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JCVI-syn3A is a minimal bacterial cell with a 543 kbp genome consisting of 493

genes. For this slow growing minimal cell with a 105 min doubling time, we recently

established the essential metabolism including the transport of required nutrients from the

environment, the gene map, and genome-wide proteomics. Of the 452 protein-coding

genes, 143 are assigned to metabolism and 212 are assigned to genetic information

processing. Using genome-wide proteomics and experimentally measured kinetic

parameters from the literature we present here kinetic models for the genetic information

processes of DNA replication, replication initiation, transcription, and translation which are

solved stochastically and averaged over 1,000 replicates/cells. The model predicts the

time required for replication initiation and DNA replication to be 8 and 50 min on average

respectively and the number of proteins and ribosomal components to be approximately

doubled in a cell cycle. The model of genetic information processing when combined

with the essential metabolic and cell growth networks will provide a powerful platform for

studying the fundamental principles of life.

Keywords: minimal cells, stochastic simulations, kinetic parameters, DNA replication, transcription, translation,

mRNA production, protein production

1. INTRODUCTION

JCVI-syn3A, a bacterial cell with a synthetic minimal genome of size 543 kbp and 493 genes, is
an organism designed to have the fewest genes necessary for life and is therefore an ideal model
organism for studying fundamental principles of life (Lachance et al., 2019). In Breuer et al. (2019),
we published the flux balance analysis of the essential metabolism of JCVI-syn3A along with the
gene map and the genome-wide data from essentiality and proteomics experiments. Although
metabolism, including transport of nutrients into the cell, has been established, the reactions and
kinetic models for genetic information processes in JCVI-syn3A are missing. The accompanying
gene map in Figure 1A assigned all 452 protein coding genes to one of the four major functional
classes: metabolism with transporters (143), genetic information processes (212), cellular processes
such as cell division (6), and unclear functions (91). Accompanying the gene map is a map of the
proteomics data detected for the 428 proteins in Figure 1B. The model presented here uses the
proteomics data to guide the modeling of protein production.
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FIGURE 1 | JCVI-syn3A protein coding genes (A) and proteomics (B)

distributed to four functional classes: metabolism (brown), genetic information

processing (blue), cellular processes such as cell division (green), and unclear

function(gray). Shading within the four functional classes indicate subsystems

within the class, such as nucleotide metabolism in metabolism or transcription

in genetic information processing. NCBI GenBank CP016816.2: https://www.

ncbi.nlm.nih.gov/nuccore/CP016816.2 (Breuer et al., 2019).

In our previous work on ribosome biogenesis in Escherichia
coli (Earnest et al., 2015, 2016), ribosome assembly was included
along with DNA replication and transcription/translation of just
the ribosomal proteins (rproteins). In this simplified model we
focus on developing kinetic parameters that replicate the DNA,
generate proteins comparable to the proteomics abundances,
and produce sufficient numbers of rprotein and ribosomal RNA
(rRNA) to generate approximately 500–700 ribosomes estimated
from the biomass equation in Breuer et al. (2019). Here we
introduce the construction and results of our simplified genetic
information processing model for a cell 400 nm in diameter.
The kinetics for initiation of DNA replication is based on a
mechanism derived from the JCVI-syn3A genomic sequence,
crystal structures of the initiator protein DnaA complexed with
DNA and kinetics parameters from single molecule fluorescence
resonance energy transfer (smFRET) experiments. Parameters
for simplified kinetics describing DNA replication, transcription,
mRNA degradation, translation, and protein degradation are
derived from the literature and our previous studies on JCVI-
syn3A (Breuer et al., 2019) and E. coli (Earnest et al., 2015, 2016).
Within the cell cycle of 105 min, these processes duplicate the
genome, generate, and translate sufficient amounts of mRNA to
approximately reproduce the proteomics data, and the estimated
number of ribosomes. All 452 protein coding genes and 35
genes for rRNAs and tRNAs in the genome of JCVI-syn3A are
expressed. Three pseudo genes and three genes for small RNA
are not expressed in this model.

2. METHODS

Each of the genetic information processing subsystems involve
species that are low in population in the cell, for example one
or two copies of a gene and 0–10 copies of a protein-coding
mRNA. To capture the stochastic nature of genetic information
processes, the kinetics were modeled with chemical master
equation (CME) simulations and solved using the Gillespie
algorithm as implemented in the software Lattice Microbes

(Roberts et al., 2013; Hallock et al., 2014; Earnest et al., 2015,
2018) with the pyLM interface in a Python 3 Jupyter notebook.
Due to the small size of JCVI-syn3A, 400 nm in diameter, we
neglect the spatial location of species inside the cell in this
simplified model which allows us to stochastically model the
kinetics as well-stirred using CME simulations. The results of
stochastic simulations were averaged over 1,000 replicates/cells.
Each replicate requires a run time of one second. The Jupyter
notebooks are available and are posted at GitHub (https://github.
com/zanert2/Thornburg_FrontMolBiosci_2019).

