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Abstract: Some neural models achieve outstanding results in image recognition, semantic segmenta-
tion and natural language processing. However, their classification performance on structured and
small-scale datasets that do not involve feature extraction is worse than that of traditional algorithms,
although they require more time to train. In this paper, we propose a brain-like neural model with
interactive stimulation (NMIS) that focuses on data classification. It consists of a primary neural field
and a senior neural field that play different cognitive roles. The former is used to correspond to real
instances in the feature space, and the latter stores the category pattern. Neurons in the primary
field exchange information through interactive stimulation and their activation is transmitted to
the senior field via inter-field interaction, simulating the mechanisms of neuronal interaction and
synaptic plasticity, respectively. The proposed NMIS is biologically plausible and does not involve
complex optimization processes. Therefore, it exhibits better learning ability on small-scale and
structured datasets than traditional BP neural networks. For large-scale data classification, a nearest
neighbor NMIS (NN_NMIS), an optimized version of NMIS, is proposed to improve computational
efficiency. Numerical experiments performed on some UCI datasets show that the proposed NMIS
and NN_NMIS are significantly superior to some classification algorithms that are widely used in
machine learning.

Keywords: neural model; inter-field interaction; interactive stimulation; supervised learning;
data classification

1. Introduction

Cognition is usually considered as the internal processes involved in environmental
sensing and decision-making [1]. Classification is considered to be one of its main activ-
ities. In machine learning, image recognition, semantic segmentation, natural language
processing and emotion analysis are ultimately categorized as classification problems [2–4].
There have been many algorithms proposed that seek to solve specific learning tasks by
simulating the neural mechanisms of the brain’s cognitive process. They are called neural
networks [5–8]. In 1958, Rosenblatt proposed the famous perceptron, which is regarded
as the basic unit of modern neural networks, leading to the first boom in neural network
research. The BP algorithm [9] was applied to neural models in 1986, which provided an
error propagation method for feed-forward neural networks. A second boom in artificial
neural network research followed.

In 1998, the convolution network LeNet [10] represented a breakthrough in the field
of image classification. Then, a variety of deep neural networks were developed, such
as VGG (Visual Geometry Group) [11], GoogleNet [12] and ResNet [13]. Deep neural
models have achieved great successes [14–17] and some even surpass humans in the field
of large-scale image recognition [18,19]. Google used a multi-head attention mechanism to
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improve the performance of a neural model in natural language processing [20,21], leading
to a boom in the investigation of transformers [22–25]. The vision transformer (VIT) [26]
applied a multi-head attention mechanism to computer vision and demonstrated excellent
performance in image classification. Consequently, neural networks have become essential
to the development of current machine learning.

Nevertheless, most neural models tend to be understood in terms of engineering
functions, but ignore biological interpretability [27–30]. For example, what role does a
neuron play in the whole network, and what rules are followed to transmit information
between neurons? The lack of clarity regarding these mechanisms make it inevitable that
there are uncertain risks, and that tedious manual parameter tuning is necessary when
designing a neural network, which leads to demanding requirements of neural networks
with regard to training conditions [31,32].

The success of neural networks depends on their excellent feature extraction capability
resulting from their complex architectures and huge parameters, the optimizations of which
are based on a BP algorithm that is a mathematical tool rather than a biological rule [33,34].
When the training set is small, or the learning task does not involve feature extraction, a
BP algorithm is often not necessary. We note that the classification performance of neural
networks is weaker than some traditional classification algorithms which are not based on
optimization means for structured and small-scale datasets.

In this paper, we propose a brain-like neural model NMIS that is applied to the field of
small-scale and structured data classification. It simulates hierarchical brain structures and
their neural activities using two neural fields: a primary field and a senior field. Its primary
neurons (PN) are considered to be the representation of real instances in the feature space
and its senior neurons (SN) represent category patterns.

At present, the research findings on memory generation generally agree that the
connection between two neurons is usually built according to synaptic plasticity rules,
such as the Hebbian rule and spike-timing-dependent plasticity (STDP). In NMIS, when a
PN that an instance corresponds to, and an SN that stores this instance’s category pattern,
are activated by the external input stimulation simultaneously, they tend to establish an
inter-field connection, which represents the formation of memory [35–37]. We consider that
the inter-field connections between PNs and SNs also follow the Hebbian rule.

In addition, in the NMIS’s primary field, the PNs corresponding to instances with
the same category pattern form a subpopulation [38–40]. Once a PN is activated, it tends
to trigger others in the same subpopulation and to inhibit unrelated neurons. The neu-
roscience literature reports that when a neuron discharges in the brain, it will release a
chemical substance at the end of the axon which can be transmitted to connected neurons
through the synaptic gap to activate or inhibit them [41,42]. NMIS’s PNs employ a similar
information transmission mechanism to activate or inhibit other PNs in the primary field,
called interactive stimulation. Inter-field interaction is defined as the stimulation of PN to
SN, which is unidirectional and based on inter-field connections. Through it, an SN can
perceive the PNs in an excited state.

