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Abstract. Hepatocellular carcinoma (HCC) is one of the 
most common malignant tumors worldwide. Despite contin‑
uous development of treatment methods, overall survival 
rate of liver cancer is low. Transcatheter arterial chemoem‑
bolization (TACE) is a first‑choice treatment for advanced 
liver cancer. Although it is generally effective, a number of 

patients do not benefit from it. Therefore, the present study 
was conducted to assess the response of patients following 
TACE. RNA‑sequencing data and corresponding clinical 
information were extracted from The Cancer Genome 
Atlas (TCGA) and Gene Expression Omnibus databases. 
Models were constructed using weighted gene co‑expression 
network analysis and least absolute shrinkage and selection 
operator‑Cox regression analysis based on TCGA‑LIHC and 
GSE104580 cohorts. The receiver operating characteristic 
curve was used for evaluation. Immunoassay, half‑maximal 
inhibitory concentration analysis of risk groups, genomic 
enrichment analysis and nomogram construction were also 
performed. The predictive models were validated at the 
single‑cell level using single‑cell databases. Finally, the 
present study examined the expression of TACE refractori‑
ness‑related TFs (TRTs) in TACE‑resistant and non‑resistant 
cell lines in vitro. A risk categorization approach was created 
based on screening of four TRTs. The patients were split 
into high‑ and low‑risk groups. There were significant 
variations in immune cell infiltration, medication sensitivity 
and overall survival (OS) between patients in the high‑risk 
and low‑risk groups. Multivariate Cox regression analysis 
showed that the risk score was an independent prognostic 
factor for OS. In the single‑cell gene set, risk score was a 
good indicator of tumor microenvironment (TME). Reverse 
transcription‑quantitative PCR revealed that three high‑risk 
TRTs were upregulated in TACE‑resistant cells. Prognosis 
and TME status of liver cancer patients following TACE 
could be assessed using a predictive model based on tran‑
scription factor correlation. This predictive model provided 
a reliable and simplified method to guide the clinical treat‑
ment of HCC.

Introduction

Hepatocellular carcinoma (HCC) ranks sixth and third in 
terms of global cancer morbidity and mortality, respec‑
tively (1). Liver cancer has become a major public health 
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problem. Hepatitis B is one of the most important causes of 
liver cancer (2). The main pathological types of liver cancer 
include HCC and cholangiocarcinoma and HCC accounts 
for nearly 80% of cases. Early symptoms of liver cancer 
are not obvious; therefore, most patients are diagnosed at a 
middle or advanced stage. At present, surgical resection is the 
main treatment method for liver cancer worldwide and other 
methods such as transcatheter arterial chemoembolization 
(TACE), radiotherapy and immunotherapy are auxiliary (3). 
However, the benefits of various treatments are limited and 
overall survival (OS) remains low. Therefore, it is necessary 
to explore the causes of liver cancer recurrence after treatment 
and intervene to improve treatment efficacy.

TACE is a first‑line treatment for unresectable HCC. The 
principle of TACE involves selectively or superselectively 
inserting a catheter into the tumor‑feeding artery, followed by 
administration of embolic and chemotherapeutic agents. This 
induces ischemic necrosis of the tumor, thereby inhibiting its 
progression and improving quality of life.

Depending on the operation time and method, TACE 
can be divided into assistant, conventional and drug‑eluting 
TACE (4). However, there remains some controversy 
surrounding TACE. Due to the use of chemotherapeutic drugs, 
some patients experience a transient decrease in liver function 
following surgery (5). Furthermore, the abundant blood supply 
of liver cancer, production of new blood vessels following 
TACE, establishment of collateral circulation and other factors 
have made it difficult to achieve ideal therapeutic effects with 
simple TACE (6). There are also significant differences in the 
efficacy of TACE for different patients. To address this, the 
Japan Society of Hepatology introduced and subsequently 
revised the concept of TACE failure/refractoriness to improve 
evaluation of patient responses (7).

Investigation of the molecular mechanisms underlying 
TACE resistance is crucial for improving its therapeutic 
efficacy (8). In recent years, the combination of TACE with 
systemic therapies, particularly targeted therapies and 
immune checkpoint inhibitors (ICIs), has shown potential in 
prolonging progression‑free survival and enhancing OS (9). 
For example, the combination of TACE with targeted drugs 
such as sorafenib and lenvatinib, as well as immunotherapies 
such as pembrolizumab, has demonstrated synergistic effects 
in several studies (10‑12). However, despite the promising 
outcomes in some patients, the overall prognosis for HCC 
remains suboptimal, partly due to the development of resis‑
tance and recurrence following TACE (13). Consequently, 
further research into the mechanisms of TACE resistance and 
their interaction with combination therapy is essential for opti‑
mizing treatment protocols and improving patient outcomes.