2.1. Polymerization Model and Rate Forms
In our genetic information processing model, DNA replication,
transcription, and translation are all reactions that involve an
enzyme (DNAP, RNAP, or ribosome) catalyzing polymerization
reactions based on a preexisting template polymer (the entire
ssDNA, each unique gene on the ssDNA, or its corresponding
mRNA). In the case of replication, the single template is the entire
genomic sequence of 543 kpb. In the case of transcription, the
templates are the individual 493 genes, each with a unique length
and sequence. In the case of translation, the templates are the
number of individual messengers for each of the proteins.We use
a rate form based on Equation (33) from Hofmeyr et al. (2013)
that was derived assuming polymerization from a single unique
template where the enzyme is in excess and the concentration
of free enzyme is constant. DNA replication, transcription, and
translation all involve a situation in which the enzyme is in excess
of unique templates. For DNA replication, there is a single start
site, oriC, and 35 DNAP molecules in the proteomics data. In
the case of transcription, there are 187 RNAP and if we consider
any one gene as the template for the rate form, there are at
most two copies of the gene at any point in the cell cycle. In
translation, there are over 500 ribosomes available to translate
the individual mRNAs which typically number <10. In each
case, we assume a constant steady-state concentration of free
enzymes in determining the kinetic rates, although the template
concentrations will change over time. The general polymerization
rate form can be written as

vpoly =
kcat[T]

(

1+ K0
[E]

)

KD1KD2
[M]1[M]2

+
∑

i
niKDi
[M]i

+ ntot

(1)

which we modify for transcription and translation in the
following sections to address that there is competition among
unique templates of different lengths ntot in each process. For
our experimental situation, the polymerization rate is dominated
by kcat , ntot , and template concentrations. The variation in
rates based on these assumptions is discussed further below in
Equation (2). The general rate form considers a mechanism
starting with enzyme E (DNAP, RNAP, or ribosome) binding
to a polymer template T with binding constant K0. Once the
enzyme and template have bound, the first two monomers
(dNTP, NTP, or the charged aa-tRNA) M1 and M2 bind to the
template/enzyme complex with association constants KD1 and
KD2. The monomer concentrations are determined by the pool
sizes provided in Zhang and Ignatova (2009) and Breuer et al.
(2019). A value of KD has been measured for a single elongation
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FIGURE 2 | DNA sequence near oriC of JCVI-syn3A defined by the 3 high (red) and low (yellow) affinity DnaA(IV) binding sites: The AT-rich region (bold and underlined)

binds DnaA(III). The AT-rich region ends at the Shine-Dalgarno sequence (italicized and underlined) preceding the dnaN gene (green dashes). A putative promoter for

the DnaA gene preceding its Shine Dalgarno sequence is shown in blue.

step of mRNA by RNAP, but not for DNAP or ribosomes (Larson
et al., 2012). Values for KD were fitted to maximize the rate
of each process assuming their respective pool sizes and other
experimentally measured kinetic parameters. Our fitted value
for RNAP agrees well with the experimentally determined value.
Monomers of type i are then added to the growing polymer by
the binding with their respective association constant KDi and we
assume that they are the same for any one process. The growing
polymer is elongated at a rate kcat . The resulting polymer (DNA,
rRNA, mRNA, tRNA, or protein) of length ntot will consist of
ni of each respective monomer type Mi following the first two
positions in the polymer.

In general, both the enzyme and template concentrations are
functions of time. In evaluating the rate constant, the enzyme
concentrations were held constant to the values derived from
the proteomics data making the polymerization rate obey first
order kinetics

ν = k(ntot , kcat)[T] (2)

where the rate constant is defined as

k(ntot , kcat) = C ×
kcat

(

1+ K0
[E]

)

KD1KD2
[M]1[M]2

+
∑

i
niKDi
[M]i

+ ntot

(3)

in which C represents any modifications to the rates of
transcription or translation. For the kinetic parameters, pool
sizes, and low enzyme concentrations assumed in the kinetic
model, the denominator is dominated by the third term, the
length of the new polymer ntot . In analyzing the sensitivity
of DNA replication, transcription, and translation to the
concentration of each respective enzyme, we found that the

rate constants k from Equation (3) deviated no more than
10−4% as the concentration of enzyme is doubled over the
cell cycle. Our above approximations hold assuming the cell
is in the exponential growth phase where nutrient and pool
sizes are in a steady state. The approximations no longer hold
in cases such as the transition from exponential to stationary
growth. As nutrients in the environment become depleted, the
rate of elongation steps in DNA replication, transcription, and
translation will be slowed down due to a lack of monomersMi.