The complete cognitive process of NMIS is described as follows: (1) External input
stimulation activates a new PN; (2) Through interactive stimulation, other PNs in the same
subpopulation as the activated PN are activated; (3) Through inter-field interaction, an SN
is activated by these excited PNs, causing a category pattern to be perceived.

Consequently, in NMIS, the roles played by all neurons are clearly defined and the
information interaction mechanism among the neurons is determined explicitly by the
interactive stimulation (DOG function) or Hebbian rule instead of a BP strategy. So,
compared with traditional neural networks, NMIS does not contain complex optimization
steps or involve manual intervention in parameter selection, avoids the “black box” issue,
and exhibits good performance in small-scale data classification.

Finally, we analyze the difficulties faced by the proposed NMIS in processing for
large-scale data classification. Based on NMIS, involving a cooperation with the nearest
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neighbor strategy, we propose the NN_NMIS, an optimized version of NMIS, that focuses
on large instance learning. The main contributions of the paper are summarized as follows:

• We propose a brain-like NMIS that consists of the primary field and the senior field,
simulating hierarchical brain structures and their neural activities. The connections
between neurons in NMIS are determined explicitly by the interactive stimulation or
Hebbian rule instead of a BP strategy. So, the NMIS model does not require a complex
optimization process.

• We propose a supervised learning algorithm based on the NMIS model. This algorithm
applies a clear neural mechanism that is similar to real cognitive processes and avoids
the “black-box” problem. Numerical results confirm that the proposed methods
perform better than some widely used classification algorithms.

• We propose NN_NMIS for structured and large-scale data classification by combining
the NMIS with a nearest neighbor strategy. The experimental results demonstrate that
its performance is better than that of traditional classification algorithms.

2. Materials and Methods
2.1. The NMIS Model

There are two neural fields in NMIS to simulate the neural behaviors of cognition: the
primary field and the senior field. The neurons in the primary field correspond one-to-one
to the real instances in the feature space and the neurons in the senior field correspond one-
to-one to the category pattern. Similar hierarchical structures are also commonly discussed
in brain function research [43–45].

Recent investigations in cognitive science and neuroscience confirm that some neurons
in the primary visual cortex V1 exhibit sharp selectivity for motion direction, and some
of them possess the same preference and respond similarly to stimulation [40,46–50]. In
NMIS, these neurons with similar behavior are defined as the PNs whose corresponding
instances belong to the same category pattern. They form a subpopulation in NMIS’s
primary neural field and are easily activated by each other. The information interaction
among PNs is achieved through interactive stimulation, the strength of which is determined
by an interaction kernel. Once a PN is activated, its interactive stimulation can activate
other neurons that have a similar preference to it and inhibit unrelated neurons. When a
PN that an instance corresponds to, and an SN that stores this instance’s category pattern,
are activated by the external stimulation at the same time, they establish an inter-field
connection. The inter-field interaction among the PNs and the SNs is based on the inter-field
connections via which the excited PNs can activate the SNs that store their category pattern.

The interactive stimulation may be unidirectional for some PNs. In NMIS’s primary
field, each PN has a resting activation. If a PN has not established the inter-field connection
with an SN, it is called an implicit primary neuron (IPN). The resting activation of all IPNs
is a uniform value and named the intrinsic resting activation [51–53]. The other PNs are
called explicit primary neurons (EPN). The IPNs cannot receive interactive stimulation
from other PNs, but the activated IPNs can exert interactive stimulation on EPNs. So, the
IPNs can only be activated by the external input stimulation from their corresponding
instances. Although the activation of neurons is generally positive, to prevent the PNs from
being in an excitable state for a long time, we set their resting activation to be a negative
value. In particular, the resting activation of the IPNs should be so small that they cannot be
activated by the interactive stimulation from other PNs. Similar properties are also applied
to SNs. We abbreviate the explicit senior neuron to ESN and the implicit senior neuron
to ISN.

Based on these interaction mechanisms of NMIS, the activation of neurons in the two
fields would be influenced by the external input stimulation, the interactive stimulation,
the inter-field interaction and their resting activation. The cognitive ability of the model
ultimately depends on the responses of the ESNs to external input stimulation.
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We consider the binary classification problem as an example to illustrate the two neural
fields of NMIS in Figure 1. We introduce the details of NMIS’s interaction mechanism in
the following discussion. The symbols used in this paper are shown in Table 1.

