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Interaction among different pathways, such as metabolic, signaling and gene regulatory networks, of cel-
lular system is responsible to maintain homeostasis in a mammalian cell. Malfunctioning of this cooper-
ation may lead to many complex diseases, such as cancer and type 2 diabetes. Timescale differences
among these pathways make their integration a daunting task. Metabolic, signaling and gene regulatory
networks have three different timescales, such as, ultrafast, fast and slow respectively.
The article deals with this problem by developing a support vector regression (SVR) based three time-

scale model with the application of genetic algorithm based nonlinear controller. The proposed model
can successfully capture the nonlinear transient dynamics and regulations of such integrated biochemical
pathway under consideration. Besides, the model is quite capable of predicting the effects of certain drug
targets for many types of complex diseases. Here, energy and cell proliferation management of mam-
malian cancer cells have been explored and analyzed with the help of the proposed novel approach.
Previous investigations including in silico/in vivo/in vitro experiments have validated the results (the reg-
ulations of glucose transporter 1 (glut1), hexokinase (HK), and hypoxia-inducible factor-1a (HIF-1a)
among others, and the switching of pyruvate kinase (M2 isoform) between dimer and tetramer) gener-
ated by this model proving its effectiveness. Subsequently, the model predicts the effects of six selected
drug targets, such as, the deactivation of transketolase and glucose-6-phosphate isomerase among others,
in the case of mammalian malignant cells in terms of growth, proliferation, fermentation, and energy
supply in the form of adenosine triphosphate (ATP).

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Cellular decision making and responses are orchestrated by a
set of complex biochemical pathways/networks. Broadly speaking,
biochemical pathways/networks can be categorized as metabolic
pathways, gene regulatory networks (GRNs), and signaling path-
ways. A metabolic pathway is a coherent set of biochemical reac-
tions catalyzed by a number of enzymes. It helps a living
organism to transform an initial (source) compound into a final
(target) compound and energy. On the other hand, fundamental
information processing and control mechanisms in a cell are per-
formed by GRNs. Regulatory genes code for proteins that activate
or inhibit the expression of other genes. Thus, a complex web of
interactions, called a GRN, in terms of activation and inhibition of
genes, is formed. Moreover, signaling pathways contain a series
of specific actions in a cell in which a signal is passed from the
environment and accordingly the cell responds. These pathways
are of diverse nature and are interacting with one another. They
also form a hierarchy. For example, an entire organism can be
thought of as a huge network of interacting organs, each of which,
in turn, is a network of interacting tissues. A tissue is a collection of
interacting cells performing similar functions. A cell may be con-
sidered as a huge network of interacting components to constitute
aforesaid biochemical networks. Moreover, the influence of envi-
ronment and other factors on enzymes or gene regulation needs
to be considered to make a study on how an organism is responsive
to environmental changes. Therefore, it is necessary to focus not
only on individual processes or pathways but also on their integra-
tion. Fig. S1 in Supplementary material depicts the interaction
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among metabolic, signaling and gene regulatory networks related
to central carbon metabolism in a mammalian cell. Attempts to
elucidate such huge biochemical networks on the structural/ func-
tional basis face the problem of combinatorial explosion. There
exist several investigations on modeling each of these pathways
individually [1–9]. However, the study on the integration of gene
regulation, metabolism, and signaling events (pathways) is not
much.

Among several approaches one of the most common is to
explore metabolic pathway is Flux Balance Analysis (FBA)
[10,11]. FBA can analyze only steady-state response of a system
rather transient response. However, Metabolic Control Analysis
[12] overcomes the limitation of FBA. Yet, it does not provide any
supervisory controller that can regulate the enzyme/metabolite
concentration to meet some particular requirements of a cell.
Recently, we have developed a control theoretic approach to solve
Fig. 1. Integrated metabolic, signaling and gene regulatory networks
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this problem [13–15]. Some investigations on crosstalk mechanism
[16] and identifying properties [17,18] of signaling networks have
also been developed. Since the activation of regulatory mechanism
depends on corresponding gene expression level thus any GRN can
be modeled mathematically by coupled ordinary differential equa-
tions (ODEs), Boolean network or Bayesian network [19].

Response time of the interconnected complex subsystems may
vary from each other. In other words, they can be treated as com-
plex subsystems of different timescales. Biochemical pathways,
such as metabolic, signaling and regulatory networks show this
kind of phenomena. Timescale differences among metabolic, sig-
naling and gene regulatory networks make their integration a
daunting task. Several researchers have tried to model the dynamic
behavior of a system by stoichiometric reconstruction of integrated
biochemical pathways [20]. Here, the authors have considered two
different timescales. The metabolic and signaling networks have
associated with central carbon metabolism of mammalian cells.
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been considered in fast timescale, whereas GRN has been consid-
ered in slow timescale. However, the metabolic, signaling and gene
regulatory networks participate in three different timescales. Pre-
vious investigation [21] show that proteins in Escherichia coli take
seconds to minutes to express. It will be longer in the case of mam-
malian systems. On the other hand, metabolite concentrations can
respond in seconds to microseconds [22]. Gene regulatory events
take minutes to hours [20]. Thus, integration of these biochemical
pathways becomes a three timescale problem, where metabolic,
signaling and gene regulatory networks are ultrafast, fast and slow
respectively.

In this study, we develop a three timescale multiple input and
multiple output (MIMO) model based on support vector regression
(SVR) and genetic algorithm based controller to simulate the
dynamic behavior of integrated signaling, metabolic and gene reg-
Fig. 2. Flowchart of the entire methodology: Here slow, fast and ultrafast subsystem
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ulatory networks specifically responsible for mammalian carbon
metabolism in normal and cancer cells. Here, the metabolic, signal-
ing and GRN have been mathematically modeled by sets of ODEs
with proper three timescale selection, feedback, allosteric effects
and perturbation. In this context, we have collected all pathway
information under consideration from KEGG database [23] and
literature. Finally, we have developed a genetic algorithm (GA)
based controller to drive the change of concentrations/expression
levels of certain metabolites/proteins/genes with respect to time
in a desired fashion. Thus, the proposed model can also predict
the possible effects of certain drug targets of specific diseases
through GA controller.

The central carbon metabolic (CCM) network comprises glycol-
ysis, tricarboxylic acid (TCA) cycle, pentose phosphate pathway
(PPP) and free fatty acid (FFA) metabolism. Glycolysis consumes
s correspond to gene regulatory, signaling and metabolic pathways respectively.



Table 1
Different mathematical symbols and their description.

Symbols Description

x; y; z and u Vectors representing gene expression levels, protein/
signaling molecule expression levels, concentration of
metabolites and external inputs (Supplementary Table S11)
respectively.

p; s;m and c Dimension of x; y; z and u respectively.
i; j; k and l Index for gene, signaling molecule, metabolite and external

inputs respectively.
t; s1 and s2 Timescales for gene regulatory, signaling and metabolic

networks respectively.
_x; _y and _z Derivatives of x; y and z respectively, with respect to time t.
x1 and x2 Slow to fast and Fast to ultrafast timescale ratios.
fð:Þ; gð:Þ and

hð:Þ
Activities corresponding to gene regulatory, signaling and
metabolic networks respectively.

ĝð:Þ and ĥð:Þ Fast and ultrafast subsystems with respect to s1.
^̂hð:Þ Ultrafast subsystem with respect to s2.

Gð:Þ and Hð:Þ Quasi-steady state equilibrium of fast and ultrafast
subsystems.

H0ð:Þ Quasi-steady state equilibrium of ultrafast subsystem.
ei; bi and di Expression, basal production and decay rates respectively for

ith gene.

K
ðgÞ
ij0

Binding rate constant for j0th transcription factor required to

express ith gene.

F
ðgÞ
ik ;F

ðgÞ
il and

F
ðgÞ
ij00

Binding constants for ith gene corresponding to kth

metabolite, lth external input and j00th signaling
molecule/transcription factor respectively.

NðsÞ; rðsÞ and q Interaction matrix, interaction rate vector and number of
interactions for signal transduction pathway.

rðsÞr rth element of rðsÞ.

K
ðsÞ
jj0

Strength of binding constant of j0th signaling molecule with

jth signaling molecule.

F
ðsÞ
jk ;F

ðsÞ
jl and

F
ðsÞ
jj00

Binding constants for jth signaling molecule corresponding to

kth metabolite, lth external input and j00th signaling molecule
respectively.

NðmÞ; rðmÞ and
n

Stoichiometric matrix, metabolic flux vector and number of
reactions for metabolic pathway.

rðmÞ
q qth element of rðmÞ .

K
ðmÞ
q and

KMðmÞ
q

The kinetic rate constant and Michaelis Menten constant
respectively for qth metabolic reaction.

F
ðmÞ
kk00

andF
ðmÞ
kl Feedback constants for kth metabolite corresponding to k00th

metabolite and lth external input respectively.
h; s;v; d;D

and /
Time, number of past inputs, input vector for SVR, dimension
of input vector v, dataset and number of samples
respectively.

l and a or b Index for output and v respectively.
d0; F;wl; dð:Þ

and bl

Dimension of projected feature space, projected feature
space, the orientation of the hyperplane in F, mapping from d
dimensional input space to d0 dimensional transformed
feature space F and the bias respectively.

cl; ĉl;Pl and

Ql

lth element of actual output, lth element of predicted
output, convex optimization problem and quadratic
programming problem respectively.

el;ua;u�
a and

C

Tolerable error, slack variables and a trade-off respectively.

fa; f
�
a; fb and f�b Lagrange multipliers.

ab ðfb � f�bÞ.
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glucose to produce pyruvate and energy in the form adenosine tri-
phospate (ATP), although most of the energy is generated from TCA
cycle taking pyruvate as input. Here, PPP is involved in macro-
molecular synthesis including reduced nicotinamide adenine dinu-
cleotide phosphate (NADPH) and ribose 5P. FFA is formed by acetyl
CoA of TCA cycle. However, a mammalian tumor cell slows down
oxidative phosphorylation by inhibiting TCA cycle activities and
produces abnormal amount of lactate. This effect is called ‘‘War-
burg effect” [24,25] which may lead to cancer [26]. In this context,
we have analyzed the energy and cell proliferation management of
CCM pathway along with corresponding signaling and gene regula-
tory networks in mammalian cancer cells. Here, we have consid-
ered the interactions among different enzymes/proteins,
transcription factors and genes associated with central carbon
metabolism to capture the cellular dynamics during normal and
malignant conditions in mammalian cells. These detailed interac-
tions can be found in Supplementary Tables S1–S8 (abbreviations
of different molecules can be found in Supplementary Table S10).
Fig. 1 depicts the integrated metabolic, signaling and gene regula-
tory networks associated with central carbon metabolism. We also
have analyzed the possible effects of six drug targets, such as deac-
tivation of pyruvate kinase, glucose-6-phosphate dehydrogenase,
transketolase, ribose 5P isomerase, glucose-6-phosphate isomerase
and finally activation of pyruvate kinase, on mammalian malignant
cells.

In accordance with previous investigations including some
in vivo and in vitro experiments [24,27,26,28–45,25,46–65], the
simulation results also suggest that abnormal over expressions of
certain proteins and genes depicted in Table 3 play significant roles
to maintain growth, proliferation and energy supply in mammalian
cancer cells to survive. Under expressions of prolyl-hydroxylases
(PHD) and tumor suppressing protein p53 are also important in
this context. Besides, switching of pyruvate kinase (M2 isoform)
to its inactive dimer or active tetrameric form helps to synthesize
energy in the form of ATP, and macromolecular precursors for cell
growth and proliferation according to the requirements of mam-
malian malignant cells.

We have also compared the proposed model with the following
theoretical models. In this context, FBA based model [66] has
depicted a similar set of malfunctioning enzymes as identified by
the proposed model in cancer cells for its growth. However, FBA
based model does not involve transient analysis of the behavior
of molecules in cancer pathways. Previous differential equation
and optimization-based models [67–69] have also depicted similar
mutation as depicted by the proposed model in cancer cells. How-
ever, these models do not consider the three timescale nature of
the integrated CCM pathways. Besides, they have not explored
the outcome of probable drug targets to control energy metabolism
in cancer cells.

