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The type and genomic context of cancer mutations depend on their causes. These causes

have been characterized using signatures that represent mutation types that co-occur in the

same tumours. However, it remains unclear how mutation processes change during cancer

evolution due to the lack of reliable methods to reconstruct evolutionary trajectories of

mutational signature activity. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole

Genomes (PCAWG) Consortium, which aggregated whole-genome sequencing data from

2658 cancers across 38 tumour types, we present TrackSig, a new method that reconstructs

these trajectories using optimal, joint segmentation and deconvolution of mutation type and

allele frequencies from a single tumour sample. In simulations, we find TrackSig has a 3–5%

activity reconstruction error, and 12% false detection rate. It outperforms an aggressive

baseline in situations with branching evolution, CNA gain, and neutral mutations. Applied to

data from 2658 tumours and 38 cancer types, TrackSig permits pan-cancer insight into

evolutionary changes in mutational processes.
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Somatic mutations accumulate throughout our lifetime,
arising from external sources or from processes intrinsic to
the cell1,2. Some sources generate characteristic patterns of

mutations. For example, smoking is associated with G–T muta-
tions; UV radiation is associated with C to T mutations3–5. Some
processes provide a constant source of mutations6 while others
are sporadic7.

One can estimate the contribution of different mutation pro-
cesses to the collection of somatic mutations present in a sample
through mutational signature analysis. In this type of analysis, single
nucleotide variants (SNVs) are classified into 96 types based on the
type of substitution and tri-nucleotide context (e.g. ACG–ATG)2.
Mutational signatures across the 96 types were derived by non-
negative matrix factorization in the previous work by Alexandrov
et al.2 . Many of the signatures are associated with known muta-
tional processes including smoking7, non-homologous double
strand break repair2, and ionizing radiation8. The activities of some
signatures are correlated with patient age6 and suggest their use as a
molecular clock9. Thus, signature analysis can identify the DNA
damage repair pathways that are absent in cancer, can predict
prognosis10, or guide treatment choice11.

Formally, a “mutational signature” is a probability distribution
over a categorical variable representing a mutation type, where
each element is a probability of generating a mutation from the
corresponding type12. Each signature is assigned an “activity”
(also called “exposure”) which represents the proportion of
mutations that the signature generates. Activities for pre-defined
signatures can be computed from the total mutational spectrum
of a sample by using constrained regression13,14.

Mutational sources can change over time15–19. Mutations caused
by carcinogen activity stop accumulating when the activity ends7.
Mutations associated with defective DNA damage repair, such as
BRCA1 loss1,2 will begin to accumulate after that loss. Recent
analyses of sequencing data from single bulk samples have reported
modest changes in signature activities between clonal and subclonal
populations9,20 based on groups of mutations identified by clus-
tering their variant allele frequencies (VAFs). However, the accu-
racy of these methods relies heavily on the sensitivity and precision
of this clustering, which is typically low21,22 except, in some cases,
in multi-region sequencing studies15–19,23.

Here we introduce TrackSig, a new method to reconstruct
signature activities across time without VAF clustering. We use
VAF to approximately order mutations based on their prevalence
within the cancer cell population and then track changes in sig-
nature activity that are consistent with this ordering.

We use realistic simulations and bootstrap analysis to help
assess the accuracy of signature activity reconstructions under a
variety of different evolutionary scenarios. Using TrackSig and
Pan-cancer Analysis of Whole Genomes (PCAWG) dataset of
2658 cancers, we have previously demonstrated24 that signature
activities change often during the lifetime of a cancer. Here we
show that these changes can often be a more sensitive indicator of
new subclonal lineages than VAF clustering.

The PCAWG Consortium aggregated whole-genome sequen-
cing data from 2658 cancers across 38 tumour types generated by
the ICGC and TCGA projects. These sequencing data were re-
analysed with standardised, high-accuracy pipelines to align to
the human genome (reference build hs37d5) and identify germ-
line variants and somatically acquired mutations, as described by
PCAWG Network25.

Results
In this paper we perform the realistic simulations to evaluate
TrackSig’s performance at reconstructing signature activities,
detecting the number of mutation clusters, and correctly placing

the changepoints under different scenarios including violations of
TrackSig’s assumptions.

TrackSig was applied to the 2552 whole-genome sequencing
samples with more than 600 SNVs contained within the white
and grey lists of the PCAWG group. Here we provide metho-
dological details of TrackSig’s use on real data (PCAWG).
The analysis of signature trends and relation of changepoints
found by TrackSig to subclonal boundaries is described else-
where24. Figure 1 shows examples of TrackSig trajectories for two
tumour samples (breast cancer and leukaemia).

Choice of mutation signatures. By default, following Alexandrov
et al.2, we classify mutations into 96 types based on their three-
nucleotide context. Point mutations fall into six different muta-
tion types (i.e. C→ [AGT] and T→ [ACG]) excluding com-
plementary pairs. There are 16 (4 × 4) possible combinations of
the 5′ and 3′ nucleotides. Thus, SNVs are separated into 96 (K=
16 × 6= 96) types. However, TrackSig can use different mutation
type labelling schemes, so long as the signatures and the mutation
types are provided as input.

Within the context of PCAWG, we use the set of 48 single-base
signatures (SBS) developed by PCAWG-Signature group. The
first 30 of those signatures are slightly modified versions of
original signatures defined by Alexandrov et al.2,12 and have the
same numbering and interpretation. The original 30 signatures
are described at COSMIC (http://cancer.sanger.ac.uk/cosmic/
signatures). Signature analysis methods, including TrackSig, fit
activities for only a subset of the signatures. These signatures are
called the "active" signatures. The activities for the non-active
signatures are clamped to zero. For example, SBS 7 has been
detected almost exclusively in skin cancers and likely describes
mutations caused by UV light2. As such, it is only assigned active
status in skin cancers. In our analysis, we use the active signatures
reported by PCAWG-Signature group. For analyses based on
COSMIC signatures, one can use active signatures per cancer type
as provided on COSMIC website. TrackSig can also be used to
automatically select active signatures, as described in a later
section.