2.2. Replication Initiation
Previous treatments of replication initiation have proposed a
mechanism based on E. coli and B. subtillis that began with the
initiator protein DnaA binding to four 9-bp signatures of the
DNA near oriC, followed by accumulation of DnaA monomers
around that location until a buildup of 20–30 monomers was
reached (Atlas et al., 2008; Karr et al., 2012). Our model of
DNA replication initiation is based on the genomic sequence of
JCVI-syn3A in Figure 2 and a mechanism derived from crystal
structures of the multi-domain DnaA binding to ds- and ssDNA
shown in Figure 3. In the genomic sequence structure, a strong
DnaA binding signature (TTATCCACA) is located near the
origin matching the whole 9-bp sequence with two neighboring
signatures matching 7 out of 9 bp (Schaper and Messer, 1995;
Weigel et al., 1997; Speck et al., 1999). These signatures lie next
to an AT-rich region 93 bp in length.

DnaA domain IV [DnaA(IV)] binds most strongly to
the sequence TTATCCACA. DnaA(IV) binds to the dsDNA
signatures (Erzberger et al., 2006; Duderstadt et al., 2011). DnaA
domain III [DnaA(III)] binds to AT-rich ssDNA in 3 nucleotide
increments forming a helical, filament-like structure (Erzberger
et al., 2006; Duderstadt et al., 2011). Our mechanism assumes
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that the binding of DnaA(IV) to the three neighboring dsDNA
signatures near oriC opens up a small pocket of ssDNA in the
neighboring AT-rich region. This mechanism is illustrated in
Figure 4A. Once the dsDNA sites are occupied, DnaA(III) can
start binding to the neighboring AT-rich region on the ssDNA.
The DNA continues to be unwound until the AT-rich region is
wrapped by the DnaA filament. Since DnaA(III) binds to ssDNA
in 3 nt increments (Duderstadt et al., 2011; Cheng et al., 2014)
the 93 bp AT-rich region shown in Figure 2, produces a filament
with 30 DnaA. After formation of the filament, replication can
be initiated.

FIGURE 3 | Crystal structures of DnaA binding to E. coli DNA suggest a

mechanism for initiation of replication: (A) PDB 1J1V; DnaA(IV) binds to a 9-bp

signature on dsDNA. (B) PDB 3R8F; Four DnaA(III) bind to 3-nucleotide

increments on ssDNA.

To capture the proposed mechanism, we begin with a reaction
binding a DnaA to the high affinity binding signature near OriC
on dsDNA, creating a bound site and the two low affinity free sites
on either side of the high affinity site. The low affinity sites on
dsDNA then react with one DnaA each, creating a bound site for
each. The dsDNA binding rates use second order rate forms using
the rate constants shown inTable 1. There is also a reaction in the
model for DnaA binding to other high affinity sites around the
chromosome. This is included since the filament length strongly
depends on the number of free DnaA available. The kinetic model
for the formation of the DnaA filament is based on an smFRET
study on ssDNA (Cheng et al., 2014). The smFRET study in
Figure 4B reports values for kon for addition of a DnaA molecule
to the growing DnaA filament bound to ssDNA and koff for
removal of a DnaA molecule from the filament as shown in
Figure 4C. These kinetic parameters are presented in Table 1 and
were used for each independent binding and unbinding until a
filament consisting of 30 DnaA has formed. Once the filament
is formed and replication begins, the filament is assumed to be
removed at the rate of the polymerization in DNA replication
which models removal of DnaA by DNA helicase. The model is
constructed so that only one replication initiation event occurs in
a cell cycle.

2.3. Replication
The replisome, a complex containing proteins necessary for
DNA replication including DNA helicase, DNAP, DNA primase,
gyrase/topoisomerase, and the beta clamp, binds at oriC once

FIGURE 4 | Replication initiation mechanism. (A) DnaA(IV) binds to three signatures on dsDNA next to the AT-rich region near oriC. DnaA(III) subsequently binds in

3-nucleotide increments. DnaA(III) continues to bind to ssDNA until the AT-rich region is opened, allowing the replisome machinery to be loaded. (B) The kinetic

parameters for the binding of DnaA(III) to ssDNA were obtained from a smFRET study (Cheng et al., 2014) where the FRET signal depended on the number of DnaA

bound. Fewer DnaA corresponded to compact ssDNA, resulting in a high FRET signal. Increasing the number of DnaA bound to ssDNA extends the filament, lowering

the FRET signal. (C) Schematic of the binding kinetics of DnaA(III) to ssDNA forming a DnaA filament of length n. The kon and koff values correspond to the kinetics

measured by smFRET.
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the replication initiation event has occurred and then proceeds
in both directions around the chromosome, creating the
two replication forks as shown in Figure 5. Using smFRET
experiments, the replisome has been observed to assemble
in just a few seconds (Downey and McHenry, 2010; Cho
et al., 2014). We do not model the assembly of the replisome
and assume its assembly occurs during or before replication
initiation. As the replisome proceeds along the chromosome,
the original chromosome shown in green is unzipped and the
two new chromosomes shown in red and blue are polymerized
on the original ssDNA template. Both strands of ssDNA at
the replication fork are treated the same with continuous
polymerization, and okazaki fragments are not modeled. The
model assumes that once the replisomes reach the terminus,
they fall off quickly and the two new chromosomes are
instantaneously separated. The number of dATP, dTTP, dCTP,
and dGTP monomers ni appearing in the rate form (Equation
1) are calculated from the A, T, C, and G content of the genome:
203606 A, 207816 T, 67238 C, and 64720 G. Since there are no
metabolic reactions to produce deoxynucleotides or ATP for the
reactions to occur, constant pools for each are assumed using the
pool sizes from Breuer et al. (2019) presented in Table 2.