Here the proposed model is able to predict that deactivation of
glucose-6-phosphate dehydrogenase and ribose 5P isomerase may
slow down growth and proliferation of cancer cells. However,
glucose-6-phosphate dehydrogenase deactivation may not be able
to reduce fermentation and energy supply in malignant cells. On
the other hand, though ribose 5P isomerase deactivation may inhi-
bit cell fermentation, it may not get success to stop energy supply
in mammalian cancer cells. In this context, deactivation of transke-
tolase and glucose-6-phosphate isomerase may be considered as
potential drug targets to resist cell growth, fermentation and pro-
liferation as well as energy supply in human cancer cells. Activa-
tion of pyruvate kinase (M2 isoform) may also reduce cancer
progression in terms of cell growth, proliferation and fermentation.
Besides, it may fail to decrease ATP production in tumor cells.
However, deactivation of pyruvate kinase may be a poor choice
as a drug target for cancer therapy.
480
In summary, the proposed novel model can tackle three time-
scale nature of any integrated biochemical pathway comprising
metabolic, signaling and gene regulatory networks. Subsequently,
it can capture the nonlinear transient dynamics of the integrated
network of both normal and perturbed human cells. This has been
validated appropriately by some other methods/results [70–72,66–
69]. Moreover, using proposed GA controller, effects of drug targets
on diseased cells have been explored and analyzed. Thus, it can
help to find out a novel therapeutic goal for complex diseases, such
as cancer and type 2 diabetes.
C and G Number of chromosomes and generations respectively.
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2. Method

Here, we describe the proposed methodology for developing the
model that will mimic the behavior of an integrated pathway sys-
tem. The methodology involves six steps. At first, timescales of
metabolic, signaling and gene regulatory networks have been
selected, and the basic dynamics of the integrated pathway system
has been described. Then, we have formulated the state equations
for the integrated pathway. In the third step, an appropriate MIMO
plant has been developed by tuning its parameters. Subsequently,
training dataset has been generated from the appropriately per-
turbed MIMO plant/system. Thereafter, SVR model is developed
to approximate the MIMO plant. Finally, GA controller is applied
on the plant as a model predictive controller to capture nonlinear
transient cellular dynamics. Fig. 2 depicts the flowchart of the
entire methodology. Here we have considered central carbon
metabolism related metabolic (glycolysis, TCA cycle and pentose
phosphate pathways as well as FFA synthesis/consumption), sig-
naling and gene regulatory networks throughout the entire
methodology. All the mathematical symbols used in this article
are defined in Table 1. However, each of these symbols has again
been described whenever it appears first.

2.1. Selection of three timescales and the basic dynamics of an
integrated pathway system

In an integrated biochemical pathway system, involving meta-
bolic, signaling and gene regulatory networks, the rate of a meta-
bolic reaction is controlled by an enzyme/protein, which is
originated from an expressed gene participating in a gene regula-
tory network. The expression of this gene is in turn regulated by
one or more transcription factors (proteins) which are expressed/
activated by signaling molecules in a cascade of signal transduction
pathway.

Let xi be the expression level of ith ði ¼ 1;2; . . . ; pÞ gene generat-

ing ith enzyme involved in a certain metabolic pathway. Similarly,

let yj be the expression level of jth ðj ¼ 1;2; . . . ; sÞ protein/signaling
molecule, involved in a signal transduction pathway. Let zk be the

concentration of kth ðk ¼ 1;2; . . . ;mÞ metabolite involved in the
metabolic pathway under consideration. Besides, there are c exter-
nal inputs ul ðl ¼ 1;2; . . . ; cÞ applied to the system, depicting per-
turbation from environment and other pathways to the current
integrated pathway system. The terms x; y; z and u are p; s;m and
c dimensional vectors, respectively, for the pathway system.

Thus the proposed nonlinear state space model for the inte-
grated pathway can be defined as

_x ¼ fðx; y; z;uÞ ð1Þ
_y ¼ gðx; y; z;uÞ ð2Þ
Fig. 3. Comparison of kinetic parameter values considered in the present article
with those estimated by the method of Lillacci et al. [70]. Here first 22 kinetic
parameters represent glycolytic Michaelis Menten constants, whereas last 13
kinetic parameters correspond to glycolytic kinetic rate constants.
_z ¼ hðx; y; z;uÞ ð3Þ
Here fð:Þ; gð:Þ and hð:Þ represent activities corresponding to

gene regulatory, signaling and metabolic networks. The time (t)
derivatives of x; y and z are represented by _x; _y and _z respectively.
State variable x is slow, whereas y and z are fast and ultrafast state
variables respectively. The symbols x1 and x2 correspond to slow
to fast and fast to ultrafast timescale ratios. Here, x1 and x2 are
small positive quantities. According to previous investigation
[21], proteins in Escherichia coli take minutes to express. It will
be longer in the case of mammalian systems. However, metabolite
concentrations can alter in seconds [22]. On the other hand, gene
regulatory events take hours [20]. Based on these assumptions,
we have considered x1 ¼ 1=60 and x2 ¼ 1=60, and thereby the
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stretched timescales as s1 = t=x1 and s2 = s1=x2 = t=ðx1x2Þ. Thus
the timescales for gene regulatory, signaling and metabolic net-
works are t; s1 and s2 respectively.

We now obtain the fast (ĝð:Þ) and ultrafast (ĥð:Þ) subsystems
corresponding to signaling and metabolic networks from the top
down timescale decomposition [73,74] as

x1 _y ¼ dy
ds1

¼ ĝðx; yðs1Þ; zðs1Þ;uÞ ð4Þ

and

x1x2 _z ¼ x2
dz
ds1

¼ ĥðx; yðs1Þ; zðs1Þ;uÞ ð5Þ

Here, yðs1Þ and zðs1Þ are instantaneous y and z-values, respec-
tively, in s1 timescale. Moreover, considering x1 ! 0, if we solve
Eqs. (4) and (5) algebraically for y and z, we get

y ¼ Gðx;uÞ ð6Þ
and

z ¼ Hðx;uÞ ð7Þ
Two vector functions Gðx;uÞ and Hðx;u) represent the quasi-

steady state equilibrium [75] of the fast (ĝð:Þ) and ultrafast (ĥð:Þ)
subsystems. Moreover, being a slow state variable in timescale
t; x does not change significantly with respect to fast timescale
s1. Thus, the reduced slow gene regulatory subsystem can be
defined using top-down timescale decomposition [73,74] as

_x ¼ fðx;Gðx;uÞ;Hðx;uÞ;uÞ ð8Þ
Again, the fast and ultrafast subsystems corresponding to sig-

naling and metabolic networks can be treated as a two timescale
system. The ultrafast subsystem corresponding to metabolic net-

work (^̂hð:Þ) is given by



Fig. 4. Estimated states have been overlapped with observed true values of the corresponding states during the estimation of 35 kinetic parameters using hybrid extended
Kalman filtering based method [70].
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x2
dz
ds1

¼ dz
ds2

¼ ^̂hðx; y; zðs2Þ;uÞ ð9Þ

Now, if we solve Eq. (9) algebraically considering x2 ! 0, we
can get

0 ¼ ^̂hðx; y; z;uÞ ) z ¼ H0ðx; yðs1Þ;uÞ ð10Þ
The termH0(x; y(s1),u) represents the quasi steady state equilib-

rium [75] of the ultrafast subsystem ^̂hð:Þ. Here, x and y do not
change appreciably with respect to s2. Thus, the reduced fast sig-
naling network can be defined as
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dy
ds1

¼ ĝðx; yðs1Þ;H0ðx; yðs1Þ;uÞ;uÞ ð11Þ

Thus,

_x ¼ fðx; y; z;uÞ ð12Þ

_y ¼ 1
x1

ĝðx; y; z;uÞ ð13Þ

_z ¼ 1
x1x2

^̂hðx; y; z;uÞ ð14Þ



Table 3
Illustrating significant regulations of different metabolites, transcription factors and
genes in mammalian cancel cells compared to that in normal ones.

Network
type

Name of the
molecules

Significant
observation in cancer
cells compared to
normal ones

References for
validation

Metabolic ATP Over production [46–49]
Ribose-5P Over production [51–53]
Lactate Over production [109,25,105,107]
GA3P Over production [46–49]
Pyruvate Over production [46–49]
Glucose
consumption/
G6P production

Over production [46,107,105]

Glucose
production

Less production [46]

PEP Less production [46–49]
Fructose 6P Less production [96]
NADH Less production [50,103]

Signaling HIF-1a Over expressed [28,54]
P13K Over expressed [31–33,55]
AKT Over expressed [31–33,56,57]
mTOR Over expressed [31–33,55]
MYC Over expressed [34,35,58,59,65]
ERK Over expressed [38–40]
STAT3 Over expressed [41,42,60–62]
NF-jB Over expressed [39,43,44,63]
p53 Under expressed [36]
PHD Under expressed [29,30]

Gene
regulatory

HK Over expressed [27,45,106]

Glut 1 Over expressed [27,45,106]
LDH Over expressed [109,25,105]
PFK 1 Over expressed [46,104]
PFK 2 Over expressed [46]
Glyceraldehyde-
3-phosphate
dehydrogenase

Over expressed [46]

Pyruvate kinase Switching
alternatively from low
to high and vice versa

[47–49,104,64]

Glucose-6-
phosphate
dehydrogenase

Over expressed [51–53]

Phospho-gluco
dehydrogenase

Over expressed [51–53]

Ribose 5P
isomerase

Over expressed [51–53]

Transketolase Over expressed [51–53]
Transaldolase Over expressed [51–53]

Table 2
Test accuracy of SVR model with different train to test data ratio.

Serial Number Train:test Test accuracy

1 90:10 99.90%
2 80:20 99.50%
3 70:30 99.50%
4 65:35 99.40%
5 60:40 95.25%
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Here we can determine the value of u, in terms of x; y and z,
considering the equilibrium state of the system.
2.2. Formulation of state equations of integrated biochemical
pathways

Here we have shown how state equations for gene regulatory,
signaling and metabolic networks are formed. Let a gene xi be
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expressed by s0 (1 6 s0 < s) transcription factors yj0 (j0 ¼ 1; . . . ; s0)
included in a signaling pathway. Thus, _xi can be written as

_xi ¼
ei þ bi � di; if

Ys0

j0¼1

yj0 > 0

bi � di; if
Ys0

j0¼1

yj0 ¼ 0

8>>>>><
>>>>>:

ð15Þ

The terms ei and bi represent the expression and basal produc-
tion (of mRNA) rates [76] of xi respectively, whereas di denotes the
decay rate. The expression rate ei of a particular gene xi depends on
the binding of many required transcription factors. Absence of any
of those transcription factors, the expression of that particular gene
is driven by its basal production and decay rate only. Now, ei can be
defined as

ei ¼
Ys0

j0¼1

K
ðgÞ
ij0 yj0 ð16Þ

where K
ðgÞ
ij0 is the binding rate constant for j0th transcription factor

required to express the gene xi.
Let us consider m0 (1 6 m0 < m) metabolites zk and c0

(1 6 c0 < c) external inputs ul acting as the cofactors [77] to acti-

vate an ith gene and
Qs0

j0¼1yj0 > 0. As a result, the expression rate ei
of the gene xi is enhanced by a multiplication factor. Thus, _xi can
be rewritten as

_xi ¼
Ym0

k¼1

ð1þF
ðgÞ
ik zkÞ

Yc0

l¼1

ð1þF
ðgÞ
il ulÞ

Ys0

j0¼1

K
ðgÞ
ij0 yj0 þ bi � di ð17Þ

Here F
ðgÞ
ik and F

ðgÞ
il represent the constants corresponding to zk

and ul to take care of the relative strength of binding with ith gene
[13,78,14]. We have considered binding constants to be in ½0;1Þ.
Zero binding constant signifies no binding corresponding to a
molecule. Whereas, higher value of a binding constant indicates
stronger binding corresponding to the molecule. On the other
hand, if m0 metabolites zk; s00 (1 6 s00 < s) signaling molecules/tran-
scription factors yj00 (j

00 – j0; j00 ¼ 1; . . . ; s00) and c0 external inputs ul

slow down the activation of the ith gene and
Qs0

1yj0 > 0, the expres-
sion rate ei is decreased by a fraction. Thus, Eq. (17) can be modi-
fied as