Figure 1. The primary neural field (below) and senior neural field (above) of NMIS. There are two
subpopulations in the primary field, which correspond to two SNs. The white ones are IPNs (in the
primary field) and ISNs (in the senior field). All of them are implicit until the inter-field connections
are established.

Table 1. Symbols Table.

Symbols Descriptions

Z = {z1, z2, · · · , zm} Set of all instances
Train = {z1, z2, · · · , zl} Set of all training instances
Test = {zl+1, zl+2 · · · , zm} Set of all test instances
Ẑ = {ẑ1, ẑ2, · · · , ẑm} Set of all instances’ category patterns

ˆZtrain = {ẑ1, ẑ2 · · · , ẑl} Set of all training instances’ category patterns
ˆZtest = {ẑl+1, ẑl+2 · · · , ẑm} Set of all test instances’ labels

N = {ẑ(1), ẑ(2) · · · , ẑ(mc)} Set of all category pattern names
m The number of instances
mc The number of all category patterns
l The number of training instances
lj The number of training instances with the category pattern ẑ(j)

2.1.1. The Primary Neural Field

The primary neural field is used to correspond to the feature space of the real instances.
Each primary neuron corresponds to a real instance. Suppose there are m PNs (IPNs
and EPNs). Since the activation of PNs is mainly affected by interactive stimulation,
external input stimulation and resting activation, we define the activation of the ith PN
as fi(t), i = 1, 2, · · · , m which is a time-continuous dynamic form. If it is an EPN, fi(t),
i = 1, 2, · · · , m satisfies the Equation:

τ ḟi(t) = C f η

( m

∑
k=1

ω(zi − zk)φ
(

fk(t))
)

(1)

+ h f ,i + e f ,i(t) + fi(t)
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τ decides the evolution rate of fi. For simplicity, we usually let τ = 1. e f ,i(t) be an
external input stimulation from the ith EPN corresponding instance. The strength of it is
usually supposed to be 1 when there is external stimulation input and 0 when there is not
external stimulation input.

The term

C f η

( m

∑
k=1

ω(zi − zk)φ
(

fk(t)
))

describes the interactive stimulation received by the ith EPN. The function ∑m
k=1 ω(zi − zk)

is a DOG (difference of Gaussian) function that determines the interactive stimulation
strength. Its form is

ω(zi − zk) = A exp(−d(zi, zk)

2σ2
1

)− B exp(−d(zi, zk)

2σ2
2

), (2)

where σ1 and σ2 are two positive constants, describing the excitatory and inhibitory inter-
active stimulation scales of the PNs, respectively. Notice that σ1 and σ2 are two uniform
values for all PNS (EPNs and IPNs). Generally, the inhibitory scale is about the triple of the
excitatory scale, so, we let σ2 = 3σ1. The two exponential terms of ω(zi − zk) are usually
selected as the density functions of a normal distribution. So,

A = 1/
√

2πσ1, B = 1/
√

2πσ2.

For convenience, let A− B = 1 so that the maximum of ω(zi − zk) is 1. Then we can
obtain two definite values:

A = 3/2, B = 1/2.

Therefore, the ω(zi − zk) is finally given as:

ω(zi − zk) =
3
2

exp(−d(zi, zk)

2σ2
1

)− 1
2

exp(−d(zi, zk)

2σ2
2

). (3)

d(zi, zk) is a distance function that can use the Euclidean distance, cosine distance, etc. The
cosine distance is considered to be more suitable for processing image features extracted by
deep networks.

φ(x) is an activation function for x ∈ R. It is monotonically increasing, non-negative
and bounded. η(x) is a monotonically increasing threshold function. It describes the
response of the ith EPN to the interactive stimulation that it receives, satisfying

lim
x→+∞

η(x) = 1,

lim
x→−∞

η(x) = −1.

The functions φ(x) and η(x) are given as:

φ(x) =
{

1− exp(−x), x > 0
0, x ≤ 0

, (4)

and

η(x) =
{

1− exp(−x), x > 0
−1 + exp(x), x ≤ 0

. (5)

C f is a positive constant that is employed to limit the interactive stimulation. In most
cases, C f = 1.
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We define h f as the resting activation of all EPNs, h f ,i = h f . For EPN, we specify that
it can be activated by strong interaction stimulation from other PNs (EPNs and IPNs) even
without any external input stimulation. So, let

h f ,i = α · −
(

max
(

C f η

( m

∑
k=1

ω(zi − zk)φ
(

fk(t)
))))

, (6)

where α is a positive constant. Normally, take α = 0.2, so, h f ,i = h f = −0.2.
Provided that the ith PN is an IPN, its activation behavior fi(t), i = 1, 2, · · · , m is given

as the following Equation:

