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ABSTRACT
Quantitative trait locus (QTL) mapping has been used as a powerful tool for inferring
the complexity of the genetic architecture that underlies phenotypic traits. This
approach has shown its unique power to map the developmental genetic architecture
of complex traits by implementing longitudinal data analysis. Here, we introduce the R
package Funmap2 based on the functional mapping framework, which integrates prior
biological knowledge into the statistical model. Specifically, the functional mapping
framework is engineered to include longitudinal curves that describe the genetic
effects and the covariance matrix of the trait of interest. Funmap2 chooses the type
of longitudinal curve and covariance matrix automatically using information criteria.
Funmap2 is available for download at https://github.com/wzhy2000/Funmap2.

Subjects Bioinformatics, Computational Biology, Genetics
Keywords QTL mapping, Quantitative trait loci, Functional mapping, Longitudinal traits,
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INTRODUCTION
Advances in sequencing technologies have dramatically increased the number of molecular
markers available for studying an organism’s genome. QTLmapping exploits these markers
to identify the genomic regions associated with the quantitative traits within an inbred
population. In the past 20 years, a variety of statistical models have been developed to
detect QTLs, which has greatly facilitated the identification of the genomic regions that
control biological traits. In addition to the study of additive and dominant effects, QTL
mapping has been applied successfully to the study of epistasis effects, allometric growth,
and pleiotropic effects.

Lander & Botstein (1989) established tractable statistical methodologies to map QTLs
on one chromosomal interval bracketed by two flanking markers, which is known as the
interval mapping method. Later, composite interval mapping improved interval mapping
by including markers from other intervals as covariates to control the overall genetic
background (Zeng, 1994). Kao, Zeng & Teasdale (1999) proposed the simultaneous use of
multiple marker intervals to map multiple QTLs of epistatic interactions throughout a
linkage map. Since then, mapping QTLs in complicated genetic and genomic problems has
increased dramatically.

How to cite this article Wang N, Chu T, Luo J, Wu R, Wang Z. 2019. Funmap2: an R package for QTL mapping using longitudinal phe-
notypes. PeerJ 7:e7008 http://doi.org/10.7717/peerj.7008

https://peerj.com
mailto:zw355@cornell.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.7008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/wzhy2000/Funmap2
http://doi.org/10.7717/peerj.7008


Even though there have been advances in mapping resolution and extension to more
complicated mapping problems, conventional mapping approaches are restricted to
phenotypic data measured at a single point in time. In many important biological
problems, however, genotypes that control longitudinal traits, such as those measured
during developmental processes and environmental changes, cannot be accommodated
effectively under the framework of single trait QTL mapping. Several approaches (Ma,
Casella & Wu, 2002; Wu et al., 2002; Yang, Tian & Xu, 2006; Kwak et al., 2014) have been
developed for QTL mapping of such function valued traits. Functional mapping (Ma,
Casella & Wu, 2002; Wu & Lin, 2006; Sun et al., 2015) is a statistical framework derived to
map genes that control the dynamic biological process of complex traits. In this framework,
a mixture model is fitted using an EM algorithm by maximizing likelihood, followed
by hypothesis testing of the significance of association. In addition, model parameters
that describe growth trajectories can also be estimated. Functional mapping has shown
remarkable performance in associating QTLs with dynamic traits in plants (Zhao et al.,
2004b; Li et al., 2010b; Yang et al., 2011, Sillanpää et al., 2012), animals (Zhao et al., 2004a;
Xiong et al., 2011), and humans (Li, Das & Wu, 2009). Its application can be extended to
genetic dissection of developmental processes that include growth trajectory and allometric
scaling (Ma et al., 2003; Li et al., 2014), phenotypic plasticity based on gene-environment
interaction (Wang et al., 2013a), drug response (Wang et al., 2013b), and morphological
shape (Fu et al., 2013). Recently, the integration of functional mapping and differential
equations (Fu et al., 2011; Wang et al., 2013b) has also been applied to widely emergent
applications of dynamic systems.