Simulations. We tested sensitivity of TrackSig in multiple error
scenarios using simulated data with known ground truth. First,
because signatures overlap in the mutation types that they can
produce, we first test reconstruction accuracy when SNVs are
accurately assigned to the time points to assess errors due to
inability to correctly assign signature activity. We describe these
non-parametric simulations in the next section.

In “Results” section, we assess reconstructions when the
mutation ordering is inferred based on mutation VAF. In this
scenario, reconstruction errors can occur when (i) cancer cell
fraction (CCF) estimates are inaccurate and, (ii) there are two
SNV clusters which overlap in CCF space but have different
signature activity profiles. In the latter case, SNVs from both
clusters will be located in the same or adjacent time point bins
and will have a mixture of signature activity profiles from two
clusters. To test reconstruction errors in these two scenarios, we
produce clonal evolution simulations where we sample the VAF
data from a clonal evolution model with binomial sequencing
noise. To simulate the VAF detection limit for mutations imposed
by somatic mutation calling, we remove any mutation with fewer
than three variant reads.

Finally, as part of clonal evolution simulations, we assess model
misspecification error by introducing violations of the assump-
tions of infinite sites and the relationship between CCF and
timing of mutation occurrence. Also, in some simulations, we
introduce mutations under neutral selection (i.e. neutrally
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evolving mutations). We computed the number and VAFs of
these mutations using the model and effective mutation rates
derived by Williams et al.26,27 as detailed in Supplementary
Note 3. As a baseline, we compare TrackSig’s reconstruction error
to the widely used strategy of first assigning SNVs to clusters
based on VAF, then computing mutation signatures activities
from the assigned mutations within each cluster.

Non-parametric simulations. In the non-parametric simulations,
we test the ideal scenario when SNVs are correctly ordered and
assigned to the time point bins. Here we want to access the ability
of TrackSig to reconstruct signature activities from the distribu-
tion of mutation types and place changepoints at the correct
locations.

Each simulation has 50 time points, each time point is a bin of
100 mutations. This corresponds to the average number of
somatic mutations detected in PCAWG. Each sample also
contains four active signatures. Two of those signatures are 1
and 5, which are nearly always active in the PCAWG samples. For
the remaining two signatures, we test all 1035 possible
combinations of the other 46 signatures.

We generate simulations with 0–3 changepoints that are placed
randomly on the timeline. For each segment on the timeline, we
sample signature activities from a uniform distribution over

activity vectors. Finally, we sample 100 mutation types per time
point from the discrete distribution derived using the sampled
activities as mixing coefficients for the four signatures.

Next, we run TrackSig on the simulated data and compare the
reconstructed activity trajectories to the ground truth. We remove
changepoints with small change, that is, where activities of all
signatures change by <5% in reconstructed trajectories. This
threshold is derived in “Results” section from permutation
analysis.

We computed the absolute difference between predicted
activities and the ground truth at each time point and take the
median across all time points and all four signatures. We called
this the median activity difference per simulation. On the
simulations with no changepoints, the median of these median
per simulation differences is 0.7%. On simulations with 1–3
changepoints, this median increases slightly to 2%. The
cumulative distribution of the median per simulation differences
is shown in Fig. 2.

For the PCAWG data, we report the maximum activity change
(MAC) across activity trajectory24 The maximum change is the
difference between maximum and minimum activity across all
time points in a sample. We also report the direction of change
(down if maximum occurs before minimum and up otherwise).
Here, we evaluate TrackSig’s accuracy in these estimates on the
simulated data. The MAC discrepancies between the estimated
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Fig. 1 Signature activity trajectories for two samples. Each plot is constructed from VAF data from a single tumour sample. Each line is an activity
trajectory that depicts inferred activities for a single signature (y-axis) as a function of decreasing CCF (x-axis). The thin lines are trajectories from each of
30 bootstrap runs. The bold line depicts the mean activities across bootstraps. The vertical lines indicate time points in the original dataset, and are placed
at the average CCF of their 100 associated mutations. Changes in activity trajectories are not necessarily aligned with vertical bars because mean CCFs of
time points change across bootstraps. Frequency of changepoints between two vertical bars is indicated by shade, the darker shades indicate higher
density of changepoints. Subclonal boundaries found by PCAWG consensus clustering24 are shown in red vertical lines. These boundaries are not used in
trajectory calculation and are only shown for comparison. Histograms show the mutation counts per signature in fixed width intervals of CCF. a Breast
cancer sample. In clonal signatures remains constant with dominating signature 3 (associated with BRCA1 mutations). In the subclone activity to signature
3 decreases and is replaced by SNVs associated with APOBEC/AID (signatures 2 and 13). b Chronic lymphocytic leukaemia sample. Signature 9 (somatic
hypermutation) dominates during clonal expansion and drops from 55% activity to almost zero in the subclone. Signature 5 compensates for this change.
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and ground-truth trajectories is <5% in 83.2% of cases across all
signatures in all simulations (Fig. 2b).

To compare the direction of the activity change, we divide
signatures into those with: decreasing activity, increasing activity,
and no activity change (i.e. max absolute change is <5%). The
direction of maximum change is consistent in 95.2% of all
signatures across all simulations.

To compute the number of false positives and false negatives,
we count a true positive detection if at least one of predicted
changepoints occur within three time points of an actual one. A
false negative is when no predicted changepoints are within three
time points of an actual change. This criteria is identical to the
one we use to evaluate whether a changepoint supports a
subclonal boundary24. We deem a predicted changepoint a false
positive if it occurs more than three time points away from the
closest actual changepoint.

Tables 1 and 2 show the percentage of simulations where we
observe a certain number of false negatives, and false positives
respectively (see Supplementary Table 1 for additional results).
On average, there are 0.12 false positives per simulation and 0.02
false negatives on average per simulation.

