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Abstract: To date, a large number of photosensitizers (PS) have introduced heavy atoms to improve
the ISC process and 1O2 generation. However, they often show low efficiency in hypoxic conditions,
aggregate states, and turn-off PDT in the dark. Besides that, the toxicity of heavy metals is also
concerned. Therefore, we developed lysosome-targeted heavy-metal-free PS (3S and 4S) based on
thionated naphthalimide for hypoxic cancer photodynamic therapy (PDT), not only under white
light but also in the dark via thermal-induced 1O2 generation. AIEgen (3O and 4O) were prepared
for studying the PDT action of PSs (3S and 4S) in lysosome and aggregate state. We also examined
the photophysical properties of AIEgen (3O and 4O) and PS (3S and 4S) by UV–vis absorption,
fluorescent emission spectra, and theoretical calculations.

Keywords: photosensitizer; photodynamic therapy; AIE fluorescent probe; lysosome-targeting

1. Introduction

Sulfur-substituted nucleobases have been known for over half a century to be efficient
photoactivable medicines with near-unity triplet quantum yields and are still being investi-
gated for oncological uses [1]. Under UVA photoactivation, sulfur-substituted nucleobases
have been widely explored for skin cancer treatment, but they generate harmful ROS via
both type I and type II photochemical processes [2].

In addition, the effects of aggregation-induced emission (AIE) is a process opposite
to the effects of aggregation-caused quenching (ACQ). AIE luminogens (AIEgens) are
typically nonemissive in a good solvent but are induced to emit by aggregation [3–7].
Due to the high brightness and photostability of their solutions, AIEgens have emerged as
promising fluorescent probes for various biological applications [8–11]. In particular, among
previously reported AIEgens, several AIEgens show efficient photosensitizing ability in the
aggregated state, which are beneficial to develop imaging-guided photodynamic therapy
(PDT) for cancer treatment [11].

PDT is a medical treatment that has been approved in several countries for the treat-
ment of certain malignancies and other disorders [12–17]. PDT requires three ingredients: a
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light-activated substance (photosensitizer, PS), light, and molecular oxygen [18,19]. The PS
is activated to the excited singlet (S1) state upon photoexcitation at a specific wavelength;
then, the S1 state decays back to the ground state, emitting fluorescent or undergoing
rapid intersystem crossing (ISC) into the active triplet state (T1), producing reactive oxygen
species (ROS) via type I and/or type II pathways for cancer photoresponsive treatment [20].

Although PDT has great advantages, it has several limitations for clinical application.
One of the problems is dark toxicity from heavy-metal atoms, which are mainly used to
accelerate the ISC process [21]. Despite the use of heavy-metal atoms, PDT efficiency is
low under hypoxic conditions and turn off in the dark. Unfortunately, cancer cells have
many regions that lack oxygen because blood vessels grow slowly but rapidly divide [22].
Moreover, PDT is oxygen-dependent and rapidly consumes intracellular oxygen as PDT
progresses. This reduces PDT efficiency in cancer cells. So, it is most important to overcome
hypoxia. Another problem is inefficient ROS generation of PS in aggregate condition,
which also is one of the typical characteristics of cancer cells and tumors [23]. Many AIE PS
have been developed; however, they lack clear evidence of ROS production in aggregate
state [24,25]. Herein, we propose that if singlet oxygen could be generated directly in the
desired region (in the cancer cells) by a remotely controlled mechanisms, all of these issues
would be splendidly avoided.

In this research, we rationally designed and successfully synthesized 4S composed
of naphthalimide and pyridine-2(1H)-thione derivatives as a heavy-atom-free PS that can
be activated even in hypoxia and aggregate state. The morpholine group in 4S plays a
role in the ability to target the lysosome—an important organelle—and the push–pull
effect. As a result, the efficiency of PDT increases and a red shift appears. Type-I and
Type-II PDT are possible by substituting sulfur for oxygen in the naphthalimide carbonyl
group. The pyridone moiety that reacts with singlet oxygen can form endoperoxide. In
the absence of light, endoperoxide from pyridone releases stored singlet oxygen through
thermal cycloreversion without other side reactions and returns to its original form of
pyridone. During this dark process, it reduces oxygen starvation caused by PDT and
allows time for oxygen replenishment. Therefore, the PDT process occurs effectively and
continuously in the light/dark cycle. Finally, we demonstrate that the amount of singlet
oxygen produced in this way is sufficient for triggering apoptosis in cell cultures.