_xi ¼

Ys0

j0¼1

K
ðgÞ
ij0 yj0 þbi

Ym0

k¼1

ð1þF
ðgÞ
ik

zkÞ
Yc0

l¼1

ð1þF
ðgÞ
il

ulÞ
Ys00

j00¼1

ð1þF
ðgÞ
ij00 yj00 Þ

� di

ð0 < F
ðgÞ
ik zk;F

ðgÞ
il ul;F

ðgÞ
ij00 yj00 < 1Þ

ð18Þ

The term F
ðgÞ
ij00 represent the binding constant corresponding to

yj00 with ith gene.
A signal transduction pathway can be defined by its interaction

matrix NðsÞ which contains the information about interactions
among the signaling molecules including transcription factors. If
there are q interactions with initial rate vector rðsÞ (in timescale
s1) of dimension q involving s signaling molecules including tran-
scription factors, the order of NðsÞ becomes s� q. It may be men-
tioned here that rðsÞ is analogous to a flux vector in a metabolic

pathway. The ðj;rÞth element of NðsÞ becomes �1 if jth signaling

molecule participates in rth interaction. If jth signaling molecule



Fig. 5. Illustrating the flowchart showing the functionalities of two Algorithms S1 and S2 for designing GA-based controller.
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is produced/activated by rth interaction, the ðj;rÞth element of NðsÞ

becomes þ1.
Let a signaling molecule yj be activated by certain signaling

molecules yj0 (j0 – j) in a signaling interaction with initial rate

rðsÞr ; rth (r ¼ 1; . . . ; q) element of signaling interaction rate vector

rðsÞ. Consequently, the initial interaction rate rðsÞr depends on the
binding of such signaling molecules activating yj. If some metabo-

lites zk, signaling molecules yj00 (j
00 – j0) and external inputs ul slow

down the activation of yj, a certain fraction can be multiplied with
the initial interaction rate. Thus, we can write using modified mass
action law [78] as

rðsÞr ¼

Ys0

j0¼1

K
ðsÞ
jj0 yj0–j

Ym0

k¼1

ð1þF
ðsÞ
jk zkÞ

Yc0

l¼1

ð1þF
ðsÞ
jl ulÞ

Ys00

j00¼1

ð1þF
ðsÞ
jj00 yj00 Þ
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where r ¼ rðjÞ is the index for the reaction through which yj is acti-

vated. The termK
ðsÞ
jj0 represents the strength of binding of yj0 with yj,

whereas F
ðsÞ
jk ; F

ðsÞ
jl and F

ðsÞ
jj00 represent binding constants corre-

sponding to zk; ul and yj00 for the interaction activating yj. Again, if
some metabolites zk and external inputs ul accelerate the activation
of yj, the initial interaction rate is increased by a multiplication fac-
tor. Thus, Eq. (19) becomes

rðsÞr ¼
Ym0

k¼1

ð1þF
ðsÞ
jk zkÞ

Yc0

l¼1

ð1þF
ðsÞ
jl ulÞ

Ys0

j0¼1

K
ðsÞ
jj0 yj0–j ð20Þ

Thus, based on Eq. (13), the differential equation representing
the dynamics of the signaling network can be rewritten as

_y ¼ 1
x1

ðNðsÞrðsÞÞ ð21Þ



Fig. 6. Validation of the proposed model during hypoxia through CE-MS measurement and simulation in human erythrocytes (Kinoshita et al. [71]).
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Similar to the signal transduction pathway, a specific stoi-
chiometry is also associated with a metabolic pathway. Thus,
we can consider a stoichiometric matrix NðmÞ of order m� n
for the metabolic network under consideration, where m is num-
ber of metabolites participating in n metabolic reactions in the
network with metabolic flux vector rðmÞ (in timescale s2) of

dimension n. The ðk;qÞth element of NðmÞ becomes þ1 if kth

metabolite is produced through qth reaction. On the other hand,

if kth metabolite is consumed in qth reaction, the ðk;qÞth element
of NðmÞ becomes �1.
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Let us consider a metabolite zk be produced by m0 (1 6 m0 < m)
substrates zk0 (k

0 – k; k0 ¼ 1; . . . ;m0) in ametabolic reactionwith ini-

tial rate rðmÞ
q ; qth (q ¼ 1; . . . ; n) element of rðmÞ. This reaction is cat-

alyzed by an enzyme/protein Eq (representing the expression
level) produced froman expressed gene. Furthermore, let us assume
that m00 (1 6 m00 < m) metabolites zk00 (k

00 – k0; k00 ¼ 1; . . . ;m00) and c0

external inputs ul accelerate (noncompetitively or allosterically)

the production of zk. Thus, the initial reaction rate rðmÞ
q is increased

by a multiplication factor. Then, we can write using modified
Michaelis Menten kinetic equation [13,78,14] as



Fig. 7. Validation of the proposed model during insulin deprivation through in vitro observations from cultured human sertoli cells (Oliveira et al. [72]).
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rðmÞ
q ¼

Ym00

k00¼1

ð1þF
ðmÞ
kk00 zk00 Þ

Yc0

l¼1

ð1þF
ðmÞ
kl ulÞKðmÞ

q Eq

Ym0

k0¼1

zk0

KMðmÞ
q þ ð

Ym0

k0¼1

zk0 Þ
ð22Þ

where q ¼ qðkÞ (could be one-to-many mapping) is the index for
the reaction through which zk is produced. The terms KðmÞ

q and

KMðmÞ
q represent the kinetic rate constant and Michaelis Menten

constant respectively. Besides, the terms F
ðmÞ
kk00 and F

ðmÞ
kl , for a kth

metabolite, represent feedback constants corresponding to zk00 and
ul. Again, if m00 metabolites zk00 and c0 external inputs ul slow down
(noncompetitively or allosterically) the production of zk, the initial

reaction rate rðmÞ
q is decreased by a fraction. Thus, we can modify

Eq. (22) as

rðmÞ
q ¼

KðmÞ
q Eq

Ym0

k0¼1

zk0

ðKMðmÞ
q þ ð

Ym0

k0¼1

zk0 ÞÞ
Ym00

k00¼1

ð1þF
ðmÞ
kk00 zk00 Þ

Yc0

l¼1

ð1þF
ðmÞ
kl ulÞ

ð23Þ

Now, based on Eq. 14, the differential equation representing the
dynamics of the metabolic network can be rewritten as
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_z ¼ 1
x1x2

ðNðmÞrðmÞÞ ð24Þ
2.3. Design of a MIMO plant

The initial concentrations/expressions of metabolites, signaling
molecules and genes have been considered in (0, 1) randomly
(Supplementary Table S9). Moreover, the kinetic parameter values
have also been initialized randomly within the same interval (Sup-
plementary Tables S12–S15). Based on these initial values, we have
simulated the proposed three timescale state space model of an
integrated biochemical pathway by solving ODEs in Eqs. 17 (or
18), 21 and 24 with proper timescale selection, and solved for u
based on x; y and z values under equilibrium condition. If the
model fails to mimic the known behavioral pattern of the inte-
grated biochemical pathway under consideration, we have altered
slightly the initial values of kinetic parameters in (0, 1) with the
help of previous knowledgebase by trial and error until satisfactory
known behavior is captured. Once the proposed model has mim-
icked the known nonlinear dynamics of the integrated biochemical
pathway (as described in SubSection 3.1), we have considered it as
normal MIMO plant with the selected values of initial concentra-
tions/expressions and kinetic parameters. This MIMO plant mimics
the normal behavior of the concerned integrated pathway.



Fig. 8. Alterations of (A) ATP, (B) fructose 6P, (C) glyceraldehyde-3P (GA3P), (D) ribose 5P, (E) PEP, and (F) Pyruvate in the integrated biochemical pathway related to carbon
metabolism in mammalian cancer cells compared to that in normal ones.
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In this context, we have checked whether trial and error based
parameter estimation resembles other previous method. For this
purpose, we have compared the values of 35 kinetic parameters
considered here with those estimated by a method based on hybrid
extended Kalman filtering [70]. Fig. 3 depicts that the parameter
values in (0, 1) considered in this article are quite similar with
those estimated by hybrid extended Kalman filtering based
method [70]. To estimate these 35 kinetic parameter values in (0,
1) using hybrid extended Kalman filtering, time dependent true
values in (0, 1) of some observed states need to be provided. Con-
sequently, we have used capillary electrophoresis mass spectrom-
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etry (CE-MS) measured concentration values (normalized in (0, 1))
of eight metabolites in hypoxia-induced metabolic alterations in
human erythrocytes [71] as observed states. Here we have exter-
nally applied appropriate signal in (0, 1) for corresponding enzyme
activities related to hypoxia in human erythrocytes (as described
in SubSection 3.1). During the estimation of these 35 parameter
values using hybrid extended Kalman filtering, we have noticed
that estimated states have been overlapped with observed states
as depicted in Fig. 4. However, we could not verify the other
parameter values using this way due to lack of required observed
states.



Fig. 9. Alterations of (A) PFK2, (B) transaldolase, (C) ribose 5P isomerase, (D) glucose-6-phosphate dehydrogenase, (E) PHD, and (F) ERK in the integrated biochemical
pathway related to carbon metabolism in mammalian cancer cells compared to that in normal ones.
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Now, we perturb the normal MIMO plant by knocking out genes
(in this study, genes producing the enzymes pyruvate dehydroge-
nase and pyruvate carboxylase in carbon metabolism) to capture
the nonlinear dynamics associated with a particular biological phe-
nomenon (in this study, ‘‘Warburg effect” [24,25]). As a result, the
normal plant becomes the desired perturbed MIMO plant under
consideration.

2.4. Generation of training dataset

So far we have developed the desired perturbed MIMO plant
with consideration of appropriate three timescales. It does not
488
reflect the mutated regulations of a mammalian cancer cell. How-
ever, it contains the perturbations associated with ‘‘Warburg
effect”. In order to capture the altered dynamics of a cancer cell,
we need a model predictive controller to be applied on an approx-
imate model corresponding to theMIMO plant under consideration
[79]. We are going to develop such an approximate model using
support vector regression. Thus, the past input and output data sim-
ulated from the MIMO plant under investigation are collected to
serve as a training dataset for the SVR-based approximation. Here
we have found that consideration of s (=19) number of past inputs
and corresponding outputs along with current input (at time h),
from the simulated data as an input sample of SVR, and current out-



Fig. 10. It depicts: (A) Higher expression level of HIF-1a measured in human hepatocellular carcinoma (HCC) specimens compared to the non-cancerous tissue specimens
[54], (B) Similar behavior of HIF-1a expression shown by our simulation results, (C) Lower concentration of NADH in cancer cells compared to normar ones as per the in vivo/
in vitro experiment performed by Sumi et al. [103], (D) Similar behavior of NADH depicted by our computational results.
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put (at time h) as corresponding supervised signal of the regression
model, has generated maximum test accuracy (99.4%) with mean
squared error (MSE) threshold of 0.05. Now, we are going to discuss
how such training data have been generated.

Let us consider the MIMO plant under consideration takes an

instance hx; y; z;uiðinÞðh�sÞ as input at time ðh� sÞ and generate corre-

sponding output instance hx; y; ziðoutÞðh�sÞ. Using the output instance

hx; y; ziðoutÞðh�sÞ at time ðh� sÞ, a new instance of u has been deter-
mined, followed by formation of the new input instance

hx; y; z;uiðinÞðh�ðs�1ÞÞ for the MIMO plant at time ðh� ðs� 1ÞÞ. Like-
wise, we have generated 19 (i.e., s ¼ 19) past inputs and outputs

to form a current input instance hx; y; z;uiðinÞh and corresponding

output instance hx; y; ziðoutÞh at time h. In general, the total number

of elements in hx; y; z;uiðinÞ is ðpþ sþmþ cÞ, while that in

hx; y; ziðoutÞ is ðpþ sþmÞ. Here we have considered
p ¼ 37; s ¼ 29; m ¼ 41 and c ¼ 27 for carbon metabolic pathway
obtained from KEGG.
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The output of the MIMO plant depends not only on the cur-
rent input but also on its past inputs and outputs. We have,
therefore, considered an input vector v to be applied to SVR
model as.

ðhx; y; z;uiðinÞðh�19Þ hx; y; ziðoutÞðh�19Þ hx; y; z;uiðinÞðh�18Þ hx; y; ziðoutÞðh�18Þ . . . hx; y;
z;uiðinÞh Þ.

Thus, the number of inputs to SVR model becomes
ð19� ð2� ðpþ sþmÞ þ cÞ þ ðpþ sþmþ cÞÞ ¼ 4713, which is the

dimension (d) of v. Now, the current output instance hx; y; ziðoutÞh

has been attached to v, as its supervised signal, to form one sample
to be included in a dataset D. If there are / such samples in D, let
us call it as D/. Here we have considered / ¼ 60000. We have
selected 65% data fromD/ as training data and remaining 35% data
as test data to design the SVR model to be discussed in the follow-
ing section. During training of the SVR model, we aim to utilize a
minimum number of a training pattern in order to improve gener-
alization performance. To assess the best possible ratio between
train and test data, we have observed the performance with differ-
ent ratios. The accuracy of such cases is given in Table 2. Here, it



Fig. 11. (A) Mulrooney et al. [63] has depicted that relative expression of NF-jB significantly increases in cancer (CT-2A astrocytoma) compared to normal ones. (B) Our
computational results show similar behavior of NF-jB in cancer cells compared to that in normal ones. (C) Higher expression of PI3K has been captured in the in vivo/in vitro
experiment performed by Zhang et al. [55] in the case of colon cancer as compared to the normal tissue samples, (D) Similar difference in the expression levels of PI3K in
cancer and normal cells have been captured by the proposed computational model, (E) mTOR expression is higher in colon cancer compared to normal one as per the in vivo/
in vitro experiment performed by Zhang et al. [55], and (F) Similar altered behavior of mTOR can be found in our computational results.
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can be concluded that the train to test ratio as 65:35 may be the
best trade-off between the number of patterns used for training
and the test accuracy. Thus we have considered train to test data
ratio accordingly.