Clonal evolution simulations. Generating realistic simulated
data requires making some assumptions about how tumours
evolve. In this section, we simulate VAF data consistent with
clonal evolution theory28, with some small violations. Specifically,
every mutation belongs to one of a small set of subclones. If the
CCFs of each mutation could be estimated precisely, then
mutation CCF data consistent with clonal evolution theory would
have signature activities that are piece-wise constant functions of
CCF. These VAF data are thus consistent with all previous work
estimating signature activities.

We also include some simulations that violate the clonal
evolution assumptions and test TrackSig’s robustness to these
violations. We performed six different simulations, described
briefly here (see Supplementary Note 3 for details). We generated
100 simulations of each type.

First, we aim to evaluate false negative and false positive rates
of identifying subclones via TrackSig. We simulated VAF data
from (a) one clonal population and no subclones (b) one clonal
population and one subclone with a variety of CCF values
sampled from a uniform distribution, assuming a linear clonal
tree. We sample the variant allele counts for the mutations in
accordance to the cluster CCFs from a binomial distribution.
We create simulations with four signatures—age-related signa-
tures 1 and 5 and two other randomly-chosen signatures, which

we will refer to as A1 and A2. The activities of A1 and A2 are
sampled uniformly in each clone, under the constraint that at
least one of them has a signature change of at least 30%. We
sample mutation types from the signature mixture treating it as a
multinomial distribution. We simulated mean read depths of 10,
30, and 100.

The performance of TrackSig was also assessed under
conditions of neutral evolution. We sampled mutation VAFs as
per the previous paragraph but we also added some neutrally
evolving mutations to the clonal cluster. We determined the
number of neutral mutations to add and sampled their VAFs
according to the model from the Williams et al.26 (see
Supplementary Note 3). The signature activities for the neutral

0 5 10 20 30

0.0

0.2

0.4

0.6

0.8

1.0

Median activity diff (%)

C
um

ul
at

iv
e 

ra
tio

 o
f t

um
ou

rs
# Change−points

0
1
2
3

a

Difference in max activity change (%)

F
re

qu
en

cy

−0.2 −0.1 0.0 0.1 0.2

0

500

1500

b

Fig. 2 Results on non-parametric simulations. a Median activity difference between the reconstructed trajectories and the ground truth. Lines correspond
to the simulations with 0, 1, 2, or 3 changepoints. The median in computed across all signatures and time points in the sample. b Distribution of maximum
activity change (MAC) discrepancies between between estimated activities and ground truth.

Table 1 False negatives rates in non-parametric simulations.

No. of true changepoints 0 1 2 3
Avg no. of FN per
simulation

0.0 0.008 0.038 0.058

No. of false negative
changepoints (FN)

0 1 0.992 0.962 0.947

1 0 0.008 0.038 0.049
2 0 0 0 0.003

Each cell shows the proportion of simulations that have certain number of false negatives
(normalized within the column). See main text for definition of positive and negative time points.
The first row of the table shows the average number of false negatives per simulation

Table 2 False positives rates in non-parametric simulations.

No. of true
changepoints

0 1 2 3

Avg No. of FP per
simulation

0.130 0.128 0.118 0.116

No. of false positive
changepoints (FP)

0 0.909 0.896 0.9 0.889

1 0.06 0.083 0.087 0.106
2 0.024 0.019 0.011 0.005
3 0.005 0.002 0.002 0
4 0.002 0 0.001 0

Each cell shows the proportion of simulations that have certain number of false positives
(normalized within the column). See main text for definition of positive and negative time points.
The first row of the table shows the average number of false positives per simulation
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mutations were the same as those of the other mutations
associated with the clonal cluster.

To assess TrackSig’s accuracy when the timeline does not
reflect the ordering of acquistion of SNVs, we generated VAF data
from a branched phylogeny. In branching simulation we
generated VAF data assuming a branching clonal tree with two
subclones. We force the sum of subclonal CCFs to be <1,
otherwise the infinite sites assumption will be violated1. A later
occurring subclone with a different signature activity profile has a
higher CCF than a subclone with a profile matching the clonal
fraction. We sample mutation VAFs and mutation types for the
clusters similarly to the one- and two-cluster cases.

We next assess TrackSig’s accuracy for reconstructing activity
changes when SNV VAFs are affected by a copy number
aberration (CNA). We generated VAF data with a clonal CNA
gain affecting 10% of the SNV VAFs. In 5% of the mutations the
CNA gain is affecting the mutant allele and in 5% the CNA gain
is affecting the reference allele. This simulation is created
similarly to the branching with three clusters. The difference is
that we modify the probability of sampling a mutant allele to
consider the altered mutant and reference copy numbers.

Finally, we create simulations with violation of infinite site
assumption, where the same mutations independently occurred
in two branched subclones. To model this, we set the CCFs of 3%
of mutations to be equal to the sum of CCFs from the two
subclones.

We compared results of TrackSig to the widely used approach
of first clustering mutations by CCF and then inferring signature
activities within each cluster15–19. We perform the clustering
using SciClone29. We do a hard assignment of mutations to
clusters detected by SciClone, and use DeconstructSigs13 to
estimate signature activities within these clusters. We report the
results with two clustering methods in SciClone: Beta mixture
model (BMM, default) and Beta-binomial mixture model
(Binomial BMM). Note that the beta-binomial is an exact match
to the noise model used in our data simulation, so we expect
excellent performance from SciClone. We use the Beta model to
simulate inaccuracies due to incorrect noise model specification.

Simulation results. We compared TrackSig and Sciclone+
DeconstructSigs pipeline (hereafter SciClone for brevity, see
Supplementary Note 4) against the ground truth in the simulation
across the seven simulation types and depths 10, 30, and 100.
First, we computed the median activity error over all mutations in
the five types of non-neutral simulations, see Supplementary
Fig. 7. In Supplementary Fig. 8 we compared the errors in the
neutral one- and two-cluster cases. Across all depths, the majority
(83.6%) of TrackSig reconstructions have <0.05 median error
with ground truth versus 55.0% in SciClone. On average Track-
Sig’s activity error is 4.5%; SciClone’s is 6.9% across all seven
simulations. Measuring activity error using KL divergence gives
similar results (Supplementary Fig. 4), and TrackSig’s accuracy is
relatively insensitive to bin size at multiple depths (see Supple-
mentary Figs. 5 and 6)

We then compared methods based on their ability to detect
subclones. Figure 3b shows the percentage of simulations when
each method predicted correct number of subclones for depth 30
(see Supplementary Fig. 2 for depths 10 and 100). For this
comparison, we used two different noise models with SciClone:
the binomial-beta model which is an exact match to how the
simulated data are generated, and the beta model, which is not
and which was the model used for computing the reconstruction
error above.