τ ḟi(t) = C f η

( m

∑
k=1

ω(zi − zk)φ
(

fk(t))
)

(7)

+ H f ,i + e f ,i(t) + fi(t)

H f ,i is the intrinsic resting activation of the ith IPN. It is assumed that the IPN can
only be activated by external input stimulation. Therefore,

H f ,i ≤ −
(

max
(

C f η

( m

∑
k=1

ω(zi − zk)φ
(

fk(t)
))))

. (8)

Generally, let H f ,i = H f = −1.
Further, in order to improve computational efficiency, the interaction term of IPNs is

canceled and the external input stimulation is changed to strong stimulation. The updated
activation behavior of the ith IPN is satisfied by the following Equation:

fi(t) = H f ,i + 2e f ,i(t) (9)

2.1.2. The Senior Neural Field

In NMIS, the senior neural field is used to store the category patterns. Each SN
corresponds to a category pattern. When an SN is activated, this indicates that a category
pattern is perceived. For convenience, the activation behavior of all SNs, whether ISNs
or ESNs, is not time-continuous and there is no interactive stimulation among SNs. The
activation of the SNs depends on the inter-field interaction from the primary field and the
external input stimulation. In addition, we stipulate that, when the activation of EPNs in
the primary field is stable, the information can be transmitted to the senior neural field
through the inter-field interaction.

Suppose that there are mc SNs (ISNs and ESNs). The activation of the jth SN (if it is an
ESN) is described by gj, j = 1, 2, · · · , mc. It satisfies

gj = Cgφ

(
1
Cj

m

∑
i=1

xj,iφ
(

f ∗i
))

+ hg,j + eg,j. (10)

eg,j is an external input stimulation from the jth ESN corresponding category pattern. It is 0
or 1.

f ∗i represents the activation of the ith EPN when the activation of all the EPNs in the
primary neural field is stable.

xi,j is the inter-field connection weight between the ith EPN and the jth ESN, which
relies on the Hebbian rule and describes the inter-field interaction. Because φ(∗) is a
non-negative threshold function, only the positive inter-field interaction is considered.

Cj is a positive normalization constant to improve the robustness of the model, which
is given as the number of the EPNs that connect to the jth ESN by the Hebbian rule. Cg is a



Brain Sci. 2022, 12, 1191 7 of 21

positive constant that controls the inter-field interaction from the primary field. Commonly,
Cg = 1

hg is defined as the resting activation of all ESNs. hg,j = hg. Similar to the discussion
on the resting activation of EPNs, let

hg,j = α · −
(

max
(

Cgφ

(
1
Cj

m

∑
i=1

xj,iφ
(

f ∗i
)))

(11)

Then, hg,j = hg = −0.2
Provided that the jth SN is an ISN, its activation behavior gj, j = 1, 2, · · · , mc is given

as the following Equation:

gj = Cgφ

(
1
Cj

m

∑
i=1

xj,iφ
(

f ∗i
))

+ Hg,j + eg,j. (12)

Since no EPNs establish the inter-field connections with the ISNs, the term

Cgφ

(
1
Cj

m

∑
i=1

xj,iφ
(

f ∗i
))

is ignored. Therefore, the activation behavior of the jth ISNs is described by the Equation:

gj = Hg,j + eg,j. (13)

Hg,j is the intrinsic resting activation of the jth ISN. If eg,j = 1, define

Hg,j ≥ −eg,j. (14)

Generally, let Hg,j = Hg = −0.9
Equations (1) and (10) give the activation behavior and interaction mechanism of

NMIS’s neurons. Compared with the traditional BP neural network, NMIS has a defined
neural mechanism and avoids the “black box” problem. Therefore, it is biologically plausible.

2.2. The Cognitive Process of NMIS

In NMIS, each PN corresponds to a specific exterior input stimulation. Specifically, in
the classification task, this external stimulation comes from an instance in the feature space.
The SNs are used to store the category patterns corresponding to these PNs. When an SN
is activated, it indicates that a stored category pattern is recalled. Similarly, when a PN is
activated, it illustrates that a specific instance is expressed.

We introduce the cognitive process of NMIS in two main parts: the memory generation
stage and the external stimulation recognition stage.