2.5. Design of SVR model

From control theoretic point of view, it is difficult to apply
online optimization on actual nonlinear MIMO plant with small
sampling periods [80,81]. Moreover, due to large number of vari-
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ables involved in an optimization problem, and requirement of
high sampling rate, it may not be possible to manage online opti-
mization. However, it will be easier if we can provide a model that
suitably approximates the nonlinear dynamics of actual MIMO
plant. We also think that such implementation may be relevant
for future study to determine drug dosages in real time. Even this
kind of modelling will be effective in future when actual input–
output mapping of the MIMO plant is unknown, whereas the
inputs and corresponding outputs with time are known. The train-
ing dataset D/ helps in developing the approximate MIMO SVR



Fig. 12. (A) Immunohistochemical scores measured by Mao et al. [56] has depicted that AKT expression is significantly higher in pancreatic cancer (91 cases) than that in
normal pancreas (51 cases). Besides, Roy et al. [57] has shown the deferentially expressed AKT isoforms in normal and malignant oral tissues through immunohistochemical
analysis of the human samples, (B) Similar altered behavior of AKT has been shown by the computational results generated from the proposed model.
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model to mimic the nonlinear dynamics of the MIMO plant/system
under consideration. In this context, it should be mentioned that
according to some recent studies [82–84], SVR has better perfor-
mance accuracy than an artificial neural network (ANN) (particu-
larly, multi-layer perceptron (MLP)) and genetic programming
(GP). In general, the computational complexity can be evaluated
depending mainly on training time. SVR depends on solving a
quadratic problem, where a vector and bias need to be calculated.
Even during training, only support vectors are selected regarding
the kernel. Besides, SVR considers that the number of support vec-
tors is governed by very limited number of training samples. In
addition, most of the kernels compute simple dot product. Even
SVR may act better than ANN as per the consistency with physical
behavior [85]. Moreover, it has been claimed that the SVR tech-
nique not only achieves high consistency but also shows a greater
degree of generalization to unseen test data compared to some
other methods [86]. Besides, a less number of parameters involved
in the training phase results in less computation time than that of
an ANN [87].

Now, we are going to discuss how a MIMO SVR model can be
designed using support vector regression [88,89].

An approximate MIMO SVR model has been developed by com-
bining multiple input single output (MISO) SVR models for each lth

(1 6 l 6 ðpþ sþmÞ) element of actual output hx; y; ziðoutÞh . Let ath

input be va (1 6 a 6 /) of dimension d. For an ath input, the MISO

SVR model for lth element of hx; y; ziðoutÞh in a projected feature
space F of dimension d0 (d0

> d) can be written as
ĉl ¼ wT
ldðvaÞ þ bl ð25Þ

Here ĉl represents lth element of predicted output hx̂; ŷ; ẑiðoutÞh .
The term wl represents a vector perpendicular to the hyperplane
to be approximated for the regression problem under considera-
tion in the projected feature space F corresponding to lth element

of hx; y; ziðoutÞh . In other words, wl determines the orientation of the
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hyperplane in F. On the other hand, dð:Þ is a mapping from d dimen-
sional input space to d0 dimensional feature space F. The bias term
is represented by bl determining the position of the hyperplane in

F corresponding to lth element of hx; y; ziðoutÞh .
Based on Vapnik’s e-insensitive loss function, the convex opti-

mization problem corresponding to Eq. (25) can be formulated as
[90]

min
wl ;bl ;u;u�

Pl ¼ 1
2
kwlk2 þ C

X/

a¼1

ðua þu�
aÞ ð26Þ

subject to:

cl �wT
ldðvaÞ � bl 6 el þua; for a ¼ 1; � � � ;/

wl; dðvaÞ þ bl � cl 6 el þu�
a; for a ¼ 1; � � � ;/

ua;u�
a P 0; for a ¼ 1; � � � ;/

Here, the upper limit of tolerable error is a very small positive

real quantity el for lth element of hx; y; ziðoutÞh , whereas ua and u�
a

are slack variables. The term cl represents the actual value of lth

element of hx; y; ziðoutÞh generated by the MIMO plant taking

hx; y; z;uiðinÞha (extracted from va) as an ath input. The trade-off
between flatness of ĉl and tolerance level of deviations (> el) is
represented by the constant C (> 0).

Based on the notion of Lagrange multipliers and Karush Kuhn
Tucker (KKT) condition [91], the dual corresponding to Eq. (26),
in the form of a quadratic programming problem with incorpora-
tion of kernel function, can be written as

min
f;f�

Ql ¼ 1
2

X/
a¼1

X/

b¼1

ðfa � f�aÞðfb � f�bÞjðva;vbÞ þ el
X/
a¼1

ðfa þ f�aÞ

�
X/
a¼1

clðfa � f�aÞ ð27Þ

subject to:



Fig. 13. (A) & (B) depict that the relative m-RNA level protein expression [58,59] of MYC is significantly higher in cancer cell than normal ones. (C) depicts a similar behavior
of MYC generated by the proposed computational model.
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0 6 fa; f
�
a 6 C;

X/

a¼1

ðfa � f�aÞ ¼ 0; for a ¼ 1; � � � ;/

Here the term jðva;vbÞ denotes the kernel function. Besides,
fa; f

�
a; fb and f�b stand for Lagrange multipliers. The solution of

Eq. (27) provides the optimum values of fa; f
�
a; fb and f�b. Moreover,

wl �P/
b¼1ðfb � f�bÞdðvbÞ ¼ 0 must hold for optimality. Thus, for an

ath input, the support vector kernel expansion of Eq. (25) can be
obtained from
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ĉl ¼
X
b

abjðva;vbÞ þ bl ð28Þ

The summation has been carried out over all the support vec-
tors vb. Here ab ¼ ðfb � f�bÞ. An input vector vb corresponding to a
non-zero ab is called a support vector. The value of bl is deter-
mined when jcl � ĉlj ¼ el and 0 6 fb � f�b 6 C hold for each sup-

port vector vb. Thus, Eq. (28) provides the required lth element

of predicted output hx̂; ŷ; ẑiðoutÞh , taking va as input, corresponding

to lth element of actual output hx; y; ziðoutÞh .



Fig. 14. Activities of (A) PFK1 [104] and (C) pyruvate kinase in breast cancer and paracancer tissues, expressed as units per gram of protein (U/gprot) [104]. Such altered
behaviors of (B) PFK1 and (D) pyruvate kinase have been captured by the proposed computational model. The previous in vivo/ in vitro studies have illustrated that (E) STAT3
is over expressed in cancer cells, such as breast cancer [60], gastric cancer [61] and colon cancer [62] cells compared to normal ones. Similar observation regarding (F) STAT3
can be found in our computational results.
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Here, we have experimentally chosen radial basis kernel func-
tion with kernel coefficient as 10, regularization parameter as
100 and el=0.0025 to achieve maximum test accuracy.

2.6. Design of a controller using a genetic algorithm (GA)

In this study, we have applied a GA [89] on the SVR model as a
model predictive controller to control some outputs of the MIMO
plant at specific values. There are many reasons behind choosing
GA as an optimization technique. Firstly, a genetic algorithm
(GA) [92,93] is a stochastic process. Secondly, it is a vigorous search
493
technique, which does not require any information about the
structure of the function to be optimized. Such a situation is very
common to address a biological system, particularly during muta-
tion. Thirdly, GA is very efficient in handling highly complicated
non-linear problems, such as an integrated biochemical pathway
system. Besides, due to its inherent parallelism, GA can easily be
implemented in a distributed environment. Such a characteristic
is very much helpful in handling a large number of parameters/
variables in a biological system. Fourthly, GA may be able to avoid
being trapped in a locally optimal solution, unlike traditional
methods. Besides, GA can efficiently be applied to different large



Fig. 15. Alterations of (A) glyceraldehyde-3-phosphate dehydrogenase, (B) p53, (C) phospho-gluco dehydrogenase, (D) transketolase, and (E) glucose production in the
integrated biochemical pathway related to carbon metabolism in mammalian cancer cells compared to that in normal ones.
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scale real-world problems with the requirement of multi-objective
optimization, such as the particular problem addressed in this
article.

Such a GA based control mechanism has been depicted in Fig. 2
(Step 6). Here the error between SVR generated predicted output
and (user-specified) reference output drives the GA based con-
troller to produce a controlled input based on some cost functions
and constraints. The integrated biochemical network (i.e., the
MIMO plant) accepts the controlled input to compute actual out-
put. The GA controller has been developed using two algorithms
(Supplementary Algorithms S1 and S2). Supplementary Algorithm
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S1 deals with the working principles of a GA controller. On the
other hand, the Supplementary Algorithm S2 drives some outputs
of the MIMO plant to target values using Supplementary Algorithm
S1 iteratively. Now, we are going to discuss Supplementary Algo-
rithms S1 and S2 in brief. Here, Fig. 5 depicts the flowchart indicat-
ing the role and sequence of two Algorithms S1 and S2 for
designing GA-based controller.

� Supplementary Algorithm S1 shows how proposed GA con-

troller works. Here the GA controller accepts hx; y; z;uiðinÞcurrent

and vcurrent as input. At first, it generates C chromosomes (set



Fig. 16. Li et al. [105] has shown that (A) LDH has significantly been up regulated in Dppa4 overexpressed cancer cell, (C) Expression of hexokinase (HK) mRNA levels have
been found higher in cancer [106] compared to normal liver tissue, (E) Higher glut1 mRNA levels has been found as 92-fold higher in Meta specimens [106] compared to
normal liver tissue. Similar altered behaviors of (B) LDH, (D) HK and (F) glut1 have been found in our computational results.
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of possible solutions) randomly, forming a population. How-

ever, it creates chromosomes around hx; y; z;uiðinÞcurrent after get-
ting an optimal solution. For each generation, the fitness value
of each chromosome has been computed. Thereafter, the chro-
mosomes are modified by selection, crossover and mutation.
In this context, a set of chromosomes is selected according to
fitness values greater than a weight value. Subsequently, the
crossover is performed by swapping a part of chromosome with
corresponding part of another chromosome according to a
crossover index. In this context, it should be mentioned that
as the size of the output vector is 107 (=ðpþ sþmÞ as men-
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tioned earlier), we have considered crossover index as 53. This
index is nearly half of the size of the output vector. It is followed
by mutation to modify chromosomes with mutation probability
0.7. Here, we have used uniform crossover [94,95], i.e., multi-
point crossover, to reduce the mutation bias. These steps are
carried out for G generations until the fittest chromosome,
whose fitness value is greater than a predefined threshold

value, has been evolved as an optimal solution hx; y; z;uiðinÞnew.
� Supplementary Algorithm S2 depicts how some outputs of the
MIMO plant are controlled to get desired responses with repet-
itive use of GA controller (Supplementary Algorithm S1). The



Fig. 17. (A) Higher glucose uptake has been measured by Lim et al. [107] in B7-H3 knockdown cells grown in normoxic or perturbed conditions (hypoxia) for 24 h, (B) Li et al.
[105] has shown that glucose uptake increases significantly in Dppa4 overexpressed cancer cell, and (C) Our computational results depict similar behavior of glucose uptake
in cancer cells compared to that in normal and perturbed ones.
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execution of Supplementary Algorithm S2 needs the trained
SVR model, actual MIMO plant, initial SVR input vcurrent and ref-

erence output hx; y; ziðoutÞreference. As per aforesaid discussion, the GA

controller receives hx; y; z;uiðinÞcurrent (extracted from vcurrent) and

vcurrent itself to compute an optimal solution hx; y; z;uiðinÞnew. How-
ever, during iteration > 1 of Supplementary Algorithm S2, if the
fitness value of an optimal solution (chromosome) becomes less
than that of previous iteration, the GA controller tries again to

find a better optimal solution using the same hx; y; z;uiðinÞcurrent .

After obtaining an optimal solution hx; y; z;uiðinÞnew, the initial
SVR input has been updated to vnew. Subsequently, we have

computed predicted output hx̂; ŷ; ẑiðoutÞ and actual output

hx; y; ziðoutÞ from the SVR model and MIMO plant respectively,

using vnew and hx; y; z;uiðinÞnew. Here we have considered the refer-

ence output hx; y; ziðoutÞreference containing target values for some
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specific elements (for example, 0.95 for ATP and 0.7 for ribose
5P), whereas others remain at the same values as computed

in hx; y; ziðoutÞ. We have finally obtained the final solution

hx; y; z;uiðinÞfinal when the L1-norm of the difference between

hx; y; ziðoutÞreference and hx; y; ziðoutÞ becomes less than a predefined
threshold value after several iterations.