As expected, the SciClone binomial-beta performs nearly
perfectly on the depth 30 simulations which match the

assumptions of this model (Fig 3b, one-cluster, two-clusters).
However, the binomial-beta model is fragile, and performs poorly
when its assumptions are violated (Fig. 3b, branching, cna, inf
sites viol, one-cluster neutral evolution). The beta model does not
perform well under the ideal situation, but it is better than the
binomial model when the clonal evolution assumptions are
violated. In contrast, TrackSig retains the ~10% false positive rate
in calling subclones observed in the non-parametric simulations.
TrackSig’s high performance is maintained also in the neutral
mutation simulations. In the other violation scenarios TrackSig
has much better performance than either of the two SciClone
noise models.

Supplementary Fig. 2 shows that at depth 100, TrackSig has
~90% accuracy in all scenarios except the two-cluster neutral
evolution simulation. This scenario is particularly difficult
because the clonal cluster is split with about 500 neutral
mutations from the clonal lineage clustered at the VAF detection
limit; so the mutation type distributions actually have two clear
changepoints: one going from the clonal lineage to the subclonal
one, and then another returning to the clonal (Fig. 4a). It may be
possible to detect this error in post-processing (see “Discussion”
Section). Note, however, that this simulation may not be
representative of real data because, unlike other simulations27,
we are not simulating neutral mutations from the subclone. The
depth 10 simulations are particularly challenging as well, because
the VAF distributions of the clonal and subclonal clusters overlap
substantially, making it difficult to detect multiple clusters. Here
we see that TrackSig is an even more sensitive detector of a
second cluster than the correct SciClone binomial model, see
Fig. 4b. None of the methods do well in the branching, CNA, and
infinite site violation scenarios because they require the detection
of three clusters. Performance in the neutral evolution scenarios
here matches that in the non-neutral ones because there are very
few neutral mutations above the VAF detection limit. In
summary, TrackSig is more robust to violations of the clonal
evolution assumptions that are made by most subclonal
reconstruction algorithms (see23,27).

Methodology on real data. We analyze the variation of signature
activities on PCAWG data across time and across samples. We
compute the maximum change of the signatures in each sample,
which is simply the difference between maximum and minimum
activity of the signature. To assess whether a signature change is
statistically significant, we permute the mutations in each sample
and run the trajectory estimation on the permuted set. Since
permuted mutations are not sorted in time, we expect no change
in the activity trajectories over time. The MAC that we observe on
permuted set of mutations does not exceed 5% in any sample.
Therefore, we only consider signature changes above 5% to be
significant (Fig. 5).

Bootstrapping. We assess the variability in activity trajectories by
performing bootstrap on the PCAWG data. We sample mutations
with replacement from the original set and re-calculate their
activities and changepoints. We perform 30 bootstrap runs for
each sample. Figure 1 shows examples of bootstrapped trajec-
tories from two samples (breast cancer and leukaemia).

Signature trajectories calculated on bootstrap data are stable.
The mean standard deviation of activity values calculated at each
time point is 2.9%. We also evaluate the consistency of signature
changes across the entire activity trajectory: size of signature
change and location of the changepoint. The mean standard
deviation of the change in signature activity is 5.3% across the
bootstraps. This standard deviation does not exceed 5% in 55.8%
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Fig. 3 TrackSig and SciClone performance on clonal evolution simulations. a Scatterplot of median activity errors (i.e. absolute activity difference) on all
depth 30 simulations (see Supplementary Fig. 3 for depths 10 and 100). Mean activity error: TrackSig 3.5%, SciClone 6.2%. b Grouped barplot shows
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Supplementary Fig. 2.
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Fig. 4 TrackSig reconstruction examples. a Simulated data was generated with two clusters and clonal neutral mutations at read depth 100. TrackSig
incorrectly places a changepoint before a cluster of neutral mutations from the clonal lineage near the VAF detection limit. However, because the signature
activities match those in the clonal cluster, this error could be detected and corrected in post-processing. b Simulated data was generated with two clusters
at read depth 10. TrackSig correctly identifies one changepoint. Although the simulation contains two clusters, there is only a single mode of CCF, thus
making CCF-cluster-based detection of subclones impossible. However, the histogram on top shows that there are differences in mutation type
distributions between the left and right tails, permitting TrackSig to correctly identify a changepoint. Both figures use an expanded x-axis that shows the
whole spread of estimated CCF, this is indicated with a change in the x-label descriptor.
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of samples (does not exceed 10% in 94.3% of samples,
Supplementary Fig. 1).

In TrackSig the number of changepoints calculated during
activity fitting does vary across bootstrap samples. We observe
1.02 standard deviation in the number of changepoints. To assess
the variability in the location of the changepoints, we matched
nearby changepoints between bootstrap samples and measured
their average distance in CCF. Because the number of
changepoints can change between samples, as a reference, we
randomly choose one of the samples that has a number of
changepoints equal to the median number of changepoints
among all samples. Then, in all other bootstrap runs, we match
each changepoint to the closest run in the reference. We found
that location of the changepoints is consistent across bootstraps:
on average, changepoints are located 0.093 CCF apart from the
closest reference changepoint.

Signatures with most changing activities. As shown by Fig. 6,
samples typically have only two or three signatures with high
activities. These signatures are usually the most variable (up to
87.2% max change, 12% on average). Other signature have low-
activity and remain constant. On average 3.6% of overall activity
is made up of low-activity signatures (with activity <5%). Low-
activity signatures most likely appear due to the uncertainty of
our signature activity estimates. The mean standard deviation of
signature activities is 2.9%, thus, we remove signatures with
activity <5% as they are within two standard deviations of 0%.

