogenic differentiation

MIAT241 Human cell Osteogenesis Suppress osteogenic differentiation under inflammation

MIR31HG242 Human cell Osteogenesis Rescue osteogenic differentiation inhibited by inflammation

DANCER238,243 Human bone and cell Osteoporosis Promote osteoblast differentiation; suppress osteogenic

differentiation

H19107 Mice tissue Lipid deposition Imprint IGF2 and affect lipid deposition

PLUTO251 Human islets T2DM Regulate β‐cell function and pancreatic formation

βlinc1252 Mice islets T2DM Associated with β‐cell loss

HI‐LNC901253 Human islets T2DM Correlated with insulin exocytosis

Kcnq1ot1, HI‐LNC78,
HI‐LNC80254

Human islets T2DM Upregulated in T2DM

Sense blood glucose level

HI‐LNC45254 Human islets T2DM Downregulated in T2DM

Sense blood glucose level

AD, Alzheimer's disease; ECs, endothelial cells; NSCs, neural stem cells; PD, Parkinson's disease; VSMCs: vascular smooth muscle cells.
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by directly recruiting PRC2.199 Mirg could predict certain cell cycle

factors, such as Myc and p53.200 Moreover, the involvement of

ANRASSF1, ecCEBPA, and some other lncRNAs, whose target genes

are involved in liver metabolism, cell cycle, or local inflammatory

responses, remains to be elucidated.

3.3 | Muscle

Muscle mass declines progressively during aging. Sarcopenia is a com-

mon age‐related skeletal muscle degeneration, characterized by

reduced muscle mass and muscle fibers. The underlying mechanisms

are multifaceted, including a sedentary lifestyle, reduced hormonal

level, and increased inflammation, loss of proteostasis, and mitochon-

drial dysfunction.201 H19 is implicated in skeletal muscle differentia-

tion by acting as a molecular sponge to bind the miRlet‐7.60 H19 is

highly expressed in skeletal muscle, as well as H19‐encoded miRNAs,

miRlet‐7, and miRlet‐7 during muscle regeneration, all of which are

regulated by SMAD1/5.67 The muscle‐specific lncMD1 exerts as a

decoy for miR‐133 and miR‐135, which is enhanced by HuR, to limit

its impact on the expression of Elavl1 in muscle differentiation during

muscle aging. HuR plays a direct role in muscle wasting and sarcope-

nia.202,203 Stimulated by myostatin, MALAT1 regulates muscle cell pro-

liferation and differentiation, thus influencing muscle aging.204,205

SIRT1‐AS was recently reported to play a role in myogenesis, as its

antisense target SIRT1 could prevent senescence and aging through

myogenic program.206,207 There are other lncRNAs involved in myoge-

nesis, such as YY1, Glt2/Meg3, and MAR1, whose function in muscle

aging needs further exploration.208-210

3.4 | Cardiovascular system

Cardiovascular aging is generally accompanied by the occurrence of

ischemic cardiovascular diseases (eg, hypertension, coronary artery

disease [CAD], atherosclerosis, myocardial infarction, stroke).211 An

expanding number of lncRNAs have been identified in the series of

pathophysiologies by regulating EC and vascular smooth muscle cell

(VSMC) proliferation, angiogenesis, vascular remodeling, macrophage

polarization, and cholesterol metabolism.49 MALAT1 is significantly

important in promoting EC proliferation, vessel outgrowth, and

sprouting and in protecting ECs against apoptosis induced by oxy-

gen‐glucose deprivation and ox‐LDL–related inflammation via various

targets (eg, miR‐22‐3p and encoded genes CXCR2 and Akt, miR‐26a)
through multiple signaling, including p21, p38, PI3K/Akt.212-216 MEG3

is upregulated during vascular aging. Silencing MEG3 could prevent

aging‐mediated inhibition of sprouting activity and EC prolifera-

tion.217,218 ANRIL is known as an independent risk factor for CAD.

However, functional annotation of this lncRNA in atherosclerosis is

controversial, as different splicing variants of ANRIL might play dis-

tinct roles.219-223 Also, H19, ASncmtRNA‐2, HOTAIR, MIAT, TUG1,

linc‐p21, and Gas5 play similar roles in angiogenesis and atheroscle-

rosis by regulating the function of ECs and VSMCs.91,95,183,224-231

On the other hand, lncRNAs including HOXC‐AS, Gas5, linc00305,

lncRNA OTTHUMT00000387022, and lncRNA RP5‐833A20.1 could

activate macrophages, mediate inflammatory responses, or regulate

lipid metabolism, exerting impacts on atherosclerotic plaque forma-

tion.232-234 Additionally, other lncRNAs related to macrophage acti-

vation and polarization, which are mentioned in the previous part,

such as PACER, THRIL, and lincRNA‐COX2, might be conducible to

the progression of atherosclerosis.