Transcription factors (TFs) are proteins that regulate the 
transcription of genetic information from DNA to mRNA 
by binding to specific DNA sequences (14). TFs ensure that 
various genes are expressed inside the cell at the right time 
and in the right amount. There are >1,600 TFs in humans and 
most of them are involved in regulating a variety of important 
cellular functions, including division and death, as well as 
embryonic development (15). TFs are closely related to the 
occurrence and development of tumors. E‑box binding zinc 
finger protein 2 can bind to the hepatitis B virus (HBV) core 
promoter, thereby inhibiting its activity and reducing the 

occurrence of HBV‑induced liver cancer (16). Transcription 
termination factor (TTF)1 can affect proliferation of hepatoma 
cells by regulating the activity of ribosomes (17). Metastasis 
of liver cancer is also regulated by TFs, such as the transcrip‑
tion factor forkhead box P4, which can enhance its expression 
by directly binding to the promoter region of the SLUG gene 
and then transcribe a series of proteins downstream of EMT 
to promote liver cancer metastasis (18). TFs can regulate 
genes related to drug resistance, such as MDR1 and TWIST. 
At present, research on the role of TFs in TACE resistance 
remains limited and further exploration is needed.

The present study combined TFs with TACE resistance and 
used weighted gene co‑expression network analysis (WGCNA) 
to screen out HUB genes related to TACE nonresponse. Least 
absolute shrinkage and selection operator (LASSO)‑Cox 
regression was used to build a prognosis‑related predic‑
tive model and possible roles of TFs in the model of TACE 
resistance were analyzed in relation to immune microenviron‑
ment, drug sensitivity, single cells and cell experiments. It is 
expected that the present study will serve as a new resource 
for determining TACE effectiveness and the best course of 
treatment for liver cancer.

Materials and methods

Datasets and preprocessing. The present study included 
sequencing data (TPM format) from TCGA‑LIHC (portal.
gdc.cancer.gov/). Patients with incomplete follow‑up infor‑
mation, 0 days of survival and repeated sequencing samples 
from the same patient were excluded. A total of 365 tumor 
samples were included for bioinformatics analysis and model 
construction. With same inclusion criteria, 231 HCC patients 
in the ICGC‑LIHC (https://dcc.icgc.org/projects/LIRI‑JP) 
cohort and 221 in the GSE14520 dataset were included for 
external validation. To identify genes associated with TACE 
resistance, the GSE104580 cohort (100 TACE responders 
and 100 non‑responders) in the GEO database (https://www.
ncbi.nlm.nih.gov/geo/) was obtained and further analysis was 
performed. When performing internal and external validation, 
the sva R package (v3.46.0) (19) was used for background 
correction and normalization to ensure comparability of 
validation (Fig. S1). A total of 1,639 TFs were extracted 
based on previous studies (20‑22). GSE125449 is a single‑cell 
sequencing set for LIHC and its processing pipeline is from 
the TISCH database. R software (version 4.0.5) (23) was used 
to conduct all of the analyses.

Differentially expressed TF identification and enrichment 
analysis. In GSE104580, differentially expressed genes 
(DEGs) between different response states were identified 
using the limma R package (version 3.52.0) (24) with P<0.05 
and |log2FC|>0.5 as thresholds; adjusted P<0.05. The top 20 
up‑/downregulated differentially expressed TFs (DETFs) were 
plotted using the pheatmap R package (version 1.0.12) (25) 
after intersection with 1,639 TFs.

Gene Ontology (GO) was used to annotate the biological 
process, molecular function and cellular component of genes. 
Gene pathways were annotated using the Kyoto Encyclopedia 
of Genes and Genomes (KEGG). Significantly enriched 
pathways were indicated by P‑values and q‑values <0.05. The 
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clusterprofiler R package (v4.4.0) (26) was used for enrich‑
ment analysis of DETF‑related functions and pathways (GO 
and KEGG), with P<0.05 as the threshold.

TACE refractoriness‑related TFs identification and enrich‑
ment analysis. The present study took as input the ensemble of 
TFs in GSE10458 and removed genes with a standard deviation 
of 0 in each sample. To eliminate outlier genes and samples, 
R software package WGCNA goodSamplesGenes technique 
(version 1.68) (27) was used. WGCNA was then used to create 
a scale‑free co‑expression network. A soft threshold of 1‑25 
was used for topological calculations and the relation matrix 
was converted into an adjacency matrix using the best soft 
threshold. A topological overlap matrix (TOM) was created 
from the results and average link hierarchical clustering was 
performed. TOM classification of the associated modules was 
used and each module had ≥50 genes. The modules with a 
distance of <0.8 were combined and the correlation between 
the combined modules and TACE response was calculated. 
Finally, the DETFs and TFs in the co‑expressed core module 
were overlapped and the identified TFs were used as TACE 
refractoriness‑related TFs (TRTs). Enrichment analysis further 
explored the potential functions of DETFs and enriched path‑
ways (GO and KEGG) using the clusterprofiler package, with 
P<0.05 as the threshold.

Construction of a nomogram and prognostic model. 
TCGA‑LIHC cohort was used for modeling and the 
GSE14520 and ICGC‑LIHC cohorts for external validation. 
In TCGA‑LIHC, univariate Cox regression analysis was 
first used to filter out TFs with no prognostic significance in 
TRTs (P<0.05). To prevent overfitting effects, using LASSO 
regression, 10‑fold cross‑validation and 1,000 cycles with 
1,000 random stimulations, a risk model was developed. 
The risk score formula was established by multivariate Cox 
regression analysis (stepwise) with integration coefficients 
and gene expression values. The patients were divided into 
high‑risk and low‑risk groups based on the median value 
of the risk score formula. Univariate and multivariate Cox 
regression analyses were used to assess the prognostic value 
of risk scores across the entire dataset and an external valida‑
tion dataset. Time‑dependent receiver operating characteristic 
(ROC) curves were used to compare the predictive accuracy 
of risk scores with traditional clinicopathological parameters. 
Prognostic nomograms were constructed using the replot R 
package (version 1.0.0) (28) and validated using calibration 
curves.