The Funmap2 package is developed to identify QTLs for a longitudinal trait based
on functional mapping. It is implemented as a package for the freely accessible statistical
software R (R Core Team, 2019). Funmap2 implements a complete pipeline, which includes
data loading, QTL scanning, computing of significance values, and reporting of significant
QTL. The essence of functional mapping relies on the longitudinal curve of genetic effects
and the covariance matrix that characterize the longitudinal relationship of the trait.
Although a logistic curve may describe the genetic effects in most biological processes, the
reaction norm in continuously varying environmental problems may not follow a sigmoid
shape. To address this, Funmap2 provides sigmoid, Legendre, and Pharmacology as built-in
curves, and it also allows users to customize the curve equation. Furthermore, to increase
statistical power, the covariance matrix can be chosen from several covariance structures
used in IBM SPSS software, such as autoregressive, ante-dependence, or autoregressive
moving average (Li et al., 2010a). Because of the difficulty of knowing which combination
of curve shapes and covariance structures is the best for a longitudinal trait beforehand, we
enabled Funmap2 to choose the best curve shape and covariance structure automatically
from the built-in resources based on information criteria.

In addition to statistical analysis, Funmap2 generates a PDF report that visualizes
all results, which include phenotype traits, QTL profiles, significant QTL curves, and
permutation results. Additionally, the package provides a simulation module for testing
the performance and demonstrating the use of Funmap2 on data generated by different
models.
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Funmap2 is a QTL mapping tool for longitudinal traits with an open source
software license. It is available publicly under an open-source software license:
https://github.com/wzhy2000/Funmap2. In the following sections, we give a brief review
of functional mapping in terms of its statistical model. Then, we focus on the detailed
workflow of Funmap2. Lastly, we provide one example with codes and figures.

MATERIALS & METHODS
Statistical methods
Functional mapping is a statistical framework aimed at identifying QTLs that are associated
significantly with a longitudinal phenotype of interest in an experimental population, such
as recombinant inbred lines (RIL) or a doubled-haploid (DH) population. Functional
mapping computes maximum likelihood estimation (MLE) of mixture models that
integrate the likelihood over QTL genotypes. The model also accounts for the (1)
longitudinal trend of the trait using a continuous curve (i.e., growth trajectory for
time-dependent traits and reaction norm for environment-dependent traits), and (2)
internal correlation of traits across longitudinal measurements using a covariance matrix.

The model assumes that the longitudinal trend of the trait follows a particular
mathematical curve. In a statistical setting, the phenotypes of the trait at all time points
follow a multivariate normal distribution, which can be described by the following Eq. (1):

fj
(
yi
)
=

1

(2π)
m
2
∣∣∑∣∣ 12 exp

[
−
(
yi−αXi−gj

)T∑−1
(yi−αXi−gj)/2

]
. (1)

Assuming that yi is a vector of measured values for individual i at m time points, which
describes the phenotypic values, gj denotes the overall mean vector for genotype j that
is described as a mathematical curve, Xi denotes the covariate for individual i, α is a
vector of coefficient value for each covariate, and

∑
is the covariance matrix. Therefore,

fj
(
yi
)
is the probability density function that relates the measured traits of individual i to

the combination of the genetic effects contributed by genotype j and covariate effects of
individual i. In Functional mapping, we assume the genetic effects of each genotype vary
from time to time and follow a trajectory which can be defined by a mathematical curve
(gj), such as the logistic, Legendre or other type curves (Ma, Casella & Wu, 2002). For the
logistic curve, (gj) can be described by

gj(ti)=
aj

1+bje−rj ti
(2)

where aj , bj and rj are the parameters for genotype j.
The estimated likelihood of genotype j for individual i are summed, weighted by the

corresponding conditional probability of the QTL genotype, given the adjacent marker
and inbred type. Therefore, the functional mapping method formulates the likelihood
calculation of the mixture model as:

logL
(
�̂
)
=

N∑
i=1

log

 J∑
j=1

pijfj(yi)

 (3)
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where each element pij indicates the genotypic possibility of subject i for gene j (QQ, Qq,
or qq), N denotes the individual number in the experimental population, and �̂ denotes
the variables in this log-likelihood function that include the covariate coefficient, curve
parameters for multiple genotypes, and covariance parameters. In Eq. (3), we prefer to use
the log-likelihood function.