Trends in signature change per cancer type. The majority of
PCAWG samples have a signature change: 76.1% of samples have
a max change >5% in at least one signature; 48.4% of samples
have change >10%. However, the number of signature changes
depends on the number of mutations in the sample. Out of
samples with >10 time points only 26.3% of samples have a
change >5% compared with 80.4% across the rest of the samples
(see distribution on Fig. 7).

Discussion
TrackSig reconstructs the evolutionary trajectories of mutational
signature activities by sorting point mutations according to their
inferred CCF and then partitioning this sorted list into groups of
mutations with constant signature activities. TrackSig estimates
uncertainty in the location of the changepoints using bootstrap.
TrackSig is designed to be applied to VAF data on SNVs from a
single sample, however, it can be applied to either sorted lists of
point mutations derived from subclonal reconstruction algo-
rithms, or CCFs from a single cancer sample derived from
methods which perform multi-sample reconstructions or sub-
clonal CNA reconstructions.

Changepoints often correspond to boundaries between sub-
clones24. In our simulations we show that TrackSig often better
detects subclones than methods explicitly designed to find sub-
clones, especially when there is a mismatch between the assumed
and actual VAF generation process. By reconstructing changes in
signature activities, TrackSig can potentially help identify DNA
damage repair processes disrupted in the cell and, in doing so,
help inform treatment11.

Previous approaches estimate signature activities for a group of
mutations without considering their timing (e.g. eMu30 or
deconstructSigs13). Therefore, the attempts to compare activity
changes across evolutionary history have relied on pre-defined
groups of mutations, such as those occurring before or after
whole-genome duplications7,9,31,32; those classified as clonal or
subclonal1,9; or those grouped in subclones via multi-region
sequencing15–19. As such, the accuracy of these methods relies on
(i) the accuracy in grouping mutations based on VAF—which is
low with data from a single bulk sample21; and (ii) the existence
of a small number of subclones or mutation groups within a
sample, which is not true for neutrally evolving tumours23,26,33.

In contrast, TrackSig uses the distributions of mutation types
to group mutations, this permits more accurate reconstruction of
signature activities than clustering mutations by VAF alone.
Indeed, as our simulations demonstrate, not only are the sig-
nature activities more accurately reconstructed, but in some cases,
TrackSig is a more sensitive detector of subclones. Furthermore,
TrackSig makes fewer assumptions about the underlying VAF
distribution, so it can be readily applied to data from neutrally
evolving tumour populations26,33. Our simulations further
demonstrate that TrackSig’s reconstructions are less sensitive to
model misspecification errors, such as violations of the infinite
sites assumptions.

Clustering methods applied to VAFs from single bulk samples
require high read depth for accuracy21. Indeed, due to this
challenge, previous approaches have used multi-region sequen-
cing15–19,23,33–36. In contrast, TrackSig can be deployed in a
much larger range of settings. Separately, we report that TrackSig
can detect subclones that are missed by VAF clustering
methods24

Another important innovation of TrackSig is the use of CCF as
a surrogate for evolutionary timing. Similar ideas have been used
in human population genetics, where variant allele frequency to
get relative order of mutations along the ancestral lineage37. In
population genetics, allele frequency is calculated across indivi-
duals, while we calculate VAF across cell population within a
single sample. In TrackSig we estimate CCF and reconstructions
of clonal CNAs. In “Methods” section, we discuss the validity of
using CCF as a surrogate for evolutionary time.

In TrackSig, the number of mutation types is provided as a
parameter and is not fixed to 96 types. Because of this, it is
straightforward to generalize TrackSig to reconstruct the activities
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Fig. 5 Maximum signature activity changes in PCAWG samples. The red line shows the threshold of 5%, above which we consider changes to be
significant. a Changes on random orders of mutations where we do not expect to see change in activities. b activity changes in TrackSig trajectories across
all samples (on mutations sorted by CCF). Frequency axis shows the number of samples where we observe the certain activity change.
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of different mutation signatures or different mutations, so long as
these mutations can be approximately ordered by their evolu-
tionary time and each mutation can be classified into one of a
fixed number of categories. In this paper, we ordered SNVs by
decreasing CCF. This same strategy could be naturally extended
to indels for which the infinite sites assumption is also valid. The
infinite sites assumption should also be valid for structural var-
iants (SVs) associated with well-defined breakpoints, thus per-
mitting TrackSig to be used to track activities to recently defined
SV signatures32. The CCFs of SVs can be estimated using the
VAFs of split-reads mapping to their breakpoints38. Because they
cover larger genomic regions, infinite sites is less valid for CNAs,
although it is possible to approximately order clonal CNAs based
on the inferred multiplicity of SNVs affected by them9.

TrackSig also requires a pre-defined set of mutation signatures,
each of which is a probability distribution over the mutation
types. However, if these signatures are unavailable, they can be
defined by non-negative matrix factorization, or Latent Dirichlet
Allocation39, if counts across mutation types are available from
multiple cancer samples.

TrackSig can be applied to VAFs from bulk sequencing data
from multi-region sequencing or longitudinal samples by
simply running it on each sample separately. In preliminary
experiments testing this approach we found broad consistency
in the active signature selected, and in the signature activities
of the clonal mutations in each sample. We observe with only
0.03% mean absolute activity difference (0.017 KL divergence)
between signature activities of clonal cluster across different
samples. See Supplementary Note 5 and Supplementary Fig. 9 for
details.

For ease of presentation, we have assumed that ordering SNVs
by CCF recovers the order in which they accumulated in the
genomes of ancestral cells. However, this assumption is not cri-
tical for correct reconstruction of signature activity changes.

First, we have shown through bootstrap sampling and the
clonal evolution simulations that errors in the estimation of SNV
CCFs due to sampling noise have a limited impact on TrackSig’s
ability to estimate accurate activity trajectories. We have similarly
shown that these activity trajectories are not impacted if a small
fraction (3%) of the SNVs violate the infinite sites assumption.