Immune landscape analysis. To assess the quantity of immune 
cells in various samples, several methods were used simulta‑
neously, including TIMER (version 2.0) (29), CIBERSORT 
(version 1.06) (30), QUANTISEQ (version 1.0) (31), 
MCP‑counter (version 1.2.0) (32), XCELL (version 1.1.0) (33) 
and EPIC (version 1.1) (34). In addition, the ESTIMATE 
algorithm (v1.0.13) (35) was used to calculate the immune 
score; the interstitial score to reflect the microenvironmental 
status (36). The tumor microenvironment (TME) is constructed 
by a variety of cell types. Thorsson et al (37) defined six 
immunoexpression signature subtypes based on the gene 
expression profile of all solid tumors in TCGA, including: 

Wound Healing (Immune C1), IFN‑γ Dominant (Immune C2), 
Inflammatory (Immune C3), Lymphocyte Depleted (Immune 
C4), Immunologically Quiet (Immune C5) and TGF‑bβ 
Dominant (Immune C6). The present study classified patients 
based on immune expression signatures.

Drug sensitivity analysis. The present study obtained (38) 
half‑maximal inhibitory concentration (IC50) values of 
commonly used chemotherapeutic drugs for liver cancer from 
the Genomics of Cancer Drug Sensitivity (GDSC) database 
(https://www.cancerrxgene.org/) and used R software. The 
PRrophytic R package (v1.0.2) (39) was used for calculation. 
By using the Wilcoxon signed rank test, the differences in IC50 
between various risk categories were examined. Boxplots were 
used to depict the results.

Cell lines and culture conditions. Every cell line was bought 
from the National Certified Cell Center for Cultural Collections 
(Shanghai, China). Huh7 cells were cultured in Dulbecco's 
modified Eagle's medium (Gibco; Thermo Fisher Scientific, 
Inc.) supplemented with 1% penicillin‑streptomycin and 10% 
fetal bovine serum. SNU‑387 cells were cultured in RPMI 
medium (HyClone; Cytiva) supplemented with 10% fetal 
bovine serum and 1% penicillin‑streptomycin. A cell incubator 
was used for cell culture, which was performed at 37˚C with 
5% CO2 and 10% humidity. The cell lines used in the presence 
of mycoplasma were investigated in the present study.

Protein staining. Tumor tissue samples were fixed with 10% 
formalin at room temperature for 24 h. Subsequently, the 
samples were embedded in paraffin and sectioned at a thick‑
ness of 4 microns to allow for optimal staining and microscopic 
observation. Antigen retrieval was conducted at 95˚C using 
citrate buffer (pH 6.0) to expose antigenic sites, followed by 
washing with phosphate‑buffered saline (PBS) three times 
for 5 min each. Endogenous peroxidase activity was blocked 
using 3% hydrogen peroxide at room temperature for 10 min 
to prevent non‑specific background staining. The sections 
were incubated with rabbit anti‑XYZ antibody (cat. number: 
ab11174; Abcam), at a dilution of 1:200 at 4˚C overnight, and 
detection was performed using DAB substrate and sections 
were counterstained with 0.1% hematoxylin solution at room 
temperature for 5 min. Images were captured using a light 
microscope at 40x magnification to document the staining 
results and assess the presence and localization of the target 
protein within the tissue samples.

Cell viability and drug sensitivity. Cells were seeded in 96‑well 
plates at 5,000 cells/well and placed in a 37˚C, 5% CO2 incu‑
bator for 48 h. To simulate the TACE environment, another 
set of cells was placed in a 37˚C, 5% CO2, 1% O2 incubator 
for 48 h. According to the concentration gradient, the experi‑
mental group was treated with lobaplatin (cat. no. H20050309; 
Hainan Changan International Pharmaceutical Co. Ltd.). The 
plates were taken out of the incubator after 48 h and put in a 
dark place so that 10 µl of CCK8 reagent (cat. no. A311‑02; 
Vazyme Biotech Co., Ltd.) could be added to each well. The 
plates were returned to the incubator for 1‑2 h. Optical density 
was determined using a microplate reader, (Multiskan FC; 
Thermo Fisher Scientific, Inc.).

https://www.spandidos-publications.com/10.3892/ol.2024.14788
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Reverse transcription‑quantitative (RT‑q) PCR. For RNA 
extraction, ~5,000 cells per well were seeded in a 96‑well 
plate. RNA isolation kit (cat. no. RC112‑01; Vazyme Biotech 
Co., Ltd.) was used to extract total RNA and a cDNA synthesis 
kit (cat. no. R233‑01; Vazyme Biotech Co., Ltd.) was used 
to create cDNA. All steps were performed according to 
the manufacturer's protocols. Using SteponePlus (Applied 
Biosystems; Thermo Fisher Scientific, Inc.), RT‑qPCR was 
performed using 10 µM primers and SYBR qPCR Master Mix 
(cat. no. Q511‑02; Vazyme Biotech Co., Ltd.). PCR cycling 
conditions were as follows: Initial denaturation at 95˚C for 
2 min, followed by 40 cycles of denaturation at 95˚C for 
30 sec, annealing at 60˚C for 30 sec, and extension at 72˚C 
for 1 min. The relative expression levels were determined 
using the ΔΔCq method (40). Relative expression values were 
normalized to the control gene (GADPH). The primer pairs 
used in the present study are shown in Table I.