2.2.1. The Memory Generation of NMIS

In NMIS, the inter-field interaction between the primary field and the senior field is
realized through the inter-field connections whose weights are given as X = (xi,j)l,mc . For
a training instance zi, i = 1, 2, · · · , l of Train = {z1, z2, · · · , zl}, if the IPN that it corresponds
to and the ISN that its category pattern corresponds to are activated by the external input
stimulation from it and its category pattern, respectively, at the same time, they tend to
establish an inter-field connection according to the Hebbian rule. Commonly, we let their
inter-field weight be 1. So, we obtain

xi,j =

{
1, e f ,i(t) = eg,j = 1
0, else

. (15)

Figure 2 shows the memory generation process of NMIS, and the state that the NMIS
is in after the memory is generated.
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(a) The establishment process of the inter-field connection

(b) The neurons in different states after establishing inter-field connections

Figure 2. (a) shows the establishment process of the inter-field connection. (b) shows the neurons
that have established inter-field connections. The white, pink and red ones represent implicit, explicit
and activated neurons respectively. In (a), The thin blue arrows indicate an inter-field connection.
The inter-field connections between the EPNs in the same subpopulation and ESN are indicated by a
thick blue arrow in (b).

2.2.2. The External Stimulation Recognition of NMIS

After the memory generation stage of the NMIS, the IPNs corresponding to the
training instances are transformed into EPNs and can be easily activated again. If a new
IPN is activated by an external stimulation from a test instance, some EPNs within its
cognitive scale will be activated through its interactive stimulation and the unrelated
EPNs will be inhibited. So, the cognitive scale of PN plays an important role in NMIS,
which is determined by the interactive stimulation scale σ1 and σ2. Next, we offer a
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calculation method for the interactive stimulation scale using the distribution information
of the instances.

Performing small-scale learning, we cannot determine the interactive stimulation
scale by employing the distribution information of the training instances alone—the test
instances must also be used. Let D be the l × m − l distance matrix that describes the
distance between the training instances and test instances. Its elements

dp,q = d(zp, zq)

where p = 1, 2, · · · , l and q = 1, 2, · · · , m − l. The d(∗) is a distance function. Let
dmin,q, q = 1, 2, · · · , m − l be the minimum element in the corresponding column of D
and dmax,q, q = 1, 2, · · · , m− l be the maximum element of each column. Then,

Dmin = [dmin,1, dmin,2, · · · , dmin,m−l ]

and
Dmax = [dmax,1, dmax,2, · · · , dmax,m−l ]

indicate the minimum and maximum distance among the training instances and test
instances, respectively. We are unable to evaluate the range of the categories accurately,
but it is reasonable to ascertain that the interactive stimulation induced by the new IPN
activated by external input stimulation (from a test instance) should be large enough
to activate at least one EPN. So, when handling the small-scale dataset, the interactive
stimulation scale is given as:

σ1 = max(Dmin).

Define
σ1,max = max(Dmax),

and
σ1,min = min(Dmin).

If the number of training instances for each category pattern is large. We can obtain
enough internal information for the sub-populations only via the training instances’ distri-
bution. Let D̂ be an l × l matrix that describes the distance among the training instances.
Its elements

d̂p,q = d(zp, zq),

where p = 1, 2, · · · , l and q = 1, 2, · · · , l. Let d̂max,q, q = 1, 2, · · · , l and d̂min,q, q = 1, 2, · · · , l
be the maximum and minimum element in the corresponding column of D̂, respec-
tively. Then,

D̂max = [d̂max,1, d̂max,2, · · · , d̂max,l ],

and
D̂min = [d̂min,1, d̂min,2, · · · , d̂min,lj

].

Because there is sufficient distribution information, it can be assumed that the interac-
tive stimulation scale is

σ1 = mean(D̂max).

Define
σ1,max = max(D̂max),

and
σ1,min = min(D̂min).

After the interactive stimulation scales are determined, we distinguish the category
pattern of the test instances one-by-one. Notice that the external input stimulation to the



Brain Sci. 2022, 12, 1191 10 of 21

ESNs is blocked, i.e., during the recognition process of NMIS, the ESNs only receive the
inter-field interaction stimulation from the EPNs. So,

eg,j = 0, j = 1, 2, · · · , mc.

For a test instance zk, k = l + 1, l + 2, · · · , m of Test = {zl+1, zl+2 · · · , zm}, its initial
state is the intrinsic resting activation. That is,

fk(t = 0) = H f ,k, k = l + 1, l + 2, · · · , m.

Let
e( f , k)(t) = 1, k = l + 1, l + 2, · · · , m

to activate the the corresponding IPN.
Via the interactive stimulation, some EPNs that belong to the same subpopulation as

this activated IPN are triggered and the unrelated EPNs are inhibited. When the primary
field is stable, the activation information of the EPNs is transmitted to the senior field
through the inter-field interaction, resulting in the change in the ESN’s activation.

There are three situations that should be considered: (1) Only one ESN is activated;
(2) No more than one ESN is activated; and (3) No ESN is activated. Figure 3 shows their
general situation.