The likelihood function for the null hypothesis model, in which QTL does not affect the
trait, is built as follows,

logL
(
�̃
)
=

N∑
i=1

log(f0
(
yi
)
) (4)

where f0
(
yi
)
differs from (1) in g j by assuming the same longitudinal curve for all genotypes.

�̃ denotes the estimated parameters in this log-likelihood function.
The goal of functional mapping is to compute the log-likelihood ratio (LR) for each

QTL, defined by the following equation, and then to choose the significant QTL with a
high value of LR.

LR2=−2log

[
L
(
�̃
)

L
(
�̂
)]. (5)

Intuitively, the null hypothesis H0 is that there is no gene that controls the growth process,
and the alternative hypothesis H1 is that growth processes are different across the QTL
genotypes. �̃ and �̂ are the maximum likelihood estimates of parameters under the
hypotheses H0 and H1, respectively.

To conduct a log-likelihood ratio test on complicated statistical models like the one used
in functional mapping, a permutation test is usually used to derive and to compare against
the null distribution (Churchill & Doerge, 1994). Because the permutation test is generally
applicable to various models, it is intensive to implement computationally. To address this,
we proposed a new approach called the filtering method to improve the computational
efficiency of a permutation test. We first quantified the correlation between QTL and the
longitudinal data using a genotype-oriented curve clustering method. Then, the QTLs that
are highly correlated with the outcome were computed in the improved permutation tests
(Wang et al., 2017). As a result, this reduced the amount of computation in permutation
tests significantly and sped up the computation for data analysis in functional mapping.

Package workflow
The Funmap2 package is an open source package for R with automated data analysis
for identifying the significant QTLs for the longitudinal traits that were measured. The
Funmap2 pipeline includes modules for data import, curve fitting, QTL scanning, MLE
computation, hypothesis testing, and data visualization (Fig. 1).

The usermay either run the entire Funmap2workflow in one function call or step-by-step
with customization. Often it is more convenient to call the main function FM2.pipe, which
automatically implements all tasks and outputs the summary information and figures
in PDF format. In this function, sub-modules are called successively. Functions include
data loading (FM2.load.data), data estimation (FM2.estimate.data) for curve fitting and
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Figure 1 The workflow process in the Funmap2 package. The top row shows the analysis steps and the
bottom row shows the corresponding output obtained in each step. The chromosome image is used under
Pixabay’s license (https://pixabay.com/en/service/license/).

Full-size DOI: 10.7717/peerj.7008/fig-1

covariance selection, QTL scanning (FM2.qtlscan), and permutation (FM.permutation),
and report generation (FM2.report ). The typical calling is shown below.

Box 1.

# Call the pipeline in parallel computing.

r < - FM2.pipe( file.pheno.csv, NULL, file.geno.csv,file.marker.csv,

"BC",

curve.type="logistic",

covar.type="auto",

options=list(n.cores=10) )

Funmap2 requires users to provide experimental data and to specify several parameters.
The phenotype file that contains longitudinal traits, one genotype marker file for the
experimental population, and one genetic marker information file are required. A covariate
file is optional and is not provided in the above example. In addition to these experimental
data, users need to specify the cross type of QTLmapping. Four available types are provided
in Funmap2: Backcrossing, F2, RIL, and DH. Note that in this automated run, the user
may either let Funmap2 choose the optimal curve type and covariance structure or the user
may specify their values as functional arguments.

Alternatively, the data analysis can be conducted by customizing the workflow by
running sub-modules of Funmap2 successively, as illustrated below.

Data loading
Input files for Funmap2, which include the marker definition file, the genetic marker file,
the phenotype file, and the covariate file, should be formatted in CSV format according to
the description in the vignette of Funmap2. The function FM2.load.data reads these data
files, checks the correctness of data format and the consistency of individual IDs across
all files and, finally, returns an R data object which can be called by the generic functions,
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such as show, print, plot. Phenotypic traits, and the curves that describe the longitudinal
trend (if curve.type is specified) can be visualized by calling the plot function directly on
the returned R object.