Statistical analysis. For the IC50 results, statistical analysis of 
optical density values was performed using GraphPad Prism 
version 8.0 (Dotmatics). Data are presented as mean ± stan‑
dard deviation derived from three independent experiments 
conducted in triplicate (n=3). For the RT‑qPCR, the data were 
represented as mean ± SD from three independent experi‑
ments (n=3). The statistical significance of differences in gene 
expression levels between the two cell lines was evaluated 
using an unpaired Student's t‑test. The statistical analyses were 
performed using GraphPad Prism version 8.0 (Dotmatics). 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Identification of specific TRTs. To explore potential TRTs in 
HCC, a differential gene expression study was conducted in 
the GSE104580 dataset on patients who had TACE responses 
and those who had none. Among 1,639 TFs, 158 DETFs were 
identified using the limma package, including 78 up‑ and 80 
downregulated (P<0.05; |log2FC|>0.5). The heat map showed 
the top 20 upregulated (Fig. 1A) and downregulated (Fig. 1B) 
DEGs and DETFs. The clusterProfiler package was used to 
analyze the DETFs. Fig. 1C shows the top 20 KEGG signaling 
pathways that may be related to TACE responses, including 
‘transcriptional misregulation in cancer’, ‘circadian rhythm’, 
‘herpes simplex virus 1 infection’, ‘hepatitis B’, ‘human 
T‑cell leukemia virus 1 infection’ and ‘amphetamine addic‑
tion’. Fig. 1D‑F shows GO terms that may be related to the 
TACE response. The cellular component part mainly included 
‘transcription factor complex’, ‘nuclear’, ‘transcription factor 
complex’, ‘RNA polymerase II transcription factor complex’, 
‘protein‑DNA complex’ and ‘nuclear chromatin’; the biological 
process part mainly included ‘primary miRNA transcription by 
RNA polymerase II’, ‘tissue development’, ‘cell fate commit‑
ment’, ‘endocrine system development’, ‘DNA‑templated 
transcription’ and ‘initiation’; and the molecular function part 
mainly included ‘enhancer‑sequence‑specific DNA binding’, 
‘enhancer binding’ and ‘RNA polymerase II distal enhancer 
sequence‑specific DNA binding’.

With a good association with TACE response, WGCNA 
was used to build co‑expression networks and modules 

containing the DETFs. All TFs in GSE10458 were used as 
input genes for WGCNA. After determining the optimal soft 
threshold of 5 (Fig. 2A), according to the dynamic tree‑cutting 
technique, all of the TFs were clustered using a TOM‑based 
dissimilarity metric, partitioning the tree into eight modules 
(Fig. 2B). The correlation of each module with TACE response 
was calculated (Fig. 2C). The blue module showed a strong 
positive correlation with TACE response (Fig. 2D). The GO 
and KEGG pathway enrichment results of the 212 TFs in 
the co‑expressed blue module were similar to the previous 
enrichment results for DETFs. The KEGG pathways mainly 
included ‘transcriptional misregulation in cancer’, ‘inflam‑
matory bowel disease’, ‘Th1 and Th2 cell differentiation’, 
‘Th17 cell differentiation’ and ‘hepatitis B’ (Fig. 2E). The GO 
terms mainly included ‘transcription initiation from RNA 
polymerase II promoter’, ‘cell fate commitment’, ‘intracellular 
receptor signaling pathway’ and ‘embryonic organ develop‑
ment’ (Fig. 2F). The 158 DETFs in the aforementioned TACE 
response and nonresponse and the 212 TFs in the co‑expressed 
blue module were overlapped and 65 TFs as TRTs were identi‑
fied for subsequent analysis.

Construction of a prognostic TRT signature. To identify 
key TRTs associated with TACE response, univariate Cox 
regression analysis was used to identify TRTs significantly 
associated with prognosis in TCGA‑LIHC cohort (Fig. 3A). 
The present study obtained 28 TRTs associated with prognosis 
(all P<0.05). Based on univariate Cox regression analysis, 
redundant TRTs were removed using LASSO regression 
analysis (enter method) for further screening (Fig. 3B). The 
best eigenvalue was 8. Multivariate Cox regression analysis 
(stepwise method) was performed on the eight TRTs following 
LASSO regression and four TRTs involved in modeling 
were identified, namely CENPA, KLF2, KCMF1 and CBX2 
(Fig. 3C). A risk score was calculated for each patient based 
on the coefficients and expression levels of each TRT (Fig. 3C 
to assess prognosis. The heat map showed the expression of 
the four TRTs in the high‑ and low‑risk groups, as well as the 
relationship between the high‑ and low‑risk groups and the 
associated traits (Fig. 3D). ROC curves for 1‑, 3‑ and 5‑year 
survival prediction of patients showed that an area under the 
curve >0.7 indicating the ability to strongly predict prognosis 
(Fig. 3E). Kaplan‑Meier analysis showed that patients with low 
risk scores had significantly longer survival times than patients 

Table I. PCR primer sequences.