However, these trajectories can be impacted by incorrect
ordering of a large numbers of SNVs. These can occur in two
ways. First, misordering can occur if a CNA changes the number
of SNV allele’s per cell. For example, daughter cells can fail to
inherit SNVs in their mother cells due to a loss of heterozygosity
(LOH). If a CNA reconstruction is available, TrackSig will correct
for any detected clonal LOH when ordering SNVs, and will not
attempt to order SNVs in regions affected by subclonal CNAs,
thereby resolving this difficulty. However, if a CNA reconstruc-
tion is not available, or it is inaccurate, the accuracy of the activity
trajectories can suffer. As such, we recommend only using
TrackSig when CNA reconstructions are available and reliable.

Second, SNV ordering need not correspond to the time of
acquisition when a single sample contains SNVs from subclones
from different branches of the cancer phylogeny. In these cir-
cumstances, there is not a single linear order for the activities, and
furthermore, late occurring subclones on a different branch can
have higher CCF than earlier ones occurring in the sample. This
situation also occurs when the sample contains a large number of
neutrally evolving mutations from multiple subclonal lineages, as
seen in the two cluster, depth 100 simulations. Note that such
circumstances are rare in single biopsies31 and that furthermore, a
subclone can only be misordered if its CCF is <50% due to the
Pigeonhole Principle1, so the ordering by CCFs in guaranteed to
be correct up until 50% CCF. However, even when these mis-
orderings occurs, our simulations demonstrate that, with one
exception, TrackSig’s activity reconstructions, and estimation of
number of subclones, are largely unaffected. Note, however, that
the true complexity of tumour evolution with multiple subclones
and high depth sequencing may confound the analysis in a way
that is not assessed here, and so care must be taken interpreting
results in tumours with complex clonal architectures.

Even in the rare circumstance that SNV misordering does
occur, it may be possible to detect it, and interpret the activity
changes correctly. For example, if late occurring but misordered
SNVs manifest a more drastic change in signature activity, this
misordering may be detectable by the presence of oscillations in
the activity trajectories. To address this issue, when assessing
overall change in signature activity, we computed the difference
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Fig. 6 PCAWG signature changes by activity level. a Mean signature activities ranked from the largest to the smallest within each sample in PCAWG
data. Only the top five signatures with the highest activities in a sample are shown. b Maximum changes of signature activities for the corresponding
signatures on plot (a). The changes below 5% are omitted.

# Time points in a sample

%
 S

am
pl

es
 w

ith
 m

ax
 c

ha
ng

e 
>

5%
 

0.0

0.4

0.8

0−10 10−20 20−30 30−40 40−50 50−60 60−70 70−80 80−90 90−100

Fig. 7 Frequency of activity change by number of mutations. Proportion of
tumours that have a significant change greater than 5% activity depending
on the number of time points in a sample. Each bar corresponds to the
range of number of time points in a sample; each time point contains 100
mutations.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14352-7

8 NATURE COMMUNICATIONS |          (2020) 11:731 | https://doi.org/10.1038/s41467-020-14352-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


between the lowest and highest activities for each signature. This
difference will be consistent regardless of ordering.

The timelines reconstructed by TrackSig are computed with a
fixed number of mutations in each bin. If overall rate of gen-
erating mutations in tumour was constant, our timeline would
correspond to the real time. However, tumour mutation rate
often accelerates throughout development40,41. Although the
changing rate does not affect our analysis, the estimates of
the pseudo-time might not be linearly related to real time.

Estimating changes in overall mutation rate is difficult. A
possible way to correct for this is to adjust the timeline based on
activities of signatures 1 and 5. Some report that signatures 1 and
5 operate as a cellular clock as the number of mutations con-
tributed by these signatures is proportional to the age of the
individual6. Determining the association between our pseudo-
time estimates and real time is left for further investigation.

Our method TrackSig provides further insight how signature
profile changes throughout tumour development. We show that
through signatures analysis we can detect major events in tumour
evolution, notably, transitions to a new subclone. Mutational
signatures provide a unique way to recover tumour evolution
path, track activities of mutational processes, adjust the treatment
strategy and detect changes in therapy response.

Methods
TrackSig is designed to be applied to VAF frequency data from a single, hetero-
geneous tumour sample. The method consists of two stages. First, we sort SNVs by
their estimated CCF that we estimate using their VAFs and a CNA reconstruction
of the samples. Next, we infer a trajectory of the mutational signature activities over
the estimated ordering of the SNVs. We estimated activity trajectory for each
signature as a piece-wise constant function of the SNV ordering with a small
number of changepoints. These stages are described in detail below. Note that
TrackSig does not rely on any methods for clustering mutations, such as phylogeny
reconstruction.

Ordering the SNVs. No single evolutionary model can yet explain all of the
observed VAF distributions in bulk tumour samples21,23,26,27,42. Using a CCF-
based ordering of SNVs allows TrackSig to track changes in signature activity
under a variety of such models. The clonal evolution model of cancer28 posits that
SNVs belong to one of a handful of subclones whose associated mutations all have
the same CCF. Under this model, mutations from different subclones would
occupy distinct regions of the CCF space, so if signature activities differ between
subclones, the segments detected by TrackSig in CCF space would mark the pre-
sence of distinct subclones. Current neutral evolution models21,26 assume SNVs to
be unique and persistent (i.e. the infinite sites assumption) and SNVs with higher
CCFs generally occur earlier in the tumour’s evolution. Therefore, when SNVs are
sorted in order of decreasing CCFs, TrackSig’s trajectories track changes in sig-
nature activity over time.

In the following sections, we describe how the SNV VAFs are used to create a
timeline to which TrackSig is applied. For ease of presentation, we will assume that
the time of SNV occurrence increases approximately monotonically with position
on the timeline. This interpretation is valid under the infinite sites assumption and
either a neutral evolution model or a clonal one when all subclones are from the
same branch, as is often the case in single samples31. TrackSig’s reconstruction
accuracy is tested on simulated data that is consistent with different evolutionary
models and violations to these assumptions; and in the “Discussion” section, we
discuss how to interpret TrackSig’s reconstructions when the timeline is not a
faithful representation of time of SNV acquisition.