(a) case (1)

(b) case (2)

Figure 3. Cont.
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(c) case (3)

Figure 3. (a–c) show that only one ESN is activated, no more than one ESN is activated and no ESN
is activated, respectively. The figures on the left describe the new IPN that is activated by external
input stimulation and its excitatory interaction range (the yellow dotted line). The figures on the
right describe the EPNs that are activated (red) or inhibited (blue) by interactive stimulation and the
ESNs activated by inter-field interaction.

The first case is ideal because only one category pattern is perceived. So, the external
input stimulation (test instance) is labeled as this perceived category pattern. For the
second case, if the activation of an activated ESN is much higher than that of other ESNs,
the external input stimulation is labeled accordingly. For the other cases, the interactive
stimulation scale should be adjusted. Algorithm 1 demonstrates the details of our scale-
adjusting algorithm in which the number of the activated ESNs is abbreviated as Aesn. The
complete cognitive algorithm is shown in the Algorithm 2.

Algorithm 1 Scale-Adjusting Algorithm.

1: INPUT
2: Aesn, σ1,σ1,max, σ1,min, λ;
3:
4: OUTPUT
5: σ1, σ1,max,σ1,min;
6:
7: if Aesn = 0 then
8: if σ1,max − σ1 < ε then
9: Let σ1,max = σ1,max/λ;

10: end if
11: Let σ1,min = σ1;
12: Calculate σ1 = σ1 + λ(σ1,max − σ1);
13: else
14: if Aesn > 1 then
15: if σ1 − σ1,min < ε then
16: Let σ1,min = λσ1,min;
17: end if
18: Let σ1,max = σ1;
19: Calculate σ1 = σ1 − λ(σ1 − σ1,min);
20: end if
21: end if
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Algorithm 2 Recognition Algorithm.

1: INPUT
2: Test = {zl+1, zl+2 · · · , zm}, xi,j, i = 1, 2, · · · , l and j = 1, 2 · · · , mc;
3:
4: OUTPUT
5: ˆZtest;
6:
7: Let fi(t = 0) = −0.2, gj = −0.2, where i = 1, 2, · · · , l and j = 1, 2 · · · , mc;
8: for each zk ∈ Test do
9: Let e f ,k(t) = 1;

10: Compute the stationary solution f ∗i , i = 1, 2, · · · , l of the Equation (1);
11: Compute the stationary solution gj, j = 1, 2 · · · , mc of the Equation (10);
12: while Aesn 6= 1 do
13: Adjust the scale σ1 by Algorithm 1;
14: Compute the stationary solution gj, j = 1, 2 · · · , mc of the Equation (10);
15: end while
16: Let ẑk = z(r), where r is the category pattern that stored by the senior neuron with

the highest activation;
17: end for
18: ˆZtest = {ẑk}, k = l + 1, l + 2, · · · , m.

2.3. The NN_NMIS

The proposed NMIS has a vivid neural mechanism, which can effectively identify the
external input stimulation—but it is not an efficient model. The number of its EPNs is equal
to the number of the training instances. When the training set is large, a very complex
interactive stimulation needs to be calculated, which means that NMIS faces unacceptable
computational and storage requirements.

Not all of the interaction information of EPNs is meaningful. In Figure 4, the interaction
stimulation induced by the activated IPN to the EPNs that are outside the red dotted line
(cognitive scale) is so small that none of the EPNs can be activated or inhibited, but
the model needs to spend most of the resources calculating them. This is inefficient
and unreasonable.

(a) The cognitive range of the activated IPN

Figure 4. Cont.
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(b) The activated and inhibited EPNs and ESNs in the cognitive range

Figure 4. (a) shows the cognitive range of the activated IPN: the yellow dotted line is the excitatory
interaction range and the red dotted line is the inhibition interaction range. (b) describes the activated
and inhibited EPNs and ESNs in the cognitive range.

In this section, we propose the nearest neighbor NMIS (NN_NMIS) which is mainly
used to deal with large-scale data classification. Firstly, we select one representative EPN
for each subpopulation, which is the weighted combination of all EPNs belonging to the
same subpopulation. Then, the activated IPN only applies interactive stimulation to its
nearest K EPNs and these representative EPNs.

The value of K is flexible. However, based on the premise that adequate meaningful
EPNs are included, it should be as small as possible. According to the prior information,
we can not get an optimal K, but we can reasonably assume that the number of these
meaningful EPNs should not be more than that of the EPNs contained in the largest
sub-population in the primary field. So, let

K < max(lj), j = 1, 2, · · · , mc,

where lj is the number of EPNs in the jth sub-population. Generally, let

K = 10

The representative EPNs should contain much information about the EPNs closing
to the sub-population center and little information about the marginal EPNs. To generate
high-quality representative EPNs, we propose a weight initialization method based on the
interactive stimulation among the EPNs in the same sub-population.