Gene Primer

CENPA Forward: AAGAGCACACACCTCTTGATAA
 Reverse: CATGTAAGGTGAGGAGATAGGC
KLF2 Forward: CTTCGGTCTCTTCGACGAC
 Reverse: GTAGCTGCAGGTGTGAGTG
CBX2 Forward: GACTTAGATGCTAAGAGGGGTC
 Reverse: CTTCTTCCGGATGGGATCCTTC
KCMF1 Forward: GTGGATCACGAGGTTAGTTCAGGAC
 Reverse: CCGAGTAGCAGGAATTACAGGCATC
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with high risk scores (Fig. 3F). The risk distribution map 
also showed that survival time decreased significantly with 
increasing risk score (Fig. 3G and H). The prognostic value of 
the risk signatures were assessed according to risk score, age, 
sex, tumor stage and tumor grade. According to univariate Cox 
regression analysis, the risk score was significantly associated 
with OS [hazard ratio (HR)=1.544, 95% confidence interval 
(CI)=1.369‑1.742] (Fig. 4A). Multivariate Cox regression 
analysis showed that risk score was an independent prognostic 
factor (HR=1.426, 95% CI=1.247‑1.631) (Fig. 4B). Nomograms 

and calibration plots were used to quantify the contribution of 
individual factors to clinical prognosis and validate the model 
(Fig. 4C and D). The prognostic model had good predictive 
ability in the three cohorts (TCGA, ICGC and GSE14520). 
The predicted line segments in the calibration curves in the 
different datasets were all close to the actual line segments.

Validation of prognostic TRT signature in the external datasets. 
The present study risk‑scored patients in the external valida‑
tion cohort ICGC‑LIHC and the GSE14520 dataset using the 

Figure 1. Landscape of TRTs in TCGA cohort and functional analysis. Heat map of the (A) upregulated and (B) downregulated TRTs between nonresponse 
and response patients. (C) KEGG and (D‑F) GO analysis of TRTs. TRTs, TACE refractoriness‑related transcription factors; TCGA, The Cancer Genome Atlas; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; CC, cellular component; BP, biological process; MF, molecular function.

https://www.spandidos-publications.com/10.3892/ol.2024.14788
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Figure 2. WGCNA was used to construct coexpression networks and modules of DETFs with strong correlation with TACE response. (A) Determining the 
optimal soft threshold for WGCNA. (B) Clustering all TFs using TOM‑based dissimilarity measure. (C) Correlation of each module with TACE response. 
(D) Blue modules show a strong positive correlation with TACE response. (E) GO and (F) KEGG analysis of blue module genes. WGCNA, weighted gene 
co‑expression network analysis; DETFs, differentially expressed transcription factors; TACE, transcatheter arterial chemoembolization; TFs, transcription 
factors; TOM, topological overlap matrix; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 3. Construction of prognostic TRTs signature. (A) Univariate Cox regression analysis was used to identify TRTs significantly associated with prog‑
nosis. (B) LASSO regression analysis (ENTER method) to remove redundant TRTs for further screening. (C) The four TRTs involved in modeling and 
their coefficient. (D) Heat map of expression of four TRTs and their relationship between clinical features. (E) ROC curves for predicting patient survival 
at 1, 3 and 5 years. (F) Kaplan‑Meier analysis of differences in survival among patients with different risk groups. (G) Scatter plot and (H) curve plot 
of different risk scores. TRTs, TACE refractoriness‑related transcription factors; LASSO, least absolute shrinkage and selection operator; ROC, receiver 
operating characteristic; AUC, area under curve.

https://www.spandidos-publications.com/10.3892/ol.2024.14788
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same formula and cutoff as for TCGA‑LIHC, with high‑ and 
low‑risk groups, to confirm the external validity of the prog‑
nostic model. A total of 108 low‑risk and 123 high‑risk patients 

from the ICGC‑LIHC group were found. In the GSE14520 
cohort, 107 high‑risk and 114 low‑risk patients were identified. 
In the ICGC‑LIHC cohort, the risk score was an independent 

Figure 4. Assessment of the prognostic signature. (A) Univariate analysis and (B) multivariate analysis of risk score and clinical characters in TCGA cohort. 
(C) Nomograms and (D) calibration plots were used to quantify the contribution of individual factors to clinical outcomes and to verify the validity of the 
model. TCGA, The Cancer Genome Atlas. ***P<0.001.
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prognostic indicator (Fig. 5A and B) and survival time decreased 
significantly with increasing risk score (Fig. 5C‑E). ROC curve 
analysis also showed the excellent predictive power of the risk 
score (1‑year AUC, 0.755; 3‑year AUC, 0.799; 5‑year AUC, 
0.730; Fig. 5F). In the GSE14520 cohort, the risk score was 
also an independent prognostic factor and a good predictor of 
survival risk (Fig. 5G‑L).