2. Materials and Methods
2.1. Synthesis of 4S

4O (1.0 mmol) and Lawesson’s reagent (3.0 mmol) in Toluene (15 mL) was refluxed
for 12 h. After solvent was evaporated, it was diluted in DW and extracted 3 times
with MC. The organic layer was collected by column chromatography on silica gel using
Hexane/Ethyl acetate (4/1) as eluent. The product was dried to afford a red solid of 4S
(yield ~70%). 1H NMR (400 MHz, Chloroform-d) δ 8.91 (dd, J = 7.7, 1.2 Hz, 1H), 8.86 (d,
J = 8.6 Hz, 1H), 8.39 (dd, J = 8.6, 1.3 Hz, 1H), 7.77 (dd, J = 8.7, 1.6 Hz, 1H), 7.67–7.58 (m, 2H),
7.53–7.45 (m, 2H), 7.16 (dp, J = 8.7, 2.1 Hz, 4H), 6.64 (td, J = 6.8, 1.6 Hz, 1H), 5.90 (s, 2H), 4.01
(dd, J = 5.7, 3.4 Hz, 4H), 3.35–3.26 (m, 4H); 13C NMR (101 MHz, Chloroform-d) δ 192.30,
191.24, 181.26, 156.24, 146.26, 139.97, 139.44, 137.85, 136.53, 135.05, 133.81, 130.52, 130.40,
129.95, 129.24, 126.46, 125.88, 125.44, 125.07, 116.00, 113.86, 66.93, 58.37, 53.34; ESI HRMS
m/z = 514.1077 [M+H]+, calc. for C28H23N3OS3 = 513.1003.

2.2. Cell Experiments

HeLa cells (human cervical cancer cells) were cultured in DMEM (Dulbecco’s Modified
Eagle Medium) supplemented with a 10% FBS solution and 1% penicillin-streptomycin
(v/v) and kept in 5% CO2 at 37 ◦C.

2.3. Confocal Microscopy Cell Imaging

The HeLa cells were resuspended in confocal dishes to a final density of ~5× 104 cells/2 mL
of the DMEM medium. After overnight culture, the cells were washed twice with DPBS



Biosensors 2022, 12, 420 3 of 10

before the fresh culture medium containing 3O and 4O (10 µM) was added for 30 min.
After washing with DPBS, images were recorded using a confocal microscope equipped
with 405-nm excitation and 600-nm emission filters by confocal microscopy Zeiss LSM 900.

HeLa cells were incubated with 5-µM 3S and 4S, respectively, and costained with 10 µM
DCFH-DA for 30 min. Then, cells were irradiated with a green LED (20 mW/cm2, 5 min).
After washing with DPBS, fluorescence images were acquired by confocal microscopy.

2.4. Cell Viability

Cells were seeded in a 96-well plate to a final density of ∼5 × 103 cells/well with
culture media. After overnight culture, HeLa cells were incubated with different concen-
trations (0–50 µM) of 3S and 4S for 1 h. After washing with DPBS, cells were irradiated
by a green LED (20 mW/cm2, 15 min) and incubated for another 24 h. The samples were
subsequently combined with a D-Plus™CCK solution and incubated under normoxia
conditions (37 ◦C, 5% CO2) for another 4 h period.

Hypoxic condition was applied by incubation in mixed gas (5% CO2, 1% O2, 94% N2)
for 24 h and all media were bubbled with mixed gas beforehand. After incubation with 3S
and 4S for 1h, green LED was irradiated for 15 min. Then, the cells were incubated for 24 h.
The samples were subsequently combined with a D-Plus™CCK solution and incubated
under hypoxia conditions (37 ◦C, 1% O2) for another 4 h period.

2.5. Theoretical Calculation

Computational calculation is detailed in the supporting information. In the system,
crossing rate (knm

ISC) between excited singlet state (Sn) to the excited triplet state (Tm) were
calculated using Fermi’s Golden rule [26]:

knm
ISC =

2π

} ρFC|〈Sn|HSOC|Tm〉|2 (1)

where 〈Sn|HSOC|Tm〉 is the spin–orbit coupling (SOC)-matrix element between Sn and
Tm and ρFC is Franck–Condon weighted density of states, which was calculated in the
framework of the Marcus theory [27]:

ρFC =
1√

4πλMkBT
exp

[
− (∆EST + λM)2

4πλMkBT

]
(2)

where ∆EST, T, kB and λM are singlet-triplet energy gap, temperature, Boltzmann constant,
and Marcus reorganization energy, respectively.