Applying external input stimulation to activate all EPNs that belong to the same sub-
population simultaneously, the EPNs corresponding to the sub-population center receive
strong interactive stimulation from other EPNs and the interactive stimulation received by the
EPNs corresponding to the sub-population boundary is tiny. Inspired by this idea, we initialize
the weights using the interactive stimulation received by all EPNs as prior knowledge.

Suppose that there are lj EPNs in the jth sub-population. Denote ITSj,k as the inter-
active stimulation received by the k EPN of the jth sub-population. It is described by an
instantaneous Equation:

ITSj,i = C f η

( lj

∑
k=1

ω(zj,i − zj,k)φ
(
h f ,j,k + e f ,j,k

))
,
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where lj is the number of the EPNs in the jth subpopulation and e f ,j,k = 1. The representa-
tive EPN is abbreviated to REPN in the following equations. It is given by:

REPNj =

lj

∑
k=1

wj,kzj,k, j = 1, 2, · · · , mc. (16)

where mc is the number of subpopulations. The weight vector wj = [wj,1, wj,2, · · · , wj,lj
]T is

given by the following equation:

wj = So f tmax(ITSj), (17)

where ITSj = [ITSj,1, ITSj,2, · · · , ITSj,lj
]T . The function So f tmax(∗) is a normalizing

function that is used to ensure ∑
lj
k=1 wj,k = 1.

3. Results

In this section, to illustrate the classification performance of the proposed NMIS and
NN_NMIS, we tested them on some real datasets. The details of the experimental datasets
are described in Table 2, all of which were selected from the University of California Irvine
(UCI) repositories (https://archive.ics.uci.edu/, accessed on 1 August 2022) and only
underwent simple preprocessing, such as deleting the instances with null values. The
original attribute values and dimensions of the datasets were not changed. The KNN
and SVM were used for contrast, because they are considered two effective classification
algorithms and are commonly used in various fields. We did not design comparative
experiments with BP neural networks because their architectures are so diverse that the
fairness of the experiments could not be guaranteed. To avoid accidental situations, all
experimental results are the average of 30 rounds.

Table 2. Details of datasets.

Instances Classes Attributes

COVERTYPE 581,012 7 54
SPAMBASE 4601 2 57
GERMAN 1000 2 20

DERMATOLOGY 366 6 34
WINE 178 3 3

SEGMENTATION 2310 7 19
PENDIGITS 7494 10 16
SATELLITE 6435 6 36

DERMATOLOGY, WINE, GERMAN, SEGMENTATION, PENDIGITS and SATELLITE
datasets were selected to assess the model’s small-scale data classification capacities. The
experiments were designed as one-shot learning and five-shot learning. There were one
instance and five instances for each category pattern that were randomly selected as the
training set; the rest were used as the test set. The comparison algorithms were: 1-NN
(for one-shot learning), 3-NN (for five-shot learning) and SVM with a linear kernel (for all
learning tasks).

Figure 5 shows the classification results of one-shot learning. We can see that the
proposed NMIS outperformed the other algorithms in both accuracy and stability. On
WINE, DERMATOLOGY and SEGMENTATION datasets, the accuracy of NMIS exceeded
that of other algorithms by more than 15%.

https://archive.ics.uci.edu/
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Figure 5. The one-shot learning results (%) of NMIS, KNN and SVM on (a) DERMATOLOGY,
(b) WINE, (c) GERMAN, (d) SEGMENTATION, (e) PENDIGITS and (f) SATELLITE datasets.

The classification results of five-shot learning are shown in Figure 6. It can be seen
that the accuracy and robustness of NMIS were still better than that of 3-NN. Significant
performance gaps were obtained on the WINE, DERMATOLOGY, GERMAN and SEG-
MENTATION datasets. We observed that a similar accuracy to NMIS was obtained by SVM.
Using the confusion matrix, we visualize the classification results of NMIS and SVM in
Figures 7 and 8. We can see that NMIS showed stable recognition ability for rare categories.
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Figure 6. The five-shot learning results (%) of NMIS, KNN and SVM on (a) DERMATOLOGY,
(b) WINE, (c) GERMAN, (d) SEGMENTATION, (e) PENDIGITS and (f) SATELLITE datasets.
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Figure 7. The confusion matrix of NMIS and SVM on (a) DERMATOLOGY, (b) WINE and (c) GERMAN
datasets. Each orange square represents the number of wrongly predicted instances. The main diagonal
represents the number of correctly predicted instances. The bottom and right light gray rectangles
indicate the prediction accuracy of the corresponding instance categories.
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Figure 8. The confusion matrix of NMIS and SVM on (a) SEGMENTATION, (b) PENDIGITS and
(c) SATELLITE datasets. Each orange square represents the number of wrongly predicted instances.
The main diagonal represents the number of correctly predicted instances. The bottom and right light
gray rectangles indicate the prediction accuracy of the corresponding instance categories.