Kinetic parameters for replication are given in Table 3. The
elongation rate constant kcat (Xie et al., 2008) and the association
constant for DNAP to DNAK0 (Zhang et al., 2016) were obtained
from the literature for E. coli. In order to make a second copy of

TABLE 1 | Kinetic parameters used in the model of replication initiation.

Parameter Value Units References

High affinity binding rate 7,800 mM−1 s−1 Schaper and Messer, 1995;

Weigel et al., 1997

Low affinity binding rate 35 mM−1 s−1 Schaper and Messer, 1995;

Weigel et al., 1997

kon 100 mM−1 s−1 Cheng et al., 2014

koff 0.55 s−1 Cheng et al., 2014

the genome within the 105 min doubling time, the choice of KD

was made in order to minimize the time to duplicate the DNA.
Assuming the constant pool sizes and DNAP concentrations,
the value of KD corresponds to the value where the length of
the genome is the dominant term in the denominator of k
in Equation (3).

2.4. Transcription
Tomodify the general rate form for transcription, we incorporate
two factors: the probability of an active RNAP selecting any gene
Pgene selection and the strength of the gene’s promoter Spromoter .
The fraction of active RNAP as estimated by Bremer and Dennis
(2008) for a cell with a ∼100 min doubling time implies that
around 29 of the 187 RNAP are actively transcribing at any
time. Of the actively transcribing RNAPs, Bremer and Dennis
(2008) estimate that approximately 24% are involved in making
stable RNA like rRNA. Since each rRNA operon only contains the
16S, 23S, and 5S rRNAs and no tRNAs, transcription of the two
drRNA genes will require four RNAP. Therefore, the probability
of any other gene being selected is Pgene selection = 25/487 = 0.05.
We estimate that each rRNA operon is always being actively

TABLE 2 | Pool sizes from Breuer et al. (2019) and estimated from Zhang and

Ignatova (2009) and Mackie (2013)*.

Species Pool size (mM)

dATP 0.018

dTTP 0.022

dCTP 0.012

dGTP 0.007

ATP 1.04

UTP 0.68

CTP 0.34

GTP 0.68

tRNA* 0.0020

aa-tRNA* 0.0076

FIGURE 5 | Mechanism of DNA replication: Once the replisome machinery is loaded onto the chromosome shown in green, the machinery begins to polymerize

around the DNA, elongating new DNA onto both halves of the original chromosome shown in red and blue. Once the replisome reaches the terminus, we assume that

the replisomes fall off quickly.
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transcribed by two RNAP, and therefore has a probability of gene
selection of 1. The expression from Hofmeyr et al. (2013) did
not include competition for multiple templates which is now
captured with the probability of gene selection. This gives us a
transcription rate

νtranscription = Pgene selection × νpoly (4)

which we use for transcription of rRNA, tRNA, and ribosomal
protein-coding genes.

The the rate of transcribing a gene also depends on the
strength of its promoter sequence (Jones et al., 2014), however
the precise promoter sequences and their strengths have not
been measured for JCVI-syn3A. In a preliminary analysis of the
sequences preceding each protein-coding gene, we found that, in
general, a protein is more likely to have a higher proteomics value
if the start codon is preceded by both a Shine Dalgarno sequence
a promoter sequence TANAAT as characterized in Mycoplasma
pneumoniae (Lloréns-Rico et al., 2015). Using this information,
to incorporate a proxy for promoter strength, Spromoter , into the
kinetics, the transcription rate for each non-ribosomal protein
coding gene is multiplied by the ratio of gene’s proteomics count
to the average proteomics count of 180

νmRNA transcription = Spromoter × Pgene selection × νpoly (5)

Since some ribosomal proteins were not reported in the
proteomics data, this factor is not used in the transcription rates
of ribosomal protein coding genes.

The model expresses the genes for all 452 protein coding
genes and the genes for rRNA and tRNA. For each protein or
RNA, the gene identifier from the NCBI entry (NCBI GenBank
CP016816.2: https://www.ncbi.nlm.nih.gov/nuccore/CP016816.
2; Breuer et al., 2019) is read and the corresponding sequence
is used to determine the nucleotide stoichiometries for the
formation and degradation reactions. RNA formation reactions

TABLE 3 | Parameters used in kinetics for replication, transcription, translation,

mRNA degradation, and protein degradation.