Curve fitting and selection of the covariance matrix
The function FM2.estimate.datamay be invoked to facilitate the manual selection of curve
type and covariance structure. The most commonly used curve function is sigmoid, and it
is generally used to characterize growth curves of populations of plants and animals. Curves
other than sigmoid, such as those that describe environment-dependent traits for which
reaction norms are measured, are also provided. In total, Funmap2 software implements
nine curves in the current version, which include logistic, composite, and those generated
by nonparametric methods. When running the automated mode (i.e., curve type is not
specified during the data loading), least square curve fitting followed by AIC (Akaike
Information criterion) and BIC (Bayesian Information criterion) is used to determine the
best curve type.

The internal correlation of traits measured at different longitudinal points are described
using the covariance matrix, which is essential in the likelihood calculation. We included
a comprehensive set of 13 covariance matrices, which include those employed by
SPSS software and first order ante-dependence (Yap, Fan & Wu, 2009). Funmap2 also
implements an automated way to select a covariance matrix using the AIC orMLEmethod.
Users should be cautious of the cost of computational time when over-parametrizing
the covariance matrix. The details of curves and covariance matrices are available in the
vignette of Funmap2.

QTL scanning
The function FM2.qtlscan estimates the effects of QTLs and parameters that characterize
longitudinal trend curves by scanning across all QTL positions. Specifically, the function
tests H0 and H1 hypotheses using the MLE method and calculates LR2 values in Eq. (5)
at each QTL marker at every 1 cM position. The MLE method also outputs covariate
coefficients, curve parameters and covariance parameters that optimize the log-likelihood.
When finished, FM2.qtlscan, by default, generates the LR2 profile figure and highlights
QTLs with the highest LR2 value for each chromosome. To determine the significant QTLs,
the user needs to run the permutation test (see the following section).

Permutation test
The distribution of the log-likelihood ratio is difficult to derive in analytical form, especially
for complicated distribution functions. To overcome this difficulty, a permutation test
is generally used to obtain the null distribution and declare statistical significance of a
QTL. One commonly encountered issue with a permutation test, however, is the high
cost of computational time, which becomes especially prominent when running the entire
genome. The function FM.permutation includes twomethods to address this issue. The first
option is to parallelize the computation in a unix-based operating system provided that
multiple processor threads are available. The second option is to apply a filtering method
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to reduce the computational intensity. This is done by pre-selecting the candidate QTLs
that have a high QTL-trait correlation.

Report
The resulting objects returned by individual functions contain summary information
(by the summary function), and they can be visualized by the plot function. In addition,
Funmap2 includes the function FM2.report that can generate reports automatically, which
include tiled/overlapping curves that describe the longitudinal trait, LR profile for all
chromosomes, multiple LR2 profiles for the significant QTLs, and the curves for the
significant QTLs.

RESULTS
We use a data set from the pre-installed Populus data set (Ma, Casella & Wu, 2002) in this
package as an example. The data are composed of 90 backcross individuals with 22 linkage
groups and 275 molecular markers. The phenotypic values were measured throughout 11
years. The code for analyzing the data is shown below, and the results for QTL mapping are
plotted (Figs. 2 and 3). The computational burden of Funmap2 roughly comes fromgenome
length andpermutation. In addition, the computational cost also depends on the sample size
and the number ofmeasurements. The analysis of the Populus data set on thewhole genome
3611 QTLs with 1000 conventional permutations took 110.2 hr on an Intel(R) Xeon(R)
CPU E5-4620 @ 2.6 GHZ computing cluster with 16 cores. This result demonstrates
that Funmap2 is computationally intensive for large-scale studies using the conventional
permutation method. In order to reduce the computational time of permutation, we
proposed a new method that reduces the number of QTLs during the permutation
computation because QTLs are highly correlated with the outcome (Wang et al., 2017).
In Funmap2, this new permutation can reduce 80% to 95% of the computational cost.

Box 2.