Finally, it should be mentioned that the average value of G is 10
for convergence of Algorithm S1, whereas 30 iterations on average
are needed for Algorithm S2 to converge.
3. Results and discussion

This section has been divided into three subsections. Firstly, we
are going to discuss about MIMO plant validation through analysis



Fig. 18. (A) Higher Lactate production has been captured by the measurement of Lim et al. [107] in B7-H3 knockdown cells grown in normoxic or perturbed conditions
(hypoxia) for 24 h. (B) Higher lactate production has been shown by Li et al. [105] in Dppa4 overexpressed cancer cell, and (C) Similar altered behavior of lactate production
has been depicted by our computational results in cancer cells compared to that in normal and perturbed ones.
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of both normal and perturbed behavior of the integrated biochem-
ical pathways under consideration. Secondly, the altered behavior
of the integrated biochemical pathways in mammalian cancer cells
compared to normal ones will be discussed. Finally, the third sub-
section deals with the description of the effects of six possible drug
targets in mammalian cancer cells.
3.1. MIMO plant validation and comparison with other mathematical
prediction

Here, we have monitored the concentrations of key molecules
during simulation of the proposed three timescale state space
model for normal as well as perturbed integrated biochemical
pathways related to carbon metabolism. In normal scenario
(Fig. S2 in Supplementary material), both glucose consumption
and production increase. Glucose is broken down into glucose-6P
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(G6P). Subsequently, the energy in the form of ATP is consumed.
Thus, increasing glucose consumption signifies enhancement of
G6P production. The production of ribose 5P and NADPH increases
by utilizing higher amount of G6P through PPP. On the other hand,
slowing down glyceraldehyde-3P production indicates higher flux
through later phase of glycolysis by consuming higher amount of
glyceraldehyde-3P. Higher concentration of phosphoenolpyruvate
(PEP) supports our claim. Similarly, slowing down the production
of pyruvate and acetyl CoA indicates higher flux through TCA cycle
and fatty acid synthesis. Enhanced concentrations of oxaloacetate
(OAA), citrate and FFA are in conformity with our observation.
ATP production increases with higher flux through TCA cycle and
later phase of glycolysis. However, after a while ATP decreases
due to its higher consumption at early phase of glycolysis. Previous
investigations [11,96,97] validate the aforesaid behavior of the
proposed model under normal scenario.



Table 4
Illustrating the significance of certain rational drug targets in terms of management of energy and cell proliferation in mammalian cancer cells.

Drug target Energy (ATP)
production

Cell proliferation indicated by the
production of ribose 5P and
NADPH

Glucose
utilization

p53
expression

Glut1
expression

Remarks References
for
validation

Deactivation of pyruvate
kinase

Moderately
decreases

Higher production of ribose 5P
and NADPH continue

Significantly
increases

Significantly
decreases

No
significant
change

Probably not a good
choice

-

Deactivation of glucose-
6-phosphate
dehydrogenase

Minutely
increases

Both ribose 5P and NADPH
significantly decrease

Increases Significantly
increases

Decreases May be efficient to
reduce cell
proliferation

[113,111]

Deactivation of
transketolase

Moderately
decreases

Both ribose 5P and NADPH
significantly decrease

No
significant
change

Moderately
increases

Significantly
decreases

Probable significant [113–116]

Deactivation of ribose 5P
isomerase

No
significant
change

Both ribose 5P and NADPH
decrease

Moderately
decreases

Significantly
increases

Significantly
decreases

May be a good choice [117]

Deactivation of glucose-
6-phosphate
isomerase

Significantly
decreases

Both ribose 5P and NADPH
significantly decrease

Decreases Increases Decreases Probable effective
choice

[118]

Activation of pyruvate
kinase

Moderately
increases

Both ribose 5P and NADPH
significantly decrease

Moderately
decreases

Significantly
increases

Significantly
decreases

May be efficient to
reduce cancer
progression

[47]
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We have further compared the model with a previous simula-
tion result [71] for an environment in cancer cells, particularly,
hypoxia condition [98]. Here, we have perturbed the present model
to incorporate the mutation exhibiting hypoxia condition. More-
over, the simulation results have been compared with CE-MS mea-
surements during hypoxia in human erythrocytes [71]. As hypoxia
in human erythrocytes enhances the expression of certain gly-
colytic enzymes including hexokinase, aldolase and pyruvate
kinase [71], we have applied these enzyme expression values in
(0, 1) to the model following their activities as described in the pre-
vious investigation [71]. Fig. 6 depicts that our simulation results
almost follow not only the CE-MS measurements but also the sim-
ulation results obtained by the study [71] in response to the
enzyme activities due to hypoxia in human erythrocytes. We have
calculated mean squared error (MSE) between our simulated con-
centrations of eight metabolites (G6P, fructose-6P, fructose 1, 6
bisphosphate, Dhap, 3PG, PEP, pyruvate, and lactate) with time,
and the corresponding CE-MS measurements of the same due to
aforementioned enzyme activities during hypoxia in human ery-
throcytes. The MSE values, corresponding to these eight metabo-
lites, are (0.07337, 0.06031, 0.074389, 0.12327, 0.13879, 0.14829,
0.34182, and 0.05727). In addition, we have calculated the MSE
between the simulation results of Kinoshita et al. [71] and the
same CE-MS measurements as before. Here, we have found MSE
values as (0.05610, 0.027992, 0.10074, 0.12518, 0.12673,
0.15056, 0.15697, and 0.17443). It indicates that MSE values, corre-
sponding to our simulation results, are slightly higher for G6P,
Fructose-6P, 3PG, and Pyruvate than the same corresponding to
Kinoshita et al. On the other hand, our simulation results are closer
to CE-MS measurements than that of Kinoshita et al. for Fructose 1,
6 bisphosphate, Dhap, PEP, and Lactate in terms of the MSE values.

In comparison with some other mathematical models in analyz-
ing energy management in mammalian cancer cells, we have found
that a constraint-based flux balance model [66] of CCM pathways
in cancer cells has found a set of enzymes, such as lactate dehydro-
genase, playing important roles in cancer growth. Similar results
have been found using our model. We have elaborately discussed
the results in the following sections. However, such a flux balance
analysis based modeling does not depict the transient behavior of
the molecules involved in the cancer pathway. Another differential
equation based model [67] has explored a quantitative relationship
between the hypoxia intensity and the intracellular lactate levels
in cancer cells. Besides, it has predicted some important regulators
of the glycolysis pathway only. Similar type of model [68] has been
developed for targeting energy metabolism in pancreatic cancer.
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Another model [69] based on optimization technique has shown
the lactate-driven coupling for fulfilling energy requirements in
cancer cells. However, unlike the proposed model, they do not
consider three kinds of pathways with different response time.
Moreover, they do not explore the effects of activating/deactivat-
ing the probable drug targets to control energy metabolism in
cancer cells.

For more validation of the proposed model, we have compared
our simulation results with in vitro observations from cultured
human sertoli cells during insulin deprivation [72]. Such a condi-
tion in human sertoli cells reduces the expression level of lactate
dehydrogenase (LDH). Besides, the expression level of glut1 has
increased [72]. Incorporation of these two enzyme expressions in
(0, 1) into our model, we can notice similar behavior of initial glu-
cose consumption, pyruvate consumption and lactate production
with the corresponding behavior in cultured human sertoli cells
during insulin deprivation (Fig. 7).

In the context of present investigation, we have finally simu-
lated the situation of knocking out certain enzymes, viz., pyruvate
dehydrogenase, pyruvate carboxylase, acyl-CoA synthetase, fatty
acid synthase, phosphoenolpyruvate carboxykinase 1 and succinyl
CoA synthetase, to slow down oxidative phosphorylation through
mitochondria leading to ‘‘Warburg effect” [24,25]. In order to
knock out these enzymes, we have considered the kinetic rate con-
stants as zero for the reactions catalyzed by the above enzymes.
Considering the aforesaid perturbed condition, we have monitored
the behavioral alteration of different molecules compared to that
in normal situation as depicted in Figures S3 and S4 in Supplemen-
tary material. Enhancement of pyruvate and lactate production as
well as slowing down the production of FFA, citrate and succinate
compared to that under normal condition indicates low oxidative
phosphorylation. Subsequently, consumption of glucose increases
to compensate less ATP production, which leads to reduction of
glucose production compared to that under normal condition. In
spite of this situation, ATP production decreases significantly. As
most of the glucose is utilized through glycolytic flux, NADPH pro-
duction decreases compared to that in normal mammalian cells.
However, production of fructose 6P, acetyl CoA, ribose 5P, fructose
2,6 bisphosphate, PEP and protein kinase B (AKT) does not show
any significant difference compared to that under normal condi-
tion. Interestingly, expression level of p53 increases to inhibit glu-
cose transporter 1 (glut1) [99], which is responsible for
transportation of glucose across the plasma membranes of mam-
malian cells [100]. Thus, higher expression of p53 leads to sup-
pressing the production of glucose in glycolysis pathway. As a



Fig. 19. Case 1: Deactivation of pyruvate kinase as a drug target. After time labeled 5.0 along X-axis, effects of pyruvate kinase deactivation can be noticed.
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result, glucose concentration decreases rapidly (Fig. S3 in Supple-
mentary material) leading to cell apoptosis [101].

Nevertheless, mammalian cancer cells somehow manage both
energy, in the form of ATP, and cell proliferation to survive [102].
In this study, we aim at investigating the probable mutated regu-
lation that drives mammalian cancer cells to survive despite ‘‘War-
burg effect”. In this context, we have considered the aforesaid
perturbed state space model of integrated biochemical pathways
related to carbon metabolism as a MIMO plant of our interest.
Thereafter, we have applied the GA controller to achieve high con-
centrations of ATP (0.95) and ribose 5P (0.70). Here, high ATP will
supply constant energy in mammalian cancer cells to survive,
while ribose 5P plays an important role in nucleotide synthesis
promoting cell growth and proliferation [27]. Thus, the proposed
MIMO plant along with GA controller mimics the altered nonlinear
dynamics of mammalian cancer cells. We are now going to
describe the probable mutated regulations of cancer cells in the
following subsection.

3.2. Analysis of regulations in mammalian cancer cells

Here, we have considered the integrated CCM pathway with
incorporation of possible mutation responsible for energy man-
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agement in cancer cells. The necessary pathway and information
have been obtained from KEGG database [23] and literature. As a
result, oncogenic somatic and germline mutation have automati-
cally been taken care. The simulation results have found that ATP
and ribose 5P production in mammalian cancer cells becomes
sufficiently higher than in normal ones following the reference
outputs to GA controller (Figs. 8A and 8D). In this situation, we
have monitored the altered behavior of other molecules that
assist cancer cells to survive and grow. We have found that the
expression level of PHD decreases significantly (Fig. 9E) compared
to that in normal cells. As PHD accelerates the degradation of
hypoxia-inducible factor-1a (HIF-1a) [108,78], the expression
level of HIF-1a is quite higher (Fig. 10B) due to less expressed
PHD. Subsequently, the expression levels of
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) (Fig. 11D),
AKT (Fig. 12B), mammalian target of rapamycin (mTOR)
(Fig. 11F), MYC (Fig. 13C), and extracellular signal-regulated
kinases (ERK) (Fig. 9F) increase significantly in cancer cells com-
pared to that in normal ones. Besides, signal transducer and acti-
vator of transcription 3 (STAT3) and nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-jB) are highly expressed
(Fig. 14F and 11B). On the other hand, p53 (Fig. 15B) shows under
expression compared to normal mammalian cells.



Fig. 20. Case 2: Deactivation of glucose-6-phosphate dehydrogenase as a drug target. After time labeled 5.0 along X-axis, effects of glucose-6-phosphate dehydrogenase
deactivation can be noticed.
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In support of our simulation results, we have found some
previous investigations, including in vivo and in vitro experi-
ments [28–44,64,65], which show similar kinds of behavior.
Besides, we have collected the recent in vivo/in vitro data
[54,56,57,55,58–63] of human cancer cells to compare different
mutations verified in experimental laboratories with our simula-
tion results. Here, we have normalized the experimental data in
½0;1�. According to a clinical study [28], the data, collected from
patients with breast, cervical and endometrial cancers at early
stage, show high mortality rate of the patients having tumors
with over expressed HIF-1a transcription factor. PHD inhibition
promotes more stabilization of HIF-1a in cancer cells than in
normal ones [29,30]. In this context, Kwon et al. [54] has found
higher expression level of HIF-1a measured in human hepatocel-
lular carcinoma (HCC) specimens compared to the non-cancerous
tissue specimens (Fig. 10A). Previous studies [31–33] have
shown that PI3K, AKT and mTOR express significantly higher in
tumor tissues of patients suffering from ovarian, gastric and
prostate cancer compared to normal individuals. Experiment
[55] with human colon cancer sample has depicted higher
expression of PI3K compared to normal ones (Fig. 11C). Immuno-
histochemical scores measured by Mao et al. [56] has depicted
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that AKT expression is significantly higher in pancreatic cancer
(91 cases) than that in normal pancreas (51 cases) (Fig. 12A).
Besides, Roy et al. [57] has shown the deferentially expressed
AKT isoforms in normal and malignant oral tissues through
immunohistochemical analysis of the human samples
(Fig. 12A). On the other hand, higher mTOR expression has been
found in colon cancer compared to normal one as per the
in vivo/in vitro experiment performed by Zhang et al. [55]
(Fig. 11E).