Subsystem Parameter Value Units References

Replication kcat 600 bp/s Breier et al., 2005; Xie et al., 2008

K0 0.26 µM Zhang et al., 2016

KD 1.0 µM Fitted

Transcription kcat (mRNA

and tRNA)

25 nt/s Chen et al., 2015

kcat (rRNA) 180 nt/s Ryals et al., 1982

K0 100 nM Bremer and Dennis, 2008

KD 0.1 mM Fitted; Larson et al., 2012

Translation kcat 5 aa/s Cox, 2004

K0 100 nM Bremer and Dennis, 2008

KD 0.01 mM Fitted

mRNA

Degradation

t1/2 4 min Bernstein et al., 2004; Briani et al.,

2008

Protein

degradation

t1/2 25 hr Maier et al., 2011

use our modified polymerized, template-driven rate forms in
Equations (4) and (5) and the degradation reactions of mRNA
follow first order kinetics. The nucleotide stoichiometries are
used to determine the monomer counts ni and total polymer
length ntot in the rate form. Constant pools of nucleotides are
assumed using the pool sizes from Breuer et al. (2019) presented
in Table 2. For the transcription reactions, the enzyme is RNAP
and the template is the total concentration of the gene in the
cell as a function of time and includes the replication of DNA.
This model, however, does not take into account the location of a
gene on the genome during DNA elongation. The elongation rate
constant kcat and the association constants K0 and KD are listed
in Table 3. Literature values of mRNA and tRNA elongation rates
of 25 nt/s are used for kcat (Chen et al., 2015). A messenger half-
life of 4 min is used for all mRNA degradation. The half-life of
1 min in Breuer et al. (2019) did not result in mRNA abundances
that produced proteins quickly enough to double the number
of proteins in the cell cycle. The 4 min half life gives a total
mRNA abundance in better agreement with the data published
in Lynch and Marinov (2015). The experimentally observed
rRNA operon elongation rate kcat of 90 nt/s (Ryals et al., 1982)
was multiplied by two for both operons to model the effect of two
RNAP simultaneously transcribing each operon. The association
constant for association of RNAP to DNA K0 was calculated
according to Hofmeyr et al. (2013) using the concentrations of
the free and actively transcribing RNAP (Bremer and Dennis,
2008) and concentration of the gene. The association constant for
nucleotides binding to the RNAP/gene complex KD was fitted so
that the rate of transcription wasmaximized bymaking transcript
length the dominant term in the denominator of k in Equation
(3). Our fitted value agrees with a measured experimental value
of 0.14 mM (Larson et al., 2012). With no transcriptomic data
available, each mRNA begins with a count of 1 and each tRNA
is divided evenly at 190 each to have a total tRNA abundance
of 3,750, a value scaled from E. coli based on differences in cell
volume (Mackie, 2013).

2.5. Translation
Since the number of total mRNA is approximately on the same
order of the number of ribosomes, the probability of any mRNA
being translated is near unity. The only other modification of the
translation rate expression is to allow more than one ribosome
(polysomes) Nribo to bind to a long transcript in Equation (6).

TABLE 4 | ATP hydrolysis costs of reactions in genetic information processing

subsystems (Russell and Cook, 1995; Lynch and Marinov, 2015).

Reaction ATP cost Units

Replication 1 ATP per bp

Transcription 1 ATP per nt

Translation 2 ATP per aa

mRNA degradation 1 ATP per nt

Protein degradation 1 ATP per aa

The cost of translation does not include charging of the tRNAs as those reactions are

incorporated in the essential metabolism (Breuer et al., 2019).
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This factor is an integer calculated as the length of the transcript
over an estimated ribosome spacing of 300 nt in E. coli (Brandt
et al., 2009). If the value is calculated as <1, the value of Nribo is
set to 1. The ribosome spacing was estimated using an observed
approximate average of 4 ribosomes per polysome for an average
transcript length of 1,200 nt.

νtranslation = Nribo × νpoly (6)

The model includes the translation and degradation of each
protein made from each mRNA. The gene identifier from the
NCBI entry also includes the amino acid sequence for protein
coding genes which is used to determine the corresponding
stoichiometries of tRNA charged with their corresponding amino
acids (aa-tRNA) required to build the protein and the amino
acid stoichiometries when the protein is degraded. For the
translation reactions, the template in the polymerization rate
form (Equation 1) is the associated mRNA. The model uses
whole, intact ribosomes as the enzyme and does not model

association of messengers to the 30S small subunit followed by
association of the 50S large subunit. The elongation rate constant
kcat and the association constants K0 and KD are listed in Table 3.
For E. coli, experimentally measured elongation rates range from
10 to 20 aa/sec (Bremer and Dennis, 2008), however slower rates
have been reported in other bacteria such as Mycobacterium
bovis with an elongation rate of 2 aa/sec (Cox, 2004). A value
within the estimated range of 2–10 aa/sec of 5 aa/sec was chosen
so that the number of proteins was approximately doubled in
a cell cycle. The association constant of the ribosome to the
mRNA K0 was estimated using the average fraction of actively
translating ribosomes (Bremer and Dennis, 2008) and an average
concentration of an mRNA to be one in the cell. The association
constant for aa-tRNA binding to the ribosome/mRNA complex
KD was fitted to maximize the rate of translation assuming
constant aa-tRNA pool sizes and ribosome concentration. The
value of KD was computed using the length of the shortest
protein, ribosomal protein L34 (40 aa), in the equation for the
rate constant k (Equation 3). A half-life of 25 h was used for