# Load the pre-installed data for the example

file.pheno.csv <- system.file("extdata","populus.BC.pheno.csv",

package="Funmap2")

file.geno.csv <- system.file("extdata","populus.BC.geno.csv",

package="Funmap2")

file.marker.csv <- system.file("extdata","populus.BC.marker.csv",

package="Funmap2")

r <- FM2.pipe( file.pheno.csv, NULL, file.geno.csv, file.marker.csv,

"BC",

curve.type="auto", covar.type="AR1", options=list (n.cores=10))

DISCUSSION
Functional mapping models assume that longitudinal traits follow a parametric or
non-parametric curve, such as a growth trajectory, Legendre polynomial, or B-Spline
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Figure 2 Profile of the likelihood ratio (LR) for the 8th chromosome. This figure shows 14 markers in
this chromosome, with their names and genetic distance for each interval highlighted at the bottom. The
peak with LR2=89.47 at interval [GT/CAG-725—GT/CAG-750R] is located at 3 cM from GT/CAG-725,
which suggests a potential locus for a significant QTL.

Full-size DOI: 10.7717/peerj.7008/fig-2

(Yang, Wu & Casella, 2009). Under this assumption, the likelihood ratio and QTL effects
that are derived from the parameters of a parametric or a non-parametric curve are
calculated by theMLE function over all linkage groups. Funmap2 implements the functional
mapping framework with nine curves and 13 covariance structures. Importantly, any new
curve functions that are not implemented by Funmap2 can be imported easily into the
package and assembled into the framework of MLE. It has an open architecture, so the
longitudinal traits can be fitted to any biological curve.

The longitudinal traits tend to correlate strongly between time points (time-dependent)
or reaction norms (environment-dependent). Functional mapping models this internal
relation using a covariance matrix, which may increase the statistical power for QTL
detection (Ma, Casella & Wu, 2002).Whereas previous publications on functionalmapping
recommended the use of the most parsimonious covariance matrix (Yap, Fan & Wu,
2009), such as autoregressive, ante-dependence, or autoregressive moving average (Li et
al., 2010a), Funmap2 also provides other covariance matrices implemented in IBM SPSS
software, such as Compound Symmetry, Factor Analytic, Huynh-Feldt, and Toeplitz.
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Although a parsimonious covariance matrix can be efficient computationally, non-
parsimonious covariance structures contain more parameters and, hence, richer structures,
which may potentially lead to better data fitting while minimizing the pitfall of overfitting
when guided by information criteria (Zimmerman et al., 2001).

Since Functional Mapping was proposed in 2002, two programs, FunMap (Ma, Wu &
Casella, 2004) and 3Funmap (Tong et al., 2011), have been released. FunMap employed 3
curve functions and the first-order autoregressive model to implement a basic framework
as a web application which is unavailable. 3FunMap, a Windows Application in Visual
C++, implemented linkage map construction and QTL mapping using the Legendre
polynomial curve and the first-order autoregressive model. Although Funmap2 inherited
from same framework, it increased model flexibility and software usability with many
new features, such as implementing covariates for each individual, more trajectories and
covariance matrices available in the mixture model, parallel computing, and using open
source development platform. We believe Funmap2 is the best choice to map QTL for
functional trails so far.
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CONCLUSIONS
Studies of QTL mapping for longitudinal traits other than functional mapping are
unexpectedly rare, compared to that for QTL mapping of a trait that was measured at a
single point. As a result, research on the genetic basis that underlies biological development
and gene-environment interaction are greatly limited. Funmap2 provides a user-friendly
way to dissect these problems, and it facilitates the building of precise genotype-phenotype
relation models through QTLmapping. In addition to mapped QTLs, estimates from curve
functions may also provide insights for the understanding of the genetic, biochemical, and
physiological pathways that govern developmental change (Wang et al., 2012). We are
making the endeavor to develop a GUI version Funmap2 to facilitate the extraction and
interpretation of data further. At present, Funmap2 supports experimental populations
derived from a cross between two inbred lines, and it is limited to four types: F2, backcross,
recombinant inbred lines, and double-haploid populations. Future versions of Funmap2
will be able to accommodate populations of more diverse structures and even multiple
traits, epistasis effects, allometric, and QTL-QTL interaction.
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