Evidences [34,35,65] suggest that over expression of MYC
triggers certain genes to promote growth and proliferation of
cancer cells. Similar behavior of MYC in cancer cells has been found
in two recent in vivo/in vitro experiments [58,59] (Fig. 13A and
13B). It is reported that tumor suppressor p53 is under expressed
[36] in cancer cells due to lysine methylation [37]. Moreover,
evidences [38,39,40] have shown that highly expressed ERK in can-
cer cells promotes over expression of N-cadher protein involved in
metastasis. Subsequently, previous investigations [41,42] have
demonstrated that enhanced expression of STAT3 signaling protein
either inhibits apoptosis or accelerates cell proliferation, angiogen-
esis, and finally metastasis. Consequently, it leads to cancer initia-
tion and progression. Besides, over expression of NF-jB plays an



Fig. 21. Effect of glucose-6-phosphate dehydrogenase deactivation (case 2): (A) The relative enzymatic activity (expression level) of glucose-6-phosphate dehydrogenase
controls the NADPH production [111]. Lower expression of glucose-6-phosphate dehydrogenase leads to reduce the concentration of NADPH. Here, expression of glucose-6-
phosphate dehydrogenase and NADPH concentration have been assessed in A549/DDP cells according to various concentrations of 6-Aminonicotinamide (6-AN) (unit in lM),
(B) The proposed computational model depicts similar behavior of NADPH due to the deactivation of glucose-6-phosphate dehydrogenase.
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important role in this context [39,43,44]. The previous in vivo/
in vitro studies have supported the aforementioned claim by
illustrating over expressed STAT3 in certain cancer cells, such as
breast cancer [60], gastric cancer [61] and colon cancer [62] cells
compared to normal ones (Fig. 14E). Besides, the evidence [63]
has also depicted that relative expression of NF-jB significantly
increases in cancer cells (CT-2A astrocytoma) compared to normal
ones (Fig. 11A).

The present simulation results demonstrate higher expression
of hexokinase (HK) and glut1 (Figs. 16D and F) in cancer cells. Pre-
vious in vivo/in vitro result [106] depicting higher expression of HK
mRNA levels (Fig. 16C) in cancer compared to normal liver tissue
has validated the computational result. This experiment [106]
has also shown higher glut1 mRNA levels (Fig. 16E) as 92-fold
higher in Meta specimens compared to normal liver tissue. Here,
enhanced expressions of HIF-1a, PI3K, AKT, MYC and mTOR are
responsible for activating HK and glut1 more in cancer cells. As a
result, glucose consumption increases (Fig. 17C). Consequently,
glucose production decreases as depicted in Fig. 15E. Previous
investigations [27,45] support our claim. They have claimed that
enhanced glut1 increases the utilization of glucose by anabolic
pathways. Besides, highly expressed MYC activates lactate dehy-
drogenase (LDH) more in cancer cells. It leads to fermentation of
glucose [109,25] through enhanced glycolysis [46]. Consequently,
lactate production increases. The present results have followed
the above claims by showing higher expression of LDH (Fig. 16B)
as well as enhanced lactate production (Fig. 18C). In this context,
Lim et al. [107] has measured higher glucose uptake (Fig. 17A) in
B7-H3 knockdown cells grown in normoxic or perturbed condi-
tions (hypoxia) for 24 h. Besides, Li et al. [105] has shown that glu-
cose uptake increases significantly in Dppa4 overexpressed cancer
cells (Fig. 17B). This experiment [105] has also shown that LDH has
significantly been up regulated (Fig. 16A) in Dppa4 overexpressed
cancer cells. As a result, higher lactate production (Fig. 18B) has
been found here [105]. Lim et al. [107] has also found similar
higher lactate production (Fig. 18A) in B7-H3 knockdown cells as
mentioned before. These experimental results provide a strong
support to the present computational results.
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Higher expression levels of phosphofructokinase 1 (PFK1)
(Fig. 14B), phosphofructokinase 2 (PFK2) (Fig. 9A), and
glyceraldehyde-3-phosphate dehydrogenase (Fig. 15A) also con-
firm enhanced glycolysis in mammalian cancer cells. In support
of the computational results, a previous in vivo/in vitro result
[104] has depicted higher PFK1 expression (Fig. 14A) in breast can-
cer and paracancer tissues, expressed as units per gram of protein
(U/gprot). Consequently, higher amount of fructose 6P is utilized to
produce more fructose 2,6 bisphosphate and fructose 1,6 bisphos-
phate than in normal cells. Besides, higher amount of fructose 2,6
bisphosphate accelerates the break down of fructose 6P into fruc-
tose 1,6 bisphosphate [96]. That is why simulation result has
shown reduction of fructose 6P production (Fig. 8B). Similarly,
the concentrations of PEP drops (Fig. 8E) due to its over consump-
tion to produce higher amount of pyruvate and ATP (Figs. 8F and
8A) compared to normal cells. Here, expression of pyruvate kinase
switches alternatively from low to high and vice versa as depicted
in Fig. 14D. Evidences [47–49,64] have shown that pyruvate kinase
(M2 isoform) switches to its inactive dimer form or active tetra-
meric form according to the requirements of mammalian cancer
cells. When pyruvate kinase (M2 isoform) is in tetrameric form,
the flux through glycolysis enhances with sufficient amount of
ATP production. As a result, production of intermediate glycolytic
metabolites, such as glyceraldehyde 3P (Fig. 8C) and fructose 1,6
bisphosphate, increases. Conversely, dimer form of pyruvate kinase
(M2 isoform) promotes macromolecular synthesis from glycolytic
intermediate metabolites to continue cell growth and proliferation.
An evidence [104] has also reported about higher pyruvate kinase
expression (Fig. 14C) in breast cancer and paracancer tissues,
expressed as units per gram of protein (U/gprot). Thus, cancer cells
manage energy in the form of ATP to survive in spite of slow oxida-
tive phosphorylation under consideration. Here, reduction of
reduced nicotinamide adenine dinucleotide (NADH) production
(Fig. 10D) indicates successful incorporation of slow oxidative
phosphorylation [50] into the proposed model. An in vivo/in vitro
experiment, performed by Sumi et al. [103] depicting lower con-
centration of NADH (Fig. 10C) in cancer cells compared to normar
ones, supports the computational result.



Fig. 22. Case 3: Deactivation of transketolase as a drug target. After time labeled 5.0 along X-axis, effects of transketolase deactivation can be noticed.
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According to the simulation results, the enzymes (proteins) cat-
alyzing PPP, such as glucose-6-phosphate dehydrogenase (Fig. 9D),
phospho-gluco dehydrogenase (Fig. 15C), ribose 5P isomerase
(Fig. 9C), transketolase and transaldolase (Fig. 15D and 9B), have
shown over expression in cancer cells for macromolecular precur-
sors required for cell growth and proliferation. Under expressed
p53 plays an important role in this context. High concentration
of ribose 5P (Fig. 8D) confirms enhanced production of cell building
material, including DNA, RNA, nucleic acids and histidine, in mam-
malian cancer cells. Evidences [51–53] have shown that relatively
higher expressions of glucose-6-phosphate dehydrogenase,
phospho-gluco dehydrogenase, ribose 5P isomerase, transketolase
and transaldolase help cancer cells in generating high amount of
NADPH and ribose 5P, which are responsible for reactive oxygen
species (ROS) reduction as well as the production of high levels
of nucleotides for DNA synthesis and repair. It leads to resistance
against certain cancer therapies resulting in enhancement of
oxidative stress or DNA damage. In this context, it should be men-
tioned that higher amount of ROS can frequently be observed in
cancer cells helping in activation of oncogenes and metastasis.
However, further enhancement of ROS beyond a certain threshold
induces cell death [110]. Finally, we have summarized the altered
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regulations of different metabolites, transcription factors and
genes in cancer cells compared to that in normal ones in Table 3.

3.3. Analysis of certain rational drug targets in terms of management
of energy and cell proliferation in mammalian cancer cells

Here, we are going to discuss the effects of certain rational drug
targets on cancer cells in terms of management of energy and cell
proliferation from simulation point of view. These results may
have significant implications during in vivo and/or in vitro experi-
ments. When the proposed model computationally meets the ref-
erence target concentrations of ATP and ribose 5P for GA
controller, we have observed that the model has mimicked the
altered regulation of cancer cells as previously discussed. At that
moment, we have set reference target expression levels (high or
low) of certain proteins/enzymes as drug targets using GA con-
troller. Although the model is quite capable of analyzing the effect
of any drug target, we have considered only six drug targets among
others for our study to restrict the size of present article. Here, we
have monitored the effects of deactivating pyruvate kinase (refer-
ence expression level 0.02), glucose-6-phosphate dehydrogenase
(reference expression level 0.02), transketolase (reference expres-



Fig. 23. Case 4: Deactivation of ribose 5P isomerase as a drug target. After time labeled 5.0 along X-axis, effects of ribose 5P isomerase deactivation can be noticed.
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sion level 0.09), ribose 5P isomerase (reference expression level
0.09) and glucose-6-phosphate isomerase (reference expression
level 0.03). Finally, the effect of activating pyruvate kinase (refer-
ence expression level 0.98) has also been observed and analyzed.
Table 4 summarizes the significance of the drug targets under con-
sideration in energy supply and cell proliferation.

� Case 1 (Pyruvate kinase deactivation): According to the simu-
lation results as depicted in Fig. 19, we have found that deacti-
vation of pyruvate kinase cannot reduce the concentration of
ribose 5P (Fig. 19A) and NADPH (Fig. 19C). In other words, high
proliferation of mammalian cancer cells continues. Besides,
enhanced NADPH still prevents from ROS production helping
cancer cells to survive in spite of oxidative stress. Although
the concentrations of ATP (Fig. 19A) and lactate (Fig. 19C)
reduce at the beginning, after a while they increase again signif-
icantly. Even pyruvate kinase deactivation cannot reduce high
glucose utilization (i.e., high consumption and less production)
(Fig. 19B) in mammalian cancer cells. Moreover, high expres-
sion of glut1 and under expression of tumor suppression pro-
tein p53 (Fig. 19D) cannot be reversed in this case. Thus,
pyruvate kinase deactivation may not be a good choice as a drug
target for mammalian cancer therapy.
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� Case 2 (Glucose-6-phosphate dehydrogenase deactivation):
Glucose-6-phosphate dehydrogenase is the key enzyme (pro-
tein) to utilize G6P through PPP. It leads to producing high
amount of NADPH and ribose 5P so that nucleotides and fatty
acid can sufficiently be synthesized to maintain intracellular
redox homeostasis [112]. The present results (Fig. 20) have
shown that the concentrations of ribose 5P (Fig. 20A) and
NADPH (Fig. 20C and 21B) decrease due to deactivation of
glucose-6-phosphate dehydrogenase. In support of this result,
a recent in vivo/in vitro study has shown how the relative activ-
ity (expression level) of glucose-6-phosphate dehydrogenase
enzyme controls the NADPH production [111]. Lower expres-
sion of glucose-6-phosphate dehydrogenase leads to reduction
of the concentration of NADPH (Fig. 21A). Here, expression of
glucose-6-phosphate dehydrogenase and NADPH concentration
have been assessed in A549/DDP cells according to various con-
centrations of 6-Aminonicotinamide (6-AN). Besides, expres-
sion level of p53 increases (Fig. 20D), whereas glut1
expression decreases (Fig. 20D). These results indicate reduc-
tion of cell growth and proliferation due to glucose-6-
phosphate dehydrogenase deactivation. However, high amount
of glucose (Fig. 20B) is utilized through glycolysis to generate
sufficient ATP (Fig. 20A) for cell survival. Subsequently, cell fer-



Fig. 24. Case 5: Deactivation of glucose-6-phosphate isomerase as a drug target. After time labeled 5.0 along X-axis, effects of glucose-6-phosphate isomerase deactivation
can be noticed.
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mentation continues through high amount of lactate production
(Fig. 20C). A previous study [113] has shown reduction of cell
proliferation by silencing glucose-6-phosphate dehydrogenase
in the human breast cancer cell line MCF7. Thus, deactivation
of glucose-6-phosphate dehydrogenase as a possible drug target
may be efficient to reduce cell growth and proliferation but not
be effective in reduction of energy supply and fermentation.