3.5 | Bone

The process of aging breaks the balance between bone formation and

resorption. The changes in bone turnover cause osteoporosis, which

can also be induced by endogenous estrogen deficiency or corticos-

teroid treatment. Plentiful lncRNAs have already been revealed to

take part in osteogenesis ossification (eg, H19, MALAT1, HOTAIR,

DANCR, MEG3, MIAT, and MIR31HG) and osteoclast differentiation

(eg, DANCER) via specific target mRNAs or miRNAs.235-242 DANCER is

involved in the pathology of osteoporosis, as it promotes inflamma-

tion‐induced osteoclastogenesis and suppresses osteogenic differentia-

tion, which implies a potential biomarker for osteoporosis.238,243 As

the half‐lives of lncRNAs are less than those of mRNAs, recent strate-

gies have applied the systematic analysis of lncRNAs‐miRNAs‐mRNAs

regulatory network as to search for more potential biomarkers for

osteoporosis.244 Only a handful of lncRNAs have been screened out

in these studies, including LOC105376834, LOC101929866, and

mmu_12821_PI428960544, all of whose biological significances are

required to be addressed in further studies.245,246

3.6 | Adipose tissue

Adipose tissue exerts immune and endocrine actions throughout life,

besides being a major source of energy source. Compared to the sub-

cutaneous distribution in adult years, visceral redistribution, and ecto-

pic deposition in liver, bone marrow and muscle are adopted in the

old age. lncRNAs is involved in this extensive remodeling process by

controlling adipogenesis and lipid metabolism. H19 affects fat deposi-

tion and metabolism. In adult mice, low expressed IGF2 is associated

with increased lipid deposition. Then during aging, the expression of

H19‐IGF2 is enhanced due to loss of imprinting of this gene locus.66

linc‐DMRT2 and linc‐TP53I13 were reported to be downregulated by

lipopolysaccharide in adipose tissue of obese humans, providing clues

to age‐related diseases derived from interrupted homeostasis of adi-

pose tissue.247 Sun et al firstly identified a group of lncRNAs, termed

as lnc‐RAP‐n, which are specifically regulated during adipogenesis

through PPARγ and CEBPα. However, the direct impacts of individual

lnc‐RAP‐n on adipose tissue aging warrant further study.248

3.7 | Pancreatic islets

Type 2 diabetes mellitus (T2DM) is considered as an age‐related dis-

ease, as it is well documented that aging is associated with declined

insulin action and β‐cell secretory activity.249 Moreover, pancreatic

islet cell senescence partly contributes to the rise of T2DM in the

elderly.250 Growing evidence implicates lncRNAs in the etiology of

HE ET AL. | 167



T2DM. PLUTO is involved in pancreas development and β‐cell func-
tion, as it regulates PDX1 transcriptional activity.251 βlinc1, a β‐cell
long intergenic noncoding RNA, could modulate β‐cell formation and

function.252 HI‐LNC901 was reported to be directly correlated with

insulin exocytosis.253 In addition, high levels of Kcnq1ot1, HI‐LNC78,

and HI‐LNC80 and low level of HI‐LNC45 were observed in

pancreatic islets from diabetic individuals or in the presence of

high glucose, indicating the function of sensing blood glucose

levels.254

3.8 | Immune system

Immunosenescence refers to the acquisition of senescent features in

the immune system, which result in increased susceptibility to infec-

tion and a higher incidence of age‐related diseases. Moreover, aging

is considered as a low‐grade chronic inflammation state, termed

inflammaging, where SASP plays an important role.255 SASP‐asso-
ciated lncRNAs have been stated above in Section 2.4. Apart from

that, loss of CD4+T cells partly leads to dysfunction of innate immu-

nity. Only limited lncRNAs, such as linc‐MAF‐4 and rmrp, post‐tran-
scriptionally regulated CD4+T‐cell subsets, but no direct or indirect

evidences point to their involvement in aging.256,257

4 | CONCLUSION AND PERSPECTIVES

As concluding remarks, the emerging role of lncRNAs as regulators

of cellular senescence and age‐related diseases is still in its infancy.

Numerous diseases arise with advancing age, yet we just pick a cou-

ple of them to discuss in our review. Cancer is another kind of age‐
related disease, in which the function of lncRNAs has been deeply

investigated; thus, it is difficult for us to list all of them in limited

words. At present, aging and age‐related diseases have become a

heavy burden in society. Illustrating lncRNAs function in aging physi-

ology and pathology is of great significance under this context. Sam-

ples from elderly populations and a few animal models are adopted

to obtain the comprehensive spectrum of lncRNAs implicated in age‐
associated diseases. On the other hand, applications of recent

advanced technologies facilitate detailed elucidation of mechanisms

on the regulation and function of lncRNAs systematically. Although

the potential usefulness of lncRNAs in aging and age‐related diseases

cannot be fully realized at present, we can expect fast progress in

technologies will enable us to make good use of lncRNAs in aging.
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