FIGURE 6 | (A) DnaA filament formation for four different replicates shown in different colors. The stochastic effects of the filamentation kinetics result in a wide range

of times to form the filament from <5 to 50 min. (B) Probability distribution of replication initiation times when the thirtieth DnaA in the ssDNA filament binds. We

predict the most probable time to form the filament to be approximately 5 min and the average time to be approximately 8 min shown with a dotted line. (C) Average

of genome duplication over 1,000 replicates shows that on average the genome will be duplicated in 65 min of the 105 min cell cycle, leaving approximately 40 min for

continued cell division. (D) The average abundance of DnaA not bound to DNA gets depleted by filament formation and replenished by translation and removal of the

filament by DNA helicase.
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protein degradation reactions (Maier et al., 2011) Degradation
of the proteins in extremely slow, so the main source of dilution
would be by cell division after 105 min.

2.6. ATP Energy Costs
Replication, transcription, translation, mRNA degradation, and
protein degradation have associated ATP hydrolysis costs.
Although the mechanism for ATP hydrolysis is not explicitly
modeled, the costs are incorporated as additional time dependent

reactions for each subsystem. For example, in DNA replication
the DNA helicase is not explicitly modeled, but we assume
that 1 ATP hydrolysis event per bp is required to unwind
the dsDNA. The ATP cost of each reaction in each subsystem
is determined by the length of the DNA/RNA/protein being
formed or mRNA/protein being degraded (Russell and Cook,
1995; Lynch and Marinov, 2015). In transcription, we assume
that the RNAP uses 1 ATP hydrolysis event per bp to unwind
the dsDNA. The mRNA degradation reactions also assume that

FIGURE 7 | Abundances of mRNA and tRNA transcribed in a 105 min cell cycle. (A) A single replicate from the stochastic simulation of the mRNA abundance for

glucose-6-phosphate isomerase shows fluctuations in the average integer abundance of messengers. Fluctuations arise from competing rates of formation,

degradation, and replication. The average mRNA abundances of mRNA coding for (B) metabolic proteins, (C) genetic information processing, DnaA (orange), and cell

division proteins, (D) ribosomal proteins, and (E) proteins of unclear function all have average abundances between zero and seven. (F) The total number of all

messengers during a cell cycle averaged over 1,000 replicates shows that typically there are 300–450 messengers present in the cell at any time.
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FIGURE 8 | Generated abundances of rRNA and tRNA for a cell cycle averaged over 1000 replicates. (A) 16S, 23S, and 5S rRNA are each generated to the same

average abundance of 800 over a cell cycle. (B) The average abundance of each tRNA generated in a cell cycle results in a total abundance of approximately 4000

tRNAs. The tRNAs in black are methionine and leucine, in blue are threonine, tryptophan, lysine, arginine, and serine, and remaining tRNAs are shown in pink.

1 ATP hydrolysis event is required per nucleotide removed
from the messenger. The transcription reactions assume 2 ATP
hydrolysis events per amino acid addition. These reactions use 2
instead of 4 ATP hydrolysis events since the amino acid charging
of the tRNA are already included in the essential metabolic
network (Breuer et al., 2019). The costs used are also shown
in Table 4.

3. RESULTS

3.1. Replication Initiation and Replication
We found that DnaA(IV) requires <1 min to bind to all three
dsDNA signatures. The stochastic trajectories of DnaA filament
formation from four representative cells are shown in Figure 6A.
The distribution of times to form the DnaA filament in Figure 6B
is peaked at 5 min, but on average it takes 8 min for the DnaA
filament to form on ssDNA as shown with a dotted line. Once the
filament is 30 DnaA in length, replication begins and the DnaA
filament is removed by the polymerization of DNA, resulting
in the fast drop from 30 to 0 DnaA in the filament as seen in
the trajectories in Figure 6A. It then takes another 50 min on
average for replication to reach completion in Figure 6C. We
predict replication initiation and replication are completed by 65
min, leaving another 40 min for the cell to divide in the 105 min
cell cycle.

To illustrate the time-dependent variation in protein
formation, the average abundance of free DnaA is shown in
Figure 6D. Within the first minute we see a fast drop due to
DnaA(IV) binding to high affinity dsDNA binding sites around
the genome. The filament formation slowly removes DnaA from
the free DnaA abundance until around 8 min when replication
most frequently begins. DnaA in then replenished over several
minutes due to removal of the filament by DNA helicase and
translation of new DnaA.