� Case 3 (Transketolase deactivation): Transketolase has similar
importance as glucose 6-phosphate dehydrogenase to maintain
cell growth and proliferation leading to metastasis [114]. Simu-
lation results (Fig. 22) demonstrate that the concentration of
ribose 5P (Fig. 22A) decreases significantly in accordance with
the deactivation of transketolase. Subsequently, enhanced
expression of p53 (Fig. 22D) conveys that cell growth and pro-
liferation are inhibited in this case. Reduction of NADPH con-
centration (Fig. 22C) signifies enhancement of ROS preventing
from survival of cancer cells by oxidative stress. Moreover,
ATP (Fig. 22A) and lactate (Fig. 22C) production also decrease
through reduced glucose utilization (Fig. 22B). Besides, expres-
sion level of glut1 decreases as depicted in Fig. 22D. Previous
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investigations [113,115,116] have shown similar effects due to
transketolase silencing. Thus, it is clear that targeting transketo-
lase may be a potential choice for future cancer therapy.

� Case 4 (Ribose 5P isomerase deactivation): We have already
discussed that up regulation of ribose 5P isomerase plays an
important role in cell growth and proliferation of a cancer
patient. A previous study [117] has claimed that expression
level of ribose 5P isomerase is enhanced in colorectal cancer.
Our simulation results (Fig. 23) have shown the effect of silenc-
ing ribose 5P isomerase in cancer cells. We have observed that
enhanced p53 expression and decreased glut1 expression
(Fig. 23D) indicate slowing down of proliferation and growth
of cancer cells. In this context, reduction in NADPH (Fig. 23C)
and ribose 5P (Fig. 23A) concentration confirm our claim. Subse-
quently, glucose utilization (Fig. 23B) and cell fermentation (i.e.,
lactate production as depicted in Fig. 23C) decrease. However,
energy supply in the form of ATP (Fig. 23A) in cancer cells is
somehow managed in spite of the deactivation of ribose 5P iso-
merase. Consequently, ribose 5P isomerase might be considered
as a biomarker for targeted cancer therapy and prediction.
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� Case 5 (Glucose-6-phosphate isomerase deactivation):
Glucose-6-phosphate isomerase or phosphoglucose isomerase
(PGI) is a glycolytic enzyme that directs G6P flux into the glycol-
ysis branch. As a result, G6P breaks down into fructose 6P. Deac-
tivation of Glucose-6-phosphate isomerase results in slowing
down of glucose utilization (Fig. 24B) as well as lactate
(Fig. 24C) and ATP (Fig. 24A) production. Thus ‘‘Warburg effect”
is somehow reversed. Besides, reduced glut1 expression level
along with enhanced p53 expression (Fig. 24D) may slow down
growth and proliferation rate of cancer cells. In this context,
reduction of NADPH (Fig. 24C) and ribose 5P (Fig. 24A) concen-
tration supports our claim. Here, a previous investigation [118]
has shown that down regulation of Glucose-6-phosphate iso-
merase may suppress ‘‘Warburg effect”. Besides, oxidative
phosphorylation is activated. However, its impact on tumor
growth is minimal except in the case of hypoxia. Thus,
glucose-6-phosphate isomerase can be a potential drug target
for future cancer therapy.

� Case 6 (Pyruvate kinase activation): Activation of pyruvate
kinase (Fig. 25) may slow down cell growth and proliferation
as well as cell fermentation. Decreased concentrations of
NADPH, lactate (Fig. 25C) and ribose 5P (Fig. 25A) confirm our
Fig. 25. Case 6: Activation of pyruvate kinase as a drug target. After time labe
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claim. Besides, decreased glucose utilization (Fig. 25B) and glut1
expression (Fig. 25D) support the fact. Here, expression level of
p53 (Fig. 25D) also increases to slow down cell growth and pro-
liferation. However, ATP is produced sufficiently in this case as
depicted in Fig. 25A. Evidence [47] has claimed that cancer cell
growth and proliferation are inhibited by activation of pyruvate
kinase (M2 isoform). Thus, pyruvate kinase (M2 isoform) activa-
tors may be considered as possible significant drugs for onco-
genic treatment.

4. Conclusion

In this study, we have successfully integrated three types of bio-
chemical pathways, viz., metabolic, signaling and gene regulatory
networks, keeping their three timescale nature intact. Here, we
have developed the integrated state equations considering appro-
priate timescales as well as all possible perturbations present in
the contemplated integrated biochemical pathway. Besides,
depending on the training dataset generated by solving the path-
way ODEs, SVR based MIMOmodel has been developed. The MIMO
model can mimic the transient nonlinear dynamic behavior of the
integrated biochemical pathway under consideration. Moreover,
led 5.0 along X-axis, effects of pyruvate kinase activation can be noticed.
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with the help of the GA controller, the model can predict the effect
of drug targets applied to complex diseased cells. In order to inves-
tigate the effectiveness of the model, we have used our model to
explore how mammalian cancer cells are able to manage their
growth, proliferation and energy supply to survive. In this context,
‘‘Warburg effect” [24,25] has been taken into account. The simula-
tion results have depicted that the model has not only captured the
key regulations, but also has been able to predict certain possible
drug effects in terms of energy and cell proliferation management
in mammalian cancer cells.

According to the results, the proteins or genes HIF-1a, HK, glut1,
AKT, glyceraldehyde-3-phosphate dehydrogenase, phospho-gluco
dehydrogenase, ERK, ribose 5P isomerase, mTOR, glucose-6-
phosphate dehydrogenase, STAT3, NF-jB, PI3K, MYC, LDH, PFK1,
PFK2, transketolase and transaldolase are up regulated in cancer
cells. Besides, PHD and p53 are down regulated. Switching of pyru-
vate kinase (M2 isoform) between its two oligomeric form, viz.,
inactive dimer and active tetramer, plays an important role in
managing proliferation, growth and energy in mammalian cancer
cells. These results have been validated through previous investi-
gations involving in vivo and in vitro experiments [24,27,26,28–4
5,25,46–54,56,57,55,58–65]. Besides, other mathematical models
[66–69] support the results derived by the proposed model. Among
six drug targets under consideration, deactivation of transketolase
and glucose-6-phosphate isomerase may be the most potential to
slow down cancer progression by reducing cell proliferation,
growth, fermentation and energy supply. On the other hand, pyru-
vate kinase (M2 isoform) activation and ribose 5P isomerase deac-
tivation may reduce cell growth, proliferation and fermentation
during cancer. However, they may not be able to stop energy sup-
ply in mammalian cancer cells. Although deactivation of glucose-6-
phosphate dehydrogenase may slow down cell growth and prolif-
eration, it may fail to stop fermentation and energy supply in the
malignant cells. In this context, pyruvate kinase deactivation may
be an awful choice as a rational drug target for future cancer
therapy.

Finally, it may be mentioned that the experimental values of
different kinetic parameters are still unknown or poorly docu-
mented. In this study, we have estimated these values by trial
and error based on previous knowledgebase. Some of the parame-
ter values considered here have been seen to be close enough with
those estimated by the method of Lillacci et al. [70]. The other
parameter values could not be checked due to unavailability of
required experimental observations. However, trial and error
based technique is time consuming and difficult to perform
because of large number of such kinetic parameters. This is a draw-
back of the present methodology. Thus more in vivo/in vitro param-
eter values are needed, and/or appropriate parameter estimation
methods based on the theory of machine learning and control the-
ory can be developed for designing more accurate MIMO plant for
an integrated biochemical pathway.
Authors’ Contributions

AD and RKD initiated control theoretic modeling of metabolic
pathways. AD conceptualized the basic idea of three timescale
modeling. AD and AB formulated the methodology and imple-
mented it. RKD gave crucial theoretical input. AD and AB wrote
the first draft of the manuscript. RKD corrected it. NC read the arti-
cle and gave fruitful suggestions to edit the manuscript.
Funding

No funding agency has funded this work.
506
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgment

Abhijit Dasgupta acknowledges Digital India Corporation (for-
merly Media Lab Asia), Ministry of Electronics and Information
Technology, Government of India, for providing him a Senior
Research Fellowship under the Visvesvaraya Ph.D. scheme for Elec-
tronics and IT. Rajat K. De acknowledges SyMeC Project grant [BT/
Med-II/NIBMG/SyMeC/2014/Vol. II] given to the Indian Statistical
Institute by the Department of Biotechnology (DBT), Government
of India.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.csbj.2020.12.019.
References

[1] Steuer R, Gross T, Selbig J, Blasius B. Structural kinetic modeling of metabolic
networks. Proc Natl Acad Sci 2006;103(32):11868–73.

[2] Hornberg JJ, Bruggeman FJ, Westerhoff HV, Lankelma J. Cancer: a systems
biology disease. Biosystems 2006;83(2):81–90.

[3] Kholodenko BN. Cell-signalling dynamics in time and space. Nat Rev Mol Cell
Biol 2006;7(3):165–76.

[4] Legewie S, Blüthgen N, Herzel H. Mathematical modeling identifies inhibitors
of apoptosis as mediators of positive feedback and bistability. PLoS Comput
Biol 2006;2(9). e120.

[5] Klipp E, Liebermeister W. Mathematical modeling of intracellular signaling
pathways. BMC Neurosci 2006;7(1):S10.

[6] Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK. Physicochemical
modelling of cell signalling pathways. Nat Cell Biol 2006;8(11):1195–203.

[7] Schlitt T, Brazma A. Current approaches to gene regulatory network
modelling. BMC Bioinf 2007;8(S6):S9.

[8] Karlebach G, Shamir R. Modelling and analysis of gene regulatory networks.
Nat Rev Mol Cell Biol 2008;9(10):770–80.

[9] Hecker M, Lambeck S, Toepfer S, Van Someren E, Guthke R. Gene regulatory
network inference: data integration in dynamic models?a review. Biosystems
2009;96(1):86–103.

[10] De Rajat K, Das M, Mukhopadhyay S. Incorporation of enzyme concentrations
into fba and identification of optimal metabolic pathways. BMC Syst Biol
2008;2(1):65.

[11] De RK, Tomar N. Modeling the optimal central carbon metabolic pathways
under feedback inhibition using flux balance analysis. J Bioinf Comput Biol
2012;10(06):1250019.

[12] Cascante M, Boros LG, Comin-Anduix B, de Atauri P, Centelles JJ, Lee PWN.
Metabolic control analysis in drug discovery and disease. Nat Biotechnol
2002;20(3):243–9.

[13] Paul D, Dasgupta A, De RK. Exploring the altered dynamics of mammalian
central carbon metabolic pathway in cancer cells: a classical control theoretic
approach. PLoS One 2015;10(9). e0137728.

[14] Dasgupta A, Paul D, De RK. A fuzzy logic controller based approach to model
the switching mechanism of the mammalian central carbon metabolic
pathway in normal and cancer cells. Mol BioSyst 2016;12(8):2490–505.

[15] Dasgupta A, Bandyopadhyay GK, Ray I, Bandyopadhyay K, Chowdhury N, De
RK, Mahata SK. Catestatin improves insulin sensitivity by attenuating
endoplasmic reticulum stress: in vivo and in silico validation. Comput
Struct Biotechnol J 2020;18:464.

[16] Natarajan M, Lin KM, Hsueh RC, Sternweis PC, Ranganathan R. A global
analysis of cross-talk in a mammalian cellular signalling network. Nat Cell
Biol 2006;8(6):571–80.

[17] Papin JA, Hunter T, Palsson BO, Subramaniam S. Reconstruction of cellular
signalling networks and analysis of their properties. Nat Rev Mol Cell Biol
2005;6(2):99–111.

[18] Pe’er D. Bayesian network analysis of signaling networks: a primer. Sci STKE
2005;281. l4.

[19] Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA. Logic-based
models for the analysis of cell signaling networks. Biochemistry 2010;49
(15):3216–24.

[20] Lee JM, Gianchandani EP, Eddy JA, Papin JA. Dynamic analysis of integrated
signaling, metabolic, and regulatory networks. PLoS Comput Biol 2008;4(5).
e1000086.

https://doi.org/10.1016/j.csbj.2020.12.019
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0005
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0005
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0010
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0010
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0015
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0015
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0020
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0020
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0020
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0025
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0025
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0030
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0030
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0035
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0035
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0040
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0040
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0045
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0045
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0045
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0050
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0050
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0050
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0055
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0055
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0055
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0060
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0060
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0060
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0065
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0065
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0065
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0070
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0070
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0070
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0075
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0075
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0075
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0075
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0080
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0080
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0080
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0085
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0085
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0085
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0090
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0090
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0095
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0095
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0095
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0100
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0100
http://refhub.elsevier.com/S2001-0370(20)30544-4/h0100


A. Dasgupta, A. Bakshi, N. Chowdhury et al. Computational and Structural Biotechnology Journal 19 (2021) 477–508
[21] Rosano GL, Ceccarelli EA. Recombinant protein expression in escherichia coli:
advances and challenges. Front Microbiol 2014;5:172.