Analysis of immune infiltration. In addition to TACE therapy, 
patients with liver cancer can also receive immunotherapy 
to improve the therapeutic effect. Immune infiltrating cells 
are a key part of the TME, which is vital for tumor develop‑
ment, therapy response and patient prognosis. The present 
study assessed TME as a whole in TCGA‑LIHC cohort 
using the ESTIMATE algorithm and found that tumor 
purity scores increased and immune scores decreased as the 
risk scores increased (Fig. 6A and B). Increasing evidence 
suggests that there is a strong correlation between enhanced 
stem‑cell‑related biomarker expression in tumor cells and 
drug resistance, cancer recurrence and tumor growth (41). 
Thus, the relationship between the risk scores and DNA stem 
cell score (DNAss) and RNA stem cell score (RNAss) were 
evaluated. The present study revealed a substantial positive 
correlation between the risk score and DNA and RNA concen‑
trations. The gene mutation status of the groups with high and 
low risk scores was also compared. Considering the impor‑
tant effect of stemness index on immunotherapy, correlation 
analysis showed that DNAss and RNAss increased with risk 
score (Fig. 6C and D). The identified immune subtypes were 
analyzed. Thorsson et al (19) defined six immunoexpression 
signature subtypes based on the gene expression profile of all 
solid tumors in TCGA, including Wound Healing (Immune 
C1), IFN‑γ Dominant (Immune C2), Inflammatory (Immune 
C3), Lymphocyte Depleted (Immune C4), Immunologically 
Quiet (Immune C5) and TGF‑β Dominant (Immune C6). 
The present study found a higher proportion of the lympho‑
cyte depleted subtype in high‑risk patients and the highest 
expression of the risk scores in the Wound Healing subtype 
(Fig. 6E and F). To determine the number of immune cells 
present in various samples, a variety of algorithms were 
used, including TIMER, CIBERSORT, QUANTISEQ, 
MCP‑counter, XCELL and EPIC. The abundance of killer 
immune cells, such as CD4+ and CD8+ T cells, increased as 
the risk score increased (Fig. 6G). At the same time, there 
were also differences in the distribution of immune cells 
among the different risk subtypes (Fig. 6H). To verify the 
survival prediction and treatment reflection predictive value 
of the risk score in the immunotherapy cohort, it was tested 
in different Imvigor‑210 immunotherapy cohorts. The results 
showed that the risk score also had a prognostic value in 
different immunotherapy cohorts (Fig. 6I). In low‑risk 
patients, there was an improved response to immunotherapy, 
with complete response/partial response accounting for 29% 
compared with 17% in high‑risk patients (Fig. 6J).

Expression and prognostic profile of four TRTs. The present 
study compared the expression profiles of four TRTs in normal 
and tumor tissues obtained from TCGA and Genotype‑Tissue 
Expression databases, including paired and unpaired samples. 
Expression of CENPA, KCMF1 and CBX2 in tumor tissues 

was significantly higher than in normal tissues, while expres‑
sion of KLF2 was not significantly different (Fig. 7A and B). 
Expression of the aforementioned four TRTs in different 
groups in the Human Protein Atlas (HPA) database were 
detected. Protein expression was more consistent with mRNA 
expression. Compared with normal tissue, protein staining in 
tumor tissue was stronger (Fig. 7C). Cox regression analysis 
was performed on expression of CENPA, KCMF1, CBX2, 
KLF2 and various prognostic outcomes in multiple HCC 
cohorts. KCMF1 was a risk factor in four cohorts (Fig. 7D); 
CBX2 was a risk factor in cohorts (Fig. 7E); CENPA was a risk 
factor in eight cohorts (Fig. 8A); and KLF2 was a protective 
factor in six cohorts (Fig. 8B). These results demonstrated that 
the prognostic indicators of different TRTs were consistent.

Drug sensitivity analysis. Due to the limitations of systemic 
chemotherapy, most patients with advanced HCC have the 
option of local therapy based on TACE, which delivers 
chemotherapeutic drugs to the region surrounding the 
tumor (42). According to the enrichment analysis discussed 
aforementioned, patients in the various risk groups may have 
variable medication sensitivity and metabolism. The present 
study measured IC50 values of the drugs frequently used in 
the treatment of HCC, such as vincristine, sorafenib, mito‑
mycin, etoposide, doxorubicin and cisplatin. The IC50 value 
of platinum was significantly lower in the high‑risk group 
than in the low‑risk group (both P<0.05) (Fig. 8C‑H). These 
results suggested that high‑risk patients were more sensitive 
to commonly used chemotherapy and targeted drug therapy 
for HCC.

Risk score at a single‑cell level treated with ICIs. Considering 
bulk‑RNA‑sequencing data, risk scores based on CENPA, 
KLF2, KCMF1 and CBX2 are good indicators of TME. 
Therefore, analyses were performed in the GSE125449 
single‑cell sequencing dataset, to assess changes in risk scores 
in various types of cell before and after ICI treatment. The 
GSE125449 single‑cell sequencing dataset was annotated 
based on the TISCH database (Fig. 9A) and the risk scores in 
different cells were calculated. Expression of risk scores was 
higher in interstitial cells (Fig. 9B). After treatment with ICIs, 
the risk score increased in tumor cells but decreased in stromal 
cells (Fig. 9C). Cell‑type‑specific analyses was performed 
and showed that the risk scores in liver progenitors changed 
significantly after ICI treatment (Fig. 9D).