To demonstrate the large-scale data classification capacity of NN_NMIS, we tested it on
some large datasets: SPAMBASE, COVERTYPE, GERMAN, SEGMENTATION, PENDIGITS
and SATELLITE. All datasets contained more than one thousand instances. A total of
30% of instances for each category pattern for SPAMBASE, GERMAN, SEGMENTATION,
PENDIGITS and SATELLITE were randomly chosen as the training set and the rest were
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applied as the test set. The COVERTYPE dataset was so large that only 0.001% of instances
for each category pattern were selected as the training set. The 3-NN and SVM were
employed for comparison. For NN_NMIS, K = 10 for all datasets. The results are shown
in Figure 9. We can clearly see that the stability of the NN_NMIS was so good that there
were no visible fluctuations. For the SPAMBASE, COVERTYPE and GERMAN datasets, the
accuracy of the model was significantly better than for the other algorithms, especially SVM.
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Figure 9. The large-scale data classification results (%) of NN_NMIS, KNN and SVM on (a) SPAM-
BASE, (b) COVERTYPE, (c) GERMAN, (d) SEGMENTATION, (e) PENDIGITS and (f) SATEL-
LITE datasets.

4. Discussion

Human beings show excellent cognitive ability, which depends on complex neuronal
behavior mechanisms. Some scientists have sought to imitate these mechanisms to enable
machines to acquire similar learning ability. The related research outcomes are called
artificial neural networks (ANN). From the initial perceptron to the current diversified ar-
chitectures (RNN, CNN, GNN and Transformer), the development of ANNs has undergone
many reformulations, which have achieved extraordinary success in various fields [54,55].
However, the neural mechanism of ANNs is deficient and their training conditions are
rigorously induced by the BP strategy, which leads to their poor biological rationale and
unsatisfactory small-sample learning ability [27–30,33].

Some properties of real neurons can be applied to neural models to improve their
biological interpretability. The BP algorithm is not necessary when dealing with struc-
tured datasets that do not involve data feature extraction. In this paper, we propose a
brain-like neural model with interactive stimulation (NMIS) that focuses on structured and
small-scale data classification. In contrast to traditional BP neural networks, the inspiration
for NMIS originates from real cognitive processes. There are two neural fields in NMIS
that are used to simulate the neural activation of primary and senior visual cortices, re-
spectively. The information transmission and inter-field connections among the neurons
in NMIS depend on the interactive stimulation and synaptic plasticity. Thus, its neural
mechanism is clear. In addition, all parameters of the proposed model are reasonably
selected according to cognitive science or independently designed according to the datasets.
So, there are no complicated optimization steps and manual parameter adjustments in
NMIS. To solve the unacceptable computing and storage requirements faced by NMIS when
processing large-scale data classification, we propose NN_NMIS, an optimized version of
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NMIS, involving combining the nearest neighbor strategy, for large-scale data classification
processing. Benefiting from a rational cognitive mechanism, NMIS and NN_NMIS show
better classification abilities than other algorithms.

We do not doubt the excellent results achieved by neural networks. NMIS does not
have feature extraction capability, which makes it unable to handle unstructured data
directly. So, the massive structured data provided by neural networks is necessary. In the
future, we intend to consider embedding NMIS into neural networks to achieve more inter-
esting functions, such as emotion analysis, reinforcement learning and image recognition.

5. Conclusions

In this paper, we discuss some problems faced by traditional artificial neural networks,
i.e., poor interpretability and demanding training conditions. Considering the excellent
cognitive ability of human beings, some properties of neurons in the brain inspired us
to design the NMIS model for small-scale and structured data classification. The neural
mechanism of NMIS is clear. It consists of the primary field and the senior field, simulating
the neural activation of primary and senior visual cortices, respectively. Its neurons transmit
information through interactive stimulation and inter-field interaction, corresponding to
the interaction and synaptic plasticity of real neurons. In contrast to the BP strategy, the
memories of NMIS are stored as inter-field connections, which are based on the Hebbain
rule and do not require strict optimization. Consequently, the proposed NMIS is biologically
reasonable and efficient, and is essentially suitable for small-scale data classification. In
addition, based on NMIS, we propose an NN_NMIS for large-scale learning, which only
calculates the interaction information among a few important neurons. So, it is efficient.
The numerical experiments on some UCI datasets demonstrate that the proposed NMIS
and NN_NMIS are feasible and show better performance and generalization ability than
some widely used classification algorithms in machine learning.
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