3.2. Transcription
The mRNA production in a single cell exhibits fluctuations
due to competing rates of formation and degradation. A

representative of the mRNA production for glucose-6-phosphate
isomerase over the 105 min simulation is shown in Figure 7A.
The abundance of the messenger fluctuates from zero to two
before DNA replication occurs and then one to five once the
gene has been duplicated. The time dependence of all mRNA
over a cell cycle averaged over 1,000 replicates are shown in
Figures 7B–E. The mRNA are divided by mRNA for metabolic
proteins (Figure 7B), genetic information processing and cell
division proteins (Figure 7C), ribosomal proteins (Figure 7D),
and proteins of unclear function (Figure 7E). The resulting
kinetics show each mRNA growing or depleting in population
from the initial one copy until the effects of replication are fully
manifested around 60 min. In the early phase, the increase or
decrease ofmRNA reflects the competition betweenmRNAdecay
and the length of the transcript and the strength of the gene’s
promoter. As the genome is duplicated, this equilibrium for each
mRNA shifts once a second copy of the gene is present. As
the position of the gene in the genome is not considered, the
variations are proportional to change in the DNA copy number
of the cell cycle and not the nearness to oriC. The total number
of mRNAs in Figure 7F varies from its initial value of 452 (one
for each of the protein-coding genes) to an equilibrium value of
approximately 425.

More than 500 of each rRNA were produced in a cell cycle
shown in Figure 8A, reaching the number required to produce
500–700 ribosomes in the cell cycle estimated by Breuer et al.
(2019). The number of each tRNA produced in Figure 8B

reveals three groupings of tRNA production. The three groupings
depend on the number of genes for each tRNA present in
the genome. The groups consisting of more than one gene
include 3 each of methionine and leucine tRNA genes making
up the tRNA grouped between 500 and 600 tRNA and 2 each
of threonine, tryptophan, lysine, arginine, and serine tRNA
genes making up the tRNA grouped between 300 and 400
tRNA. Overall the model produces approximately 4,000 total
tRNAs over a cell cycle, in close agreement with the initial
estimate of 3,750 obtained from scaling the abundances in E. coli
(Mackie, 2013).
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FIGURE 9 | (A) The distribution of proteins generated after 105 min averaged over 1,000 replicates approximately reproduces the experimental proteomics

distribution for JCVI-syn3A. (B) Average protein counts scaled to the proteomics numbers for proteins with a proteomics counts >10. Metabolic proteins (green),

non-ribosomal genetic information processing and cell division proteins (blue), and proteins of unclear function (gray). (C) A histogram of the scaled protein

abundances at 105 min shows that the model doubles the abundances of most proteins with only a few outliers including mostly proteins of unclear function and

thioredoxin, acyl carrier protein, transcription antitermination factor NusB, aspartyl/glutamyl-tRNA amidotransferase, and transporter ptsH. (D) A histogram of the

number of ribosomal proteins generated shows that the model produces approximately 500 of most ribosomal proteins, enough to form the predicted 500 ribosomes.

Some ribosomal proteins were produced in large excess including L34 above 4000, S21 near 3000, and L32, L35, S14, and L28 around 2000 each.

3.3. Translation
Since the protein degradation rate of 25 h is much slower than
the mRNA degradation rate of 4 min, proteins will accumulate
and only decay significantly by dilution through cell division.
The goal of the model was to approximately reproduce the
experimental proteomics distribution, double the abundance
of each non-ribosomal protein, and produce 500–700 of each
ribosomal protein. We compare our distribution of generated
proteins over a cell cycle to the experimental proteomics in
Figure 9A. We approximately reproduce most of the distribution
with the greatest deviation being for proteins with fewer than
10 counts in the proteomics data. In the rest of our analysis of
non-ribosomal proteins, we focus on proteins with experimental
proteomics abundances >10. For further comparison, the
number of each non-ribosomal protein generated over a cell
cycle is compared to its proteomics value used to initialize the
simulations (Figure 9B). From the histogram in Figure 9C we
see that most non-ribosomal proteins double in number over

a cell cycle with a few outliers, of which most are proteins of
unclear function. The remaining outliers include thioredoxin,
acyl carrier protein, transcription antitermination factor NusB,
aspartyl/glutamyl-tRNA amidotransferase, and ptsH, all of
which are short proteins around 100 amino acids in length
or shorter. The histogram of ribosomal proteins abundances
generated by the model in Figure 9D reveals that the model
produces 500 copies for the majority of the ribosomal proteins,
while the shortest are being overproduced. Ribosomal proteins
overproduced include L34 above 4,000, S21 near 3,000, and L32,
L35, S14, and L28 above 2,000 each. Ribosomal proteins not
generated to an abundance of at least 500 include L1, L3, S3, S5,
S2, and L2.

3.4. ATP Energy Costs
The model was constructed to estimate the ATP hydrolysis
requirements for the genetic information processes in the
minimal cell using per bp, nt, or aa usage of ATP in DNA
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TABLE 5 | ATP hydrolysis costs of the deterministic model for genetic information

processes.