3. Results and Discussion
3.1. Molecular Design, Synthesis Process, and Photophysical Properties

As in Scheme 1, we prepared 4O from the reaction of 3O and 2-hyroxypyridine by
adding 18-crown-6 and KI catalyst. Then, the carbonyl group of 4O was converted to the
thiocarbonyl group in the presence of Lawesson’s reagent to form 4S. We also prepared
the thionated form of 3O (3S) by the same method and introduced morpholine to direct
the targeting ability of fluorophore and PS toward the lysosome [28]. 4O and 4S were
conjugated to 2-pyridone and its thiol form, respectively, which are expected to release
thermal-induced 1O2 [29]. All reactions showed high yields (>70%), and products were
confirmed by 1HNMR, 13CNMR, and HR-MS spectra (Supplementary Materials). We
observed the 13C signal of 3S and 4S at about 192 ppm, which confirmed the carbonyl to
thiocarbonyl conversion. Notably, the X-ray single-crystal structure of 3O was recorded
(Figures 1 and S17) and found to be similar to the optimized geometry by DFT calculation.
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Figure 1. X-ray crystal structure of 3O.

Then, we examined the UV–VIS absorption and fluorescent spectra of 3O, 3S, 4O,
and 4S in several solvents (Toluene, THF, and ACN) (Figures 2, S18 and S19). 3O and 4O,
3S, and 4S show similar UV–Vis absorption bands with peaks near 388 nm and 496 nm,
respectively. However, the thionation form shows a higher molar absorption coefficient
that corresponds with previous thionated PSs. 3O and 4O exhibit a strong green emission
(λems ~ 509 nm; ΦF > 0.94) with a large stock shift of 120 nm (Table 1), which is very suitable
for fluorescent bioimaging. In sharp contrast, 3S and 4S do not show fluorescent emission,
which predicts a strong ISC process as well as singlet oxygen quantum yield [30]. By
computational calculation, the spin–orbit coupling (SOC) of the energy gap between the
singlet and triplet states (∆EST) was generated (Tables S4 and S5); then, we calculated the
ISC constants (kISC). Due to the thionation, the SOC constants of 4S and 3S are significantly
higher than that of 4O and 3O, respectively. Besides that, the energy gap between the singlet
and triplet states of the thiocarbonyl form is also smaller than that of the corresponding
the carbonyl form, leading to much larger single ISC constants (kISC) of each singlet–triplet
pathway. As a result, the total ISC constants of 4S and 3S are significantly higher than those
of 4O and 3O, respectively. The increased ISC process of thionation facilitates the popular
triplet states of 4S and 3S, which were confirmed by strong 1O2 generation quantum yield
(Φ∆ = 0.50 and 0.56, respectively). Additionally, the total ISC constant of 3S (9.7 × 1012),
higher than that of 4S (5.6 × 1012), completely corresponds with the higher 1O2 generation
quantum yield, which confirms the well-matched experimental/theoretical results.
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Table 1. Photophysical and photosensitizing properties of 4O and 4S.

λabs
a

(nm)
ε× 103

(M−1 cm−1)
λems

a

(nm)
∆v b

(nm)
ΦF

a,c Eg
d

(eV)
kISC

e textphi∆
f

3O 388 11.96 509 121 0.94 3.58 5.1 × 1010 -
3S 496 20.20 - - - 2.47 9.7 × 1012 0.56
4O 389 13.48 509 120 0.98 3.40 3.9 × 108 -
4S 496 23.37 - - - 2.29 5.6 × 1012 0.50

a in THF. b Stock shift. c Fluorescence quantum yield evaluated with Rhodamine 6G as the standard (ΦF = 0.94
in Ethanol). d Eg, the energy difference between the HOMO and LUMO levels. e kISC = 2π

} ρFC |〈Sn|HSOC |Tm〉|2.
f Singlet oxygen quantum yield was determined with respect to Ru(bpy)3

2+ (Φ∆ = 0.57 in ACN)—not observed).

The ROS generation of 4S was caused not only by 3O2 → 1O2 conversion but also by
biomolecules→ O2

•− production under green light irradiation. The fluorescent emission
of dihydroethidium (O2

•− probe) in degassed DW (10% fetal bovine serum) increased in
the presence of 4S and white light during 20 min (Figure S20e,f), which confirmed the
ROS generation in aggregate state and type I caused by the sensitive excited C=S bond and
amino groups [30]. The type I ROS generation, which helps the PSs work well in the hypoxic
condition, has been desired in recent years. On the other hand, the pyridine-2(1H)-thione
introduced in 4S can store the generated 1O2 in the light irradiation phase and thermally
release it in the dark phase (Figure 3a). In the presence of 4S, the UV–Vis absorption spectra
of the 1O2 detector (DPBF) quickly decay under white-light irradiation and slowly decrease
in the dark and 37 ◦C (Figure 3b). After the 940 s light/dark condition, its decreasing
of the UV–Vis absorbance of DPBF was similar to that of 3S in 40 s light irradiation.
Maintaining 1O2 release facilitates the killing of cancer in the dark. Besides that, C=S
boned-based chemosensors have been developed for detecting OCl− [31]. However, 3S and
4S shows stability in the presence of various ROS types and pH ranges, which is observed
by negligible change in UV–Vis absorption and FL emission spectra (Figures S22 and S23).
The stability of PS facilitates an efficient PDT action in cancer cell.
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3S (20 µM) and 4S (20 µM) under light/dark conditions.