[22] Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M. In vivo analysis of
metabolic dynamics in saccharomyces cerevisiae: I. Experimental
observations. Biotechnol Bioeng 1997;55(2):305–16.

[23] Kanehisa M, Goto S. Kegg: kyoto encyclopedia of genes and genomes. Nucl
Acids Res 2000;28(1):27–30.

[24] Vander Heiden MG, Cantley LC, Thompson CB. Understanding the warburg
effect: the metabolic requirements of cell proliferation. Science 2009;324
(5930):1029–33.

[25] Koppenol WH, Bounds PL, Dang CV. Otto warburg’s contributions to current
concepts of cancer metabolism. Nat Rev Cancer 2011;11(5):325.

[26] Kim Jw, Dang CV. Cancer’s molecular sweet tooth and the warburg effect.
Cancer Res 2006;66(18):8927–8930..

[27] Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell
survival and growth. Nat Cell Biol 2015;17(4):351.

[28] Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology
and therapeutics. Oncogene 2010;29(5):625.

[29] Nguyen TL, Durán RV. Prolyl hydroxylase domain enzymes and their role in
cell signaling and cancer metabolism. Int J Biochem Cell Biol 2016;80:71–80.

[30] Villar VH, Merhi F, Djavaheri-Mergny M, Durán RV. Glutaminolysis and
autophagy in cancer. Autophagy 2015;11(8):1198–208.

[31] Li H, Zeng J, Shen K. Pi3k/akt/mtor signaling pathway as a therapeutic target
for ovarian cancer. Arch Gynecol Obstet 2014;290(6):1067–78.

[32] Tapia O, Riquelme I, Leal P, Sandoval A, Aedo S, Weber H, Letelier P, Bellolio E,
Villaseca M, Garcia P, et al. The pi3k/akt/mtor pathway is activated in gastric
cancer with potential prognostic and predictive significance. Virchows Archiv
2014;465(1):25–33.

[33] Hamidi A, Song J, Thakur N, Itoh S, Marcusson A, Bergh A, Heldin CH,
Landström M. Tgf-b promotes pi3k-akt signaling and prostate cancer cell
migration through the traf6-mediated ubiquitylation of p85a. Science Signal
2017;10(486):eaal4186..

[34] Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. Myc, metabolism, and
cancer. Cancer Discovery 2015;5(10):1024–39.

[35] Di Giacomo S, Sollazzo M, de Biase D, Ragazzi M, Bellosta P, Pession A, Grifoni
D. Human cancer cells signal their competitive fitness through myc activity.
Scientific Rep 2017;7(1):12568.

[36] Muller PA, Vousden KH. Mutant p53 in cancer: new functions and therapeutic
opportunities. Cancer Cell 2014;25(3):304–17.

[37] Zhu J, Dou Z, Sammons MA, Levine AJ, Berger SL. Lysine methylation represses
p53 activity in teratocarcinoma cancer cells. Proc Natl Acad Sci 2016;113
(35):9822–7.

[38] Cho Y.Y.. Roles of erks-rsk2 signaling in human cancers. Proceedings of the
American Association for Cancer Research Annual Meeting, Washington, DC
Philadelphia (PA) 2017.https://doi.org/10.1158/1538-7445.AM2017-3127..

[39] Lee KJ, Yoo JW, Kim YK, Choi JH, Ha TY, Gil M. Advanced glycation end
products promote triple negative breast cancer cells via erk and nf-jb
pathway. Biochem Biophys Res Commun 2018;495(3):2195–201.

[40] Liu S, Zha J, Lei M. Inhibiting erk/mnk/eif4e broadly sensitizes ovarian cancer
response to chemotherapy. Clin Transl Oncol 2018;20(3):374–81.

[41] Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, Tan BK, Sethi G,
Bishayee A. Targeting the stat3 signaling pathway in cancer: role of synthetic
and natural inhibitors. Biochim. Biophys. Acta 2014;1845(2):136–54.

[42] Khan MW, Saadalla A, Ewida AH, Al-Katranji K, Al-Saoudi G, Giaccone ZT,
Gounari F, Zhang M, Frank DA, Khazaie K. The stat3 inhibitor pyrimethamine
displays anti-cancer and immune stimulatory effects in murine models of
breast cancer. Cancer Immunol. Immunother. 2018;67(1):13–23.

[43] Mohammed S, Harikumar KB. Role of resveratrol in chemosensitization of
cancer. In Role of Nutraceuticals in Cancer Chemosensitization. Elsevier;
2018:61–76..

[44] Park MH, Hong JT. Roles of nf-jb in cancer and inflammatory diseases and
their therapeutic approaches. Cells 2016;5(2):15.

[45] Yoon SO, Jeon TJ, Park JS, Ryu YH, Lee JH, Yoo JS, Kim JK, Yoon DS, Oh EJ.
Analysis of the roles of glucose transporter 1 and hexokinase 2 in the
metabolism of glucose by extrahepatic bile duct cancer cells. Clin Nucl Med
2015;40(3):e178–82.

[46] Bao Y, Mukai K, Hishiki T, Kubo A, Ohmura M, Sugiura Y, Matsuura T,
Nagahata Y, Hayakawa N, Yamamoto T, et al. Energy management by
enhanced glycolysis in g1-phase in human colon cancer cells in vitro and
in vivo. Mol Cancer Res 2013;11(9):973–85.

[47] Adem S, Comakli V, Uzun N. Pyruvate kinase activators as a therapy target: a
patent review 2011–2017. Expert Opin Ther Patents 2018;28(1):61–8.

[48] Iqbal MA, Gupta V, Gopinath P, Mazurek S, Bamezai RN. Pyruvate kinase m2
and cancer: an updated assessment. FEBS Lett 2014;588(16):2685–92.

[49] Luo W, Semenza GL. Emerging roles of pkm2 in cell metabolism and cancer
progression. Trends Endocrinol Metab 2012;23(11):560–6.

[50] Wang L, Zhang J, Cao Z, Wang Y, Gao Q, Zhang J, Wang D. Inhibition of
oxidative phosphorylation for enhancing citric acid production by aspergillus
niger. Microb Cell Factories 2015;14(1):7.

[51] Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem
Sci 2014;39(8):347–54.

[52] Kowalik MA, Columbano A, Perra A. Emerging role of the pentose phosphate
pathway in hepatocellular carcinoma. Front Oncol 2017;7:87.

[53] Cho ES, Cha YH, Kim HS, Kim NH, Yook JI. The pentose phosphate pathway as
a potential target for cancer therapy. Biomol Therap 2018;26(1):29.
507
[54] Kwon JH, Lee J, Kim J, Jo YH, Kirchner VA, Kim N, Kwak BJ, Hwang S, Song GW,
Lee SG, et al. Hif-1a regulates a2b adenosine receptor expression in liver
cancer cells. Exp Therap Med 2019;18(6):4231–40.

[55] Zhang X, Shi H, Tang H, Fang Z, Wang J, Cui S. mir-218 inhibits the invasion
and migration of colon cancer cells by targeting the pi3k/akt/mtor signaling
pathway. Int J Mol Med 2015;35(5):1301–8.

[56] Mao Y, Xi L, Li Q, Cai Z, Lai Y, Zhang X, Yu C. Regulation of cell apoptosis and
proliferation in pancreatic cancer through pi3k/akt pathway via polo-like
kinase 1. Oncol Rep 2016;36(1):49–56.

[57] Roy NK, Monisha J, Padmavathi G, Lalhruaitluanga H, Kumar NS, Singh AK,
Bordoloi D, Baruah MN, Ahmed GN, Longkumar I, et al. Isoform-specific role
of akt in oral squamous cell carcinoma. Biomolecules 2019;9(7):253.

[58] Amir H, Khan MA, Feroz S, Bibi N, Nawaz M, Mehmood A, Yousuf A, Khawaja
MA, Khadim MT, Tariq A. Carlo-7—a plausible biomarker for bladder cancer.
Int J Exp Pathol 2019;100(1):25–31.

[59] Fang H, Liu HM, Wu WH, Liu H, Pan Y, Li WJ. Upregulation of long noncoding
rna ccat1-l promotes epithelial–mesenchymal transition in gastric
adenocarcinoma. OncoTargets Ther 2018;11:5647.

[60] Zhang Y, Liao S, Fan W, Wei W, Wang C, Sun S. Tunicamycin-induced er stress
regulates chemokine ccl5 expression and secretion via stat3 followed by
decreased transmigration of mcf-7 breast cancer cells. Oncol Rep 2014;32
(6):2769–76.

[61] Wang Z, Si X, Xu A, Meng X, Gao S, Qi Y, Zhu L, Li T, Li W, Dong L. Activation of
stat3 in human gastric cancer cells via interleukin (il)-6-type cytokine
signaling correlates with clinical implications. PLoS One 2013;8(10). e75788.

[62] Wang Y, Lu Z, Wang N, Zhang M, Zeng X, Zhao W. Microrna-1299 is a negative
regulator of stat3 in colon cancer. Oncol Rep 2017;37(6):3227–34.

[63] Mulrooney TJ, Marsh J, Urits I, Seyfried TN, Mukherjee P. Influence of caloric
restriction on constitutive expression of nf-jb in an experimental mouse
astrocytoma. PLoS One 2011;6(3). e18085.

[64] Pinweha P, Rattanapornsompong K, Charoensawan V, Jitrapakdee S.
Micrornas and oncogenic transcriptional regulatory networks controlling
metabolic reprogramming in cancers. Comput Struct Biotechnol J
2016;14:223–33.

[65] Luo T, Li Y, Nie R, Liang C, Liu Z, Xue Z, Chen G, Jiang K, Liu ZX, Lin H, et al.
Development and validation of metabolism-related gene signature in
prognostic prediction of gastric cancer. Comput Struct Biotechnol J 2020.

[66] Resendis-Antonio O, Checa A, Encarnación S. Modeling core metabolism in
cancer cells: surveying the topology underlying the warburg effect. PLoS One
2010;5(8). e12383.

[67] Hashemzadeh S, Shahmorad S, Rafii-Tabar H, Omidi Y. Computational
modeling to determine key regulators of hypoxia effects on the lactate
production in the glycolysis pathway. Scientific Rep 2020;10(1):1–8.

[68] Roy M, Finley SD. Computational model predicts the effects of targeting
cellular metabolism in pancreatic cancer. Front Physiol 2017;8:217.

[69] Capuani F, De Martino D, Marinari E, De Martino A. Quantitative constraint-
based computational model of tumor-to-stroma coupling via lactate shuttle.
Scientific Rep 2015;5:11880.

[70] Lillacci G, Khammash M. Parameter estimation and model selection in
computational biology. PLoS Comput Biol 2010;6(3). e1000696.

[71] Kinoshita A, Tsukada K, Soga T, Hishiki T, Ueno Y, Nakayama Y, Tomita M,
Suematsu M. Roles of hemoglobin allostery in hypoxia-induced metabolic
alterations in erythrocytes: simulation and its verification by metabolome
analysis. J Biol Chem 2007.

[72] Oliveira P, Alves M, Rato L, Laurentino S, Silva J, Sa R, Barros A, Sousa M,
Carvalho R, Cavaco J, et al. Effect of insulin deprivation on metabolism and
metabolism-associated gene transcript levels of in vitro cultured human
sertoli cells. Biochim Biophys Acta 2012;1820(2):84–9.

[73] Roncero SE. Three-time-scale nonlinear control of an autonomous helicopter
on a platform [Ph.D. thesis]. Automation, Robotics and Telematic Engineering,
Universidad de Sevilla; 2011..

[74] Esteban S, Gordillo F, Aracil J. Three-time scale singular perturbation control
and stability analysis for an autonomous helicopter on a platform. Int J
Robust Nonlinear Control 2013;23(12):1360–92.

[75] Goussis DA. Quasi steady state and partial equilibrium approximations: their
relation and their validity. Combust Theory Model 2012;16(5):869–926.

[76] Richard G, Chang H, Cizelj I, Belta C, Julius AA, Amar S. Integration of large-
scale metabolic, signaling, and gene regulatory networks with application to
infection responses. In: Decision and Control and European Control
Conference (CDC-ECC), 50th Conference. IEEE; 2011. p. 2227–32.

[77] van der Knaap JA, Verrijzer CP. Undercover: gene control by metabolites and
metabolic enzymes. Genes Develop. 2016;30(21):2345–69.

[78] Ray I, Dasgupta A, De RK. Succinate aggravates nafld progression to liver
cancer on the onset of obesity: an in-silico model. J Bioinf Comput Biol
2018;16(4):1850008-1–15. doi:101142/S0219720018500087..
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