Estimating CCF. Estimating a SNV’s CCF requires both an estimate of its VAF and
an estimate of the average number of mutant and reference alleles per cell at the
locus where the SNV occurs. In TrackSig, we derive this estimate from a CNA
reconstruction provided with the VAF inputs.

To account for uncertainty in a SNV’s VAF due to the finite sampling, we
model the posterior distribution over its VAF using a Beta distribution:

VAF � Betaðnvar; nref Þ; ð1Þ

where nvar is the number of reads carrying a variant, and nref is the number of
reference reads. To simplify the algorithm, and the subsequent sorting step, we
sample an estimate of VAFi (VAF of SNV i) from this distribution and use that
sample as a surrogate for the distribution in subsequent calculations. An advantage
of this approach is that it gives us a single ordering. With a large number of SNVs,
we expect little variability in the estimated activity trajectory due to uncertainty in

the VAFs of individual SNVs. With a smaller number of SNVs, multiple orderings
can be sampled and the trajectories combined.

If no CNA reconstruction is available, TrackSig assumes that each SNV is in a
region of normal copy number and TrackSig estimates CCFs in autosomal regions
by setting:

CCFi ¼
2 ´ VAFi
Purity

; ð2Þ

where Purity is the purity (i.e. proportion of cancerous cells) of the sample. If
purity is not provided, TrackSig assumes Purity = 1.

If a CNA reconstruction is available, TrackSig uses it when converting from
VAF to CCF. TrackSig assumes there is a maximum of one copy of the variant
allele per cell, and thus estimates CCF by setting:

CCFi ¼
ð2þ Purity ´ ðCNi � 2ÞÞ

Purity
´ VAFi; ð3Þ

where Purity is the purity of the sample, and CNi is the clonal copy number of the
locus. If the clonal CNA increases the number of variant alleles per cell, this will
lead to CCFs larger than one. As such, these cases are easily detected and corrected.
Specifically, if the observed VAF is >50% due to finite sampling noise, or there is
more than variant allele per cell, the CCFi calculated above could be >100% which
cannot be correct. As such, in most cases, we will set CCFi to be the minimum of
Eq. (3) and 100%. When we do not do so, we will sometimes refer to these
estimates as (estimated) “average number of mutant alleles per cell” to avoid
confusion.

In regions of subclonal CNAs, estimating CCF requires a phylogenetic
reconstruction in order to determine whether the subclonal CNA influences the
number of variant alleles in the affected cells22,43. As such, when computing SNV
ordering, by default, TrackSig filters SNVs in these regions out in order to avoid
this time consuming operation. However, TrackSig can include these SNVs if
provided with CCF estimates for them from methods that do consider subclonal
CNAs22,43,44.

TrackSig sorts SNVs in order of decreasing estimated CCF and uses the rank of the
SNV in this list as a "pseudo-time” estimate of its time of appearance. Note that this
estimate will have a non-linear relationship to real time, if the overall mutation rate
can vary during the tumour’s development. If some of the SNVs can be interpreted as
clock mutations, an SNV’s rank can be converted into an estimate of real time9.

Constructing a timeline. To derive an estimate of the activity trajectory, TrackSig
converts the SNV ordering into a set of time points with non-overlapping subsets
of the SNVs. We do this for two reasons. First, stable estimation of signature
activities requires a minimum number of mutations. By binning mutations into
time points and requiring a minimum number of time points per segment,
TrackSig enforces a minimum of 100 mutations per segment. Also, the time
complexity of TrackSig scales with the number of time points. So by binning
mutations, we can speed up TrackSig. By default, we set the bin size to 100 but the
user can change this setting to as low as 1. As we show in “Results” section,
TrackSig’s signature activity reconstructions are relatively insensitive to the choice
of bin size.

TrackSig first partitions the ordered mutations into bins and interprets each bin
as one time point. The “timeline” of the cancer is the collection of the time points.
TrackSig reports signature activity trajectories as a function of points in the
timeline. We emphasize that TrackSig does not use any information about
subclones when partitioning the SNVs and that TrackSig only uses CCFs for the
SNV from a single sample.

Computing activities of mutational signatures. To estimate activity trajectories,
TrackSig partitions the timelines into segments containing one or more time
points. Within each of these segments, it estimates signature activities using
mixture of discrete distributions. Full details of the model are provided in the
Supplementary Note 1. In brief, TrackSig models each signature as a discrete
distribution over the K types and it treats the mutation count vector over the K
types as a set of independently and identically distributed samples from a mixture
of the discrete distributions corresponding to each signature. By default, TrackSig
uses single-base tri-nucleotide signatures2 and K= 96, however TrackSig can use
any mutation type labelling scheme, so long as it is given appropriate signatures as
input. The mixing coefficients of these distributions are interpreted as their
activities for the mixture model that produced the set of mutations. TrackSig fits
these activities using the expectation-maximization algorithm (EM)45, as done by
other signature activity estimation methods30.

Detecting changepoints. TrackSig identifies changepoints in the timeline where
there are discernible differences in the activity of mutations in the time points
before and after the changepoints. Specifically, the changepoints partition the
timeline into segments of mutations with approximately constant activities.
TrackSig fits activities for this set using EM algorithm as described above. This
procedure generates piece-wise constant activity trajectories for each signature. To
select changepoints, we adapt pruned exact linear time (PELT)46, an optimal
segmentation algorithm based on dynamic programming. We impose a complexity
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penalty at each time point that is equivalent to optimizing the Bayesian Infor-
mation Criteria (BIC) (see Supplementary Note 2 for details). To reduce variance in
our estimates of the signature activities, we do not allow partitions to be <100
mutations.