3.2. In Vitro Experiment
3.2.1. Cell Imaging

Due to strong fluorescent emission (ΦF > 0.94), 3O and 4O may be usable for cell
imaging applications. We further examined their emissions in the aggregate state. Inter-
estingly, the fluorescent intensity of 3O and 4O was recovered with an increasing water
content (80–99%) in the THF solution (Figures 4 and S21), which indicates AIE properties
because of the restricted intramolecular rotation between the naphthalimide and morpho-
line groups—that is, the naphthalimide and benzene ring (Figure 1b). This also provides
alternative evidence of ROS generation of 3S and 4S in aggregate state due to their similar
structures. Encouraged by the excellent emission, we further evaluated the cellular uptake
of 3O and 4O in HeLa living cells by confocal fluorescent imaging. 3O exhibited a brighter
green emission than did 4O because of a stronger AIE effect (Figure 4). The cell imaging
and viability of HeLa was retained in the presence of 3O and 4O (0–50 µM) (Figures 5
and S22a,c), indicating their excellent biosafety and biocompatibility. On the other hand,
their structures introduced morpholine-lysosome targeting groups, which may be useful
as a lysosome-targeted fluorescent probe [28]. The emission signal of parent 3O and 4O
overlapped well with that of commercial LysoTracker deep red with a high Pearson’s
coefficient value (RP = 0.85 and 0.82, respectively) (Figures 6 and S25), suggesting specific
localization of 3O and 4O in lysosomes.

3.2.2. PDT in Normoxia and Hypoxia

To demonstrate their potential for photoresponsive therapy, we explored the anticancer
efficacy of 3S and 4S toward HeLa cells via methyl thiazolyl tetrazolium (MTT) assays.
The viability of HeLa cells was retained when 3S and 4S (0–50 µM) were increased without
light irradiation (Figure S22b,d), indicating the negligible dark cytotoxicity. Under light
irradiation, the viability decreased in the presence of 3S and 4S from 0 to 50 µM (Figure 7a,b).
At the 10 µM concentration, the viability of HeLa cells toward 3S and 4S was 63.9%
and 40.5%, respectively. Due to the specific localization of 3O and 4O in lysosomes, we
speculate that 3S and 4S with highly similar structures will destroy cancer cell lysosomes
under irradiation to induce severe apoptotic cell death [28]. Interestingly, 4S showed high
photocytotoxicity not only in normoxia but also in hypoxia, with a similar cell viability
(Figure 7c). The ROS generation of PSs in HeLa cells during PDT was confirmed by turn-on
of fluorescent emission of the DCHF-DA detector (Figure 8). The efficient PDT action of 4S
in both conditions can be explained by the dual Type I + II ROS generation because of the
efficient formation of triplet states in aggregate state [32], introduction of sensitive excited
C=S bond and amino groups [30], and thermal-induced releasing of 1O2 in the dark [29].
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Figure 6. Hela cells costained with (a) 10 µM 4O (λex = 405 nm, λem = 600 nm) for 30 min and
(b) 50 nM LysoTracker deep red for 1 h (λex = 647 nm, λem = 655 nm) in PBS and fluorescence images
acquired by confocal microscopy. (c) An overlay. (d) Colocalization analysis plot of the LysoTracker
and 4O. Pearson’s overlap coefficient, RP = 0.82.
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Figure 7. Viability of HeLa cells in the presence of (a) 3S and (b) 4S with and without light irradiation;
(c) viability of HeLa cells in the presence of 4S with light irradiation under normoxia and hypoxia.
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Figure 8. Fluorescent image of HeLa cell after incubation with (a) 3O and (b) 4O. Fluorescent image
of HeLa cells in the presence of DCFH-DA and 4S (a) before and (b) after irradiation.

4. Conclusions

We examined the photophysical properties and excited states of fluorophore (3O and
4O) and PSs (3S and 4S) by joint experimental/theoretical studies. 3O and 4O showed
intense fluorescent visualization in HeLa cells due to AIE effect, whereas 4S PSs exhibited
absorbing/releasing cycloreversion of 1O2 and strong ROS generation even in the aggregate
condition because of the strong ISC process and sensitivity of the excited C=S bond and
amino groups. 4S can exhibit a lysosome-targeted PDT efficiency in both normoxic and
hypoxic environments.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/bios12060420/s1, Figures S1–S16: NMR and Mass spectra data; Table S1:
Crystal data and structure refinement for 3O; Figure S17: X-ray result; Figures S18–S21: UV–vis
and Fluorescence spectra analysis; Tables S2–S5: Computational calculation results; Figure S22: Cell
experiment results.
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