Subsystem ATP used in 105 min

(millions)

ATP cost for a 400 nm

cell (mM)

Total 77 3,800

Replication 0.54 28

Transcription 10 500

Translation 59 2,900

mRNA degradation 5.9 290

Protein degradation 1.9 93

The ATP cost for transcription reported here only includes the hydrolysis costs of the

RNAP, it does not include ATP built into RNA sequences.

elongation, transcription, translation, mRNA degradation, and
protein degradation. The estimates of the ATP hydrolysis
cost over a 105 min simulation are presented in Table 5 as
both the total number of ATP used and the corresponding
concentration of ATP required for a 400 nm cell. The model
predicts that the total ATP hydrolysis cost over a cell cycle
to be approximately 3,800 mM for JCVI-syn3A. This estimate
does not suggest that 3,800 mM of ATP needs to be present
in the cell, but provides an estimate for how quickly the
metabolism will need to convert ADP into ATP. The most
significant of the ATP hydrolysis costs in the genetic information
processes comes from translation requiring 2,900 mM and the
smallest of the costs is for DNA replication at 28 mM. The
cost for translation will be higher once the genetic information
processes are paired with the metabolism, as this cost did
not account for the two ATP hydrolysis events to charge
each tRNA which are included in the essential metabolism
(Breuer et al., 2019). The cost for transcription of 500 mM
does not include the ATP built into RNA sequences, it
only includes the ATP hydrolysis costs of the RNAP. The
predicts ATP requirements for mRNA degradation and protein
degradation are predicted to be 290 and 90 mM, respectively.
The cost for protein degradation is smaller due to the long
protein have-life of 25 h relative to the 4 min half-life
of messengers.

4. DISCUSSION

Our detailed model for the initiation of DNA replication
builds upon observations from crystal structures of the initiator
protein DnaA bound to signatures on ds-and ssDNA found
near the oriC and smFRET measurements of the DnaA
filament formation on ssDNA. The time taken for DNA
replication initiation is predicted to vary from <5 min up
to 50 min. We predict a total time of 65 min on average
for the formation of the second copy of the genome, which
means at least one copy of the DNA can be generated in a
cell cycle.

The average number of any mRNA is within the expected
range from zero to ten as reported in E. coli (Milo and Phillips,
2015) and can be used as predictions for mRNA counts in
JCVI-syn3A until transcriptomic data or smFISH experiments

are available for validation. We predict that approximately 450
messengers will be present in the cell on average, agreeing with
the extrapolated number for a 400 nm diameter cell from Lynch
and Marinov (2015). In our previous treatments of replication
and transcription of a given gene in E. coli (Peterson et al., 2015;
Cole and Luthey-Schulten, 2017) we showed how the variation in
DNA copy number and position of the gene in circular DNA can
broaden the mRNA distribution. We are likely underestimating
the distributions for genes close to oriC and overestimating the
distributions for genes near the terminus. In the case of rRNA, a
higher transcription rate generated a sufficient number of rRNA
to form 500–700 ribosomes in a cell cycle. A higher transcription
rate was justified from the greater promoter strength of the rRNA
operon observed in E. coli and other bacteria (Maeda et al.,
2015) as well as the presence of multiple RNAPs estimated to be
reading the operon (Bremer and Dennis, 2008). While the model
produces over 500 rRNAs, there is variation in the number of
ribosomal proteins. For the majority of the ribosomal proteins,
approximately 500 of each were generated. However, the long
ribosomal proteins were not generated quickly enough and the
shorter ribosomal proteins occurred in much higher numbers.
This is likely due to no promoter strength being assigned to
the transcription of genes coding for ribosomal proteins. In the
case of non-ribosomal proteins where we assigned promoter
strengths based on proteomics counts, our model, to the most
part, approximately doubles the number of proteins over a cell
cycle. Identification of the promoter sequences and operonal
structures for genes in JCVI-syn3A would help assign variation
in promoter strengths and transcription rates on the basis of
genomic information rather than proteomics values.

The simplified kinetic models for the genetic information
processing reactions in the minimal cell JCVI-syn3A neglected
the explicit assembly of the protein complexes that replicate
DNA (replisome), transcribe the genes, and translate the mRNA
and instead focused on the “polymerization” reactions that
replicated the DNA, transcribed the genes into mRNAs, and
translated them into proteins and how they are coupled.
In some cases, this neglect can be justified by assumed
timescale separation of the processes, but in general more
experimental measurements of the assembly reactions would
help to establish to what degree the association of the
complexes are captured in the kinetic parameters given in
the literature for the fundamental processes of replication,
transcription, and translation. As the next step, the results
from the genetic information processes will first be connected
to uptake reactions that transport nucleobases, nucleosides,
and amino acids into the minimal cell. Coupling genetic
information processes with the essential metabolism and cell
growth should result in a complete whole cell kinetic model
of JCVI-syn3A.
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