Validation of TRTs in HCC cell lines. SNU‑387 and Huh7 
cells were simultaneously cultured under hypoxia (1% O2) 
and normoxia for 48 h to mimic TACE. The present study 
detected the IC50 of lobaplatin, the first‑line drug for TACE 
treatment, in these cell types. Compared with normal oxygen 
concentration, the IC50 of SNU‑387 lobaplatin cultured under 
hypoxia was significantly higher, while that of Huh7 was 
significantly lower (Fig. 10A). This indicates that SNU‑387 is 
a TACE‑resistant cell line and Huh7 is a TACE nonresistant 
cell line. We detected expression of the four TRTs in these two 
cell lines. CENPA, KCMF1 and CBX2, which are high‑risk 
factors, were higher in the resistant cell line SNU‑387 than in 
Huh7 cells. However, KLF2, the protective factor, showed no 
difference in expression between the two cell lines (Fig. 10B).

https://www.spandidos-publications.com/10.3892/ol.2024.14788
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Discussion

Primary liver cancer, characterized by high incidence and 
mortality rates, is a malignant tumor that poses a serious threat 

to the lives and health of patients (43). Despite continuous 
advances in treatment methods in recent years, the overall effi‑
cacy of liver cancer therapy remains suboptimal. The present 
study explored the mechanisms by which TFs influence liver 

Figure 5. Validation of prognostic TRT signature in external datasets. (A) Univariate and (B) multivariate regression were used for validation of risk score 
in ICGC‑LIHC cohort. (C) Curve plot and (D) scatter plot between different risk groups in the ICGC‑LIHC cohort. (E) Kaplan‑Meier survival curves of OS 
and (F) ROC curves of the TRT signature in the ICGC‑LIHC cohort. (G) Univariate and (H) multivariate regression were used for validation of risk score 
in GSE14520 cohort. (I) Curve plot and (J) scatter plot between different risk groups in the GSE14520 cohort. (K) Kaplan‑Meier survival curves of OS and 
(L) ROC curves of the TRT signature in the GSE14520 cohort. TRTs, TACE refractoriness‑related transcription factors; OS, overall survival; ROC, receiver 
operating characteristic; AUC, area under curve.
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Figure 6. Analysis of immune infiltration. ESTIMATE algorithm was used to evaluate TME. (A) Tumor purity, (B) immune score, (C) correlation of DNAss 
and (D) RNAss with different risk score. (E and F) Percentage of identified immune subtypes in patients at different risk. (G) Different algorithms such as 
TIMER, CIBERSORT, QUANTISEQ, MCP‑counter, XCELL and EPIC were used to estimate immune cell abundance in different samples. (H) Differences 
in the distribution of immune cells in different risk subtypes. (I) Imvigor‑210 immunotherapy cohort was used to validate the prognostic value of risk scores. 
(J) Proportion of complete/PR and SD/PD in different risk groups. DNAss, DNA stem cell score; RNAss, RNA stem cell score; PR, Partial Response; SD, 
Stable Disease; PD, Progressive Disease

https://www.spandidos-publications.com/10.3892/ol.2024.14788
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Figure 7. Expression and prognostic profile of four TRTs. (A and B) Expression of four signatures in normal and HCC tissues were compared by combining 
TCGA and GTEx databases. (C) Comparison of expression of four TRTs in different tissues using HPA database. Multiple HCC cohorts were used to validate 
(D) KCMF1 and (E) CBX2 expression and prognostic prediction. TRTs, TACE refractoriness‑related transcription factors; HCC, hepatocellular carcinoma; 
TCGA, The Cancer Genome Atlas; GTEx, Genotype‑Tissue Expression. *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001.



ONCOLOGY LETTERS  29:  42,  2025 13

cancer, thereby providing new insights for improving thera‑
peutic strategies.

The limited effectiveness of current treatments prompts a 
critical re‑evaluation of existing therapeutic approaches and 

highlights gaps in our understanding. While the pivotal role 
of TFs in tumor progression is well recognized, their specific 
mechanisms in TACE remain inadequately elucidated. This 
knowledge gap presents a crucial research opportunity to delve 

Figure 8. Different cohort validation and drug sensitivity analysis. Multiple HCC cohorts were used to validate (A) CENPA and (B) KLF2 expression and 
prognostic prediction. GDSC database was used to detect the IC50 values of patients with different risk groups for commonly used clinical TACE drugs such as 
(C) vinblastine, (D) sorafenib, (E) mitomycin, (F) etoposide, (G) doxorubicin and (H) cisplatin. HCC, hepatocellular carcinoma; GDSC, Genomics of Cancer 
Drug Sensitivity; IC50, half‑maximal inhibitory concentration; TACE refractoriness‑related transcription factors. *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001.
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into the function of TFs and to investigate their role in TACE 
resistance, ultimately aiming to optimize treatment regimens.

TFs play a crucial role in tumor progression by sustaining 
tumor stemness and regulating the TME, thereby driving 
cancer development (44). As our understanding of the func‑
tions of TFs deepens, it is expected that in the next 5 years, 

there will be more research focused on their application in 
TACE. Specifically, studies on how targeting TFs can over‑
come TACE resistance could lead to significant breakthroughs 
in liver cancer treatment (45).