We compute the BIC criteria the following way. Changepoints split the timeline
into (# changepoints+ 1) segments. In each segment, TrackSig fits the signature
activities, which have to sum to one. Therefore there are ð# signatures� 1Þ free
parameters per segment, or ð# changepointsþ 1Þ � ð# signatures� 1Þ free
parameters in total. As such, BIC objective takes the following form:

BIC ¼ �2lnL̂þ ð# changepointsþ 1Þ � ð# signatures� 1Þ � lnð# timepointsÞ;
ð4Þ

where L̂ is the likelihood of the current model.

Correcting the timeline and segment count. If the number of variant alleles per
cell is increased by a clonal copy number change, TrackSig’s CCF estimates might
be >1. To correct for this, when displaying activity trajectories, it merges all the
time points that have average CCF ≥ 1 into one time point. As such, the first time
point can contain more than 100 mutations. To determine a signature activity at
this new time point, TrackSig simply takes an average activity of all merged time
points (those having CCF ≥ 1).

To compute the number of distinct subclones, we adjust the number of detected
changepoints to correct for overlap in the CCF space of mutations from different
subclones. Consider the case of two subclones whose mutations overlap substantially
in CCF space. In this case, TrackSig might find three segments instead of two: one
with signatures activities reflecting the first subclone; another with activities reflecting
a mixture of the two subclones; and last with activities reflecting the second subclone.
If this happens, then the direction of change of all signatures will be the same in the
two changepoints. As such, when counting the number of distinct subclones, we treat
each such pair of changepoints as one subclone boundary. Such a situation only
occurs in 2.6% of 2552 PCAWG tumour samples to which we applied TrackSig; in
77% of those cases we remove a single changepoint.

Bootstrapping to estimating activity uncertainty. TrackSig estimates uncertainty
in the activity estimates by bootstrapping the mutations and refitting the activity
trajectories. Specifically, it takes the random subset of N mutations by sampling
uniformly with replacement from the N unfiltered SNVs in the sample under
consideration. Using the pre-assigned CCF estimates, we sort the SNVs in
decreasing order, as above, re-partition them into time points and recompute
activity estimates. The trajectories obtained from bootstrapped mutation sets have
the same number of time points, however the average CCF for each time point can
change. We use these bootstrapped trajectories to compute uncertainty estimates
for the sizes of activity changes.

Choosing active signatures. Only a subset of signatures are active in a particular
sample, and this subset is largely determined by a cancer type. For the analyses
reported above, we use a set of active signatures provided by PCAWG47, which
contains a list of active signatures per sample (on average, four per sample). Fre-
quent active signatures for each cancer type are available from a variety of sour-
ces2,47. We highly recommend using either these cancer-specific active signatures
or deriving sample-specific active signatures using one of the procedures described
in this section. We strongly discourage using TrackSig with a full set of signatures
on a single sample, as many of the signatures overlap considerably, which can cause
signature activity estimation errors due to this collinearity.

Here we evaluate three different ways to select the active signatures, all supported
by TrackSig. The first strategy, “all-sigs”, simply computes activity trajectories for all
signatures. The second, “cancer-type-specific-sigs”, uses all signatures reported as
active in the cancer type under consideration. The final strategy, “sample-specific-
sigs”, first fits signature activities to the full set of mutation counts using an initial set
of signatures, and sets the active signatures to be those with activities greater than a
threshold (by default, 5%) in the initial fit. Then TrackSig computes activity
trajectories only for the active signatures. In the following, we evaluate “sample-
specific-sigs” when the initial set is “all-sigs”, however, we suspect this approach will
also work well with “cancer-type-specific-sigs” as the initial set. We evaluate each
strategy by comparing the active signatures selected by TrackSig with those reported
by PCAWG-Signature group on the PCAWG tumour set47.

For “all-sigs”, we used all 48 signatures and we found on average, 44.7% of
overall activity assigned by TrackSig is assigned to the active signatures selected by
PCAWG-Signature group. Each incorrect signature gets 1.3% of activity on
average. In other words, the incorrect activity is widely distributed among the
signatures. Using “cancer-type-specific-sigs” improves the correspondence to
68.7% of the total activity on average. This strategy reduces the initial set of
potentially active signatures from 48 down to 12 on average (ranging from
4 signatures in Lower Grade Glioma to 24 signatures in Liver Cancer). Here, we
observe that signature 5 and 40 are the most prevalent among the incorrect
signatures, having the average activity of 14% and 12.6%, respectively in the
samples where they are supposed to be inactive. Finally, if we use the “sample-
specific-sigs” strategy starting with “all-sigs” as the initial set, we exactly recover the
active signatures reported by PCAWG-Signature group.

Fitting either per cancer or per sample signatures results in more activity mass
to be on the correct signatures and speeds up the computations. Therefore, we
recommend choosing one of these instead of using activities from the full set.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Somatic and germline variant calls, mutational signatures, subclonal reconstructions,
transcript abundance, splice calls and other core data generated by the ICGC/TCGA Pan-
cancer Analysis of Whole Genomes Consortium is described here25 and available for
download at https://dcc.icgc.org/releases/PCAWG. Additional information on accessing
the data, including raw read files, can be found at https://docs.icgc.org/pcawg/data/. In
accordance with the data access policies of the ICGC and TCGA projects, most
molecular, clinical and specimen data are in an open tier which does not require access
approval. To access potentially identification information, such as germline alleles and
underlying sequencing data, researchers will need to apply to the TCGA Data Access
Committee (DAC) via dbGaP (https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login)
for access to the TCGA portion of the dataset, and to the ICGC Data Access Compliance
Office (DACO; http://icgc.org/daco) for the ICGC portion. In addition, to access somatic
SNVs derived from TCGA donors, researchers will also need to obtain dbGaP
authorisation.

Code availability
TrackSig Code is available at https://github.com/morrislab/TrackSig. Code for generating
simulation data is included in the Github repository. The core computational pipelines
used by the PCAWG Consortium for alignment, quality control and variant calling are
available to the public at https://dockstore.org/search?search=pcawgunder the GNU
General Public License v3.0, which allows for reuse and distribution.
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