Given the critical role of TFs and poor prognosis of patients 
following TACE, the present study developed a prognostic 

Figure 10. Validation of the TRTs in HCC cell lines. (A) IC50 of SNU‑387 and Huh7 for lobaplatin under normoxia and hypoxia (1% O2). (B) Relative expres‑
sion of four TRTs in Huh7 and SNU‑387 cells. TRTs, TACE refractoriness‑related transcription factors; HCC, hepatocellular carcinoma; IC50, half‑maximal 
inhibitory concentration. *P<0.05; ***P<0.001.

Figure 9. Risk score in single cells treated with ICIs. (A) Annotation of the GSE125449 single‑cell sequencing dataset based on the TISCH database. (B) Correlation 
between risk score and TME status. (C) Correlation between risk score and TME status following ICI treatment. (D) Correlation between different types of cells 
and risk score following ICI treatment. ICIs, immune checkpoint inhibitors; TME, tumor microenvironment. *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001.
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model based on TFs to more accurately assess patient risk and 
guide personalized treatment. The model demonstrated poten‑
tial value in evaluating the efficacy of TACE, particularly in 
predicting the prognosis of high‑risk patients. However, the 
limitations of the model cannot be overlooked, primarily 
concerning the sources and quality of the data. Future research 
should focus on validating the model and exploring its applica‑
bility across different populations.

The present study systematically analyzed the role of tran‑
scription‑related genes in TACE of HCC patients. It screened 
and constructed the predictive model including CENPA, 
KLF2, KCMF1 and CBX2 for risk assessment of liver cancer 
patients to determine the degree of benefit from TACE. 
Among these genes, CENPA, which encodes a protein that 
epigenetically determines the location of the centromere on 
each chromosome (46), was significantly upregulated in liver 
cancer tissues. It is considered important for metastatic ability 
and advanced disease status and may be a biomarker of poor 
prognosis and a high likelihood of recurrence (47). As a protec‑
tive factor in this model, KLF2 (a host TF that regulates C‑C 
chemokine receptor 5 expression in CD4+ T cells) is involved 
in a variety of biochemical processes in humans, including 
lung development, embryonic erythropoiesis, epithelial integ‑
rity, T cell viability and adipogenesis (48). Although KLF2 has 
been shown to play a role in promoting tumor progression in a 
variety of tumors, there may be changes in a number of path‑
ways due to the unique hypoxia and chemotherapeutic drug 
microenvironment of TACE (49), which needs to be further 
explored. There are few reports on the relationship between 
KCMF1 and tumors. As an evolutionarily highly conserved 
protein, increased expression of KCMF1 in the nucleus may be 
closely related to pancreatic cancer in mice and humans (50). 
CBX2 is associated with prognosis of liver cancer (51).

The present study intersected the genes in the TF module 
most associated with TACE response in GSE104580 with the 
differential genes in this dataset. As the GSE104580 dataset 
lacks survival data, the intersected gene set was placed in 
TCGA‑LIHC cohort for LASSO‑Cox analysis and four 
TRTs were identified to build a predictive model. Based on 
the predictive model, the patients were divided into high‑ 
and low‑risk groups and the stability of the model verified. 
Immunotherapy provides a new option for liver cancer. The 
combination of TACE and immunotherapy has become a 
new strategy for advanced liver cancer. It has been shown 
that immunotherapy after TACE can prolong and maximize 
the immune response to liver cancer by preventing T‑cell 
exhaustion (12). The combination of TACE and programmed 
death protein‑1 in the treatment of advanced HCC can signifi‑
cantly prolong OS (11). Immune scores were significantly 
lower in high‑risk patients. Comparing the identified immune 
subtypes, a higher proportion of the Lymphocyte Depleted 
subtype was found in high‑risk patients. After analysis using 
various immune infiltration algorithms, it was found that the 
abundance of killer immune cells, such as CD4+ and CD8+ T 
cells, was increased in high‑risk patients. KLF2 in the model 
negatively controlled the responsiveness of CD8+ T cells to 
the C‑X‑C chemokine receptor 3 ligand CXCL10, which is 
consistent with the results of the present study (52). Sorafenib, 
doxorubicin and cisplatin are the first‑line drugs for TACE and 
the IC50 in the high‑risk group was significantly lower than that 

in the low‑risk group. This suggested that high‑risk patients 
may be superior candidates for TACE and targeted drug 
therapy. Single‑cell analysis can provide guidance for precise 
immunotherapy of tumors. Mesenchymal stem/stromal cells 
have high immunomodulatory activity, are easy to obtain and 
isolate and have a strong tropism for inflamed and damaged 
tissues (53). RNA was extracted from common liver cancer 
cell lines. RT‑qPCR of genes in the four models revealed the 
highest expression of CENPA, CBX2 and CENPA in resistant 
cells, which was consistent with the hypothesis.

The present study focused on TFs closely related to TACE. 
The predictive model based on TFs was constructed to predict 
the prognosis of TACE patients. It was hypothesized that this 
model can provide new options for combined immunization 
and targeted therapy for TACE patients. However, the present 
study still had some limitations. First, the data were from public 
databases and lacked more data for verification. Second, the 
specific regulatory mechanism between TFs and TACE resis‑
tance remain to be elucidated, which requires further research.

The prognosis and TME status of liver cancer patients 
following TACE can be assessed using the predictive model 
based on the TF correlation created in the present study. This 
predictive model provides a reliable and simplified method to 
guide the clinical treatment of HCC patients.
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