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Abstract

Insulin resistance confers risk for diabetes mellitus and associates with a reduced capacity of the arterial baroreflex
to regulate blood pressure. Importantly, several brain regions that comprise the central autonomic network, which
controls the baroreflex, are also sensitive to the neuromodulatory effects of insulin. However, it is unknown whether
peripheral insulin resistance relates to activity within central autonomic network regions, which may in turn relate to
reduced baroreflex regulation. Accordingly, we tested whether resting cerebral blood flow within central autonomic
regions statistically mediated the relationship between insulin resistance and an indirect indicator of baroreflex
regulation; namely, baroreflex sensitivity. Subjects were 92 community-dwelling adults free of confounding medical
illnesses (48 men, 30-50 years old) who completed protocols to assess fasting insulin and glucose levels, resting
baroreflex sensitivity, and resting cerebral blood flow. Baroreflex sensitivity was quantified by measuring the
magnitude of spontaneous and sequential associations between beat-by-beat systolic blood pressure and heart rate
changes. Individuals with greater insulin resistance, as measured by the homeostatic model assessment, exhibited
reduced baroreflex sensitivity (b = -0.16, p < .05). Moreover, the relationship between insulin resistance and
baroreflex sensitivity was statistically mediated by cerebral blood flow in central autonomic regions, including the
insula and cingulate cortex (mediation coefficients < -0.06, p-values < .01). Activity within the central autonomic
network may link insulin resistance to reduced baroreflex sensitivity. Our observations may help to characterize the
neural pathways by which insulin resistance, and possibly diabetes mellitus, relates to adverse cardiovascular
outcomes.
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Introduction

The central nervous system monitors peripheral energy
balance via hormones that are actively transported across the
blood brain barrier [1–3]. Insulin, a hormone excreted by the
pancreas in response to increased blood glucose levels, has
receptors that are widely distributed throughout the brain [4].
Administration of insulin into the brain has a diverse range of
effects, including effects on food intake[5], cognitive
performance[6], autonomic outflow [7–9], and peripheral
infusions of insulin increase the ability of the arterial baroreflex
to alter peripheral sympathetic activity in response to changes
in blood pressure [10]. Insulin resistance (IR) is a pathological
state in which the effects of insulin on peripheral tissues are
reduced, primarily as a result of overeating, obesity and lack of
physical activity. As IR develops, the transport of insulin across
the blood brain barrier is reduced, thereby altering its ability to

affect the central nervous system [4,11]. Although it is
established that IR is associated with altered autonomic
activity, primarily due to increased sympathetic outflow [12,13],
no studies have examined activity in the human brain that may
account for this relationship.

A distributed network of brain regions play a role in
regulating the arterial baroreflex [14–16]. Within this network,
brainstem cell groups participate in the rapid and homeostatic
tuning of baroreflex sensitivity (BRS) to adjust heart rate,
cardiac contractility, and vascular resistance in response to
blood pressure oscillations via the autonomic nervous system
[17–19]. Hence, baroreceptor signaling is relayed via the
afferent limbs of the vagal and glossopharyngeal cranial nerves
to the nucleus tractus solitarius, which in turn projects to the
rostral and caudal territories of the ventrolateral medulla and
nucleus ambiguus. These projections enable a homeostatic
decrease in efferent sympathetic cardiac and vascular outflow

PLOS ONE | www.plosone.org 1 December 2013 | Volume 8 | Issue 12 | e83288

http://creativecommons.org/licenses/by/4.0/


that is coupled with increased parasympathetic cardiac outflow
in response to transient blood pressure elevations [14,16,20].
Although brainstem cell groups comprise a critical part of the
baroreflex arc, supramedullary areas within the forebrain are
able to exert modulatory influences over the baroreflex via their
reciprocal projections with preautonomic cell groups within the
brainstem. These regions include the hypothalamus [21],
amygdala [22], sensorimotor cortex [23], anterior cingulate
cortex, and insula [24,25]. Collectively, these regions comprise
core components of the so-called central autonomic network
(CAN)[26], which has been consistently linked to peripheral
measures of autonomic function in humans [27].

To date, no human research has tested whether alterations
in the CAN may link aspects of autonomic dysregulation, such
as altered baroreflex control, with alterations of circulating
insulin. Such a link is plausible insofar as several regions of the
CAN overlap with those that are also (a) sensitive to the effects
of insulin and (b) display altered activity in the context of IR,
which itself has been linked to reduced baroreflex control
[28–30] and adverse cardiovascular health outcomes [31].

In addition to their capacity for the efferent modulation of the
baroreflex, regions of the CAN are also involved in the afferent
monitoring of baroreceptor signaling [32,33]. In this regard, it is
noteworthy that IR is associated with cardiovascular and
autonomic alterations, including reduced arterial compliance
[34] and damage to vagal nerve fibers [35,36]. Hence, IR-
related alterations in peripheral BRS could also relate to
changes in activity within the CAN via afferent mechanisms.

Although a growing animal literature is documenting the
brain circuits that may link IR and baroreflex function, no
studies have examined the central nervous system pathways
that may statistically mediate such a link in humans. To test the
hypothesis that activity in the CAN could partially account for
the relationship between IR and BRS, we measured resting
cerebral blood flow (rCBF) using arterial spin-labeling perfusion
MRI and identified regions of the brain that statistically
mediated the relationship between IR and BRS. We
hypothesized that activity in regions within the CAN, as
measured by rCBF, would show associations with individual
differences in IR. Furthermore, we hypothesized that the
activity in these regions would be associated with spontaneous
BRS. Finally, a statistical mediation analysis was conducted to
identify brain regions that statistically accounted for any
observed relationships between IR and BRS.

Methods

Ethics Statement
This research was approved by the University of Pittsburgh

Institutional Review Board. Participants provided written
informed consent prior to participating in the study.

Participants
Participants were recruited by mass mailings to Allegheny

County, Pennsylvania, USA. Exclusion criteria included (i) prior
cardiovascular surgery (including coronary bypass, carotid
artery, or peripheral vascular surgery); (ii) self-reported history
of cardiovascular disease (including treatment for or diagnoses

of hypertension, stroke, myocardial infarction, congestive heart
failure, and atrial or ventricular arrhythmias); (iii) self-reported
current or past diagnoses of a substance abuse or mood
disorder as confirmed on interview using the Patient Health
Questionnaire [37]; (iv) chronic kidney or liver conditions,
diagnosed type 1 or 2 diabetes, or any pulmonary or
respiratory disease; (v) prior cerebrovascular trauma involving
loss of consciousness; (vi) prior neurosurgery or any
neurological condition; (vii) taking psychotropic, lipid lowering,
or cardiovascular medications; (viii) having claustrophobia or
metallic implants; or (ix) pregnancy (verified by urine test in
females). The University of Pittsburgh Institutional Review
Board approved all study procedures and informed consent
was obtained from all participants.

One hundred fifty-five participants completed the study
between 2008 and 2011. Five participants did not have blood
data, and 45 participants did not have fasting insulin values
that were detectable. Participants with missing data were
excluded from analyses. Participants with undetectable insulin
levels had lower waist circumference (t (153) = 3.48, p < .01),
fasting glucose (t (150) = 2.16, p < .05), triglycerides (t (150) =
3.53, p < .01) and higher HDL (t (150) = 2.74, p < .01). There
were no differences in age, sex or LDL between groups (all p
> .20). Additionally, eleven participants were excluded due to
poor MRI quality or excessive movement. Two participants had
extreme BRS values (3SD from the mean) and were excluded
as outliers. Thus, 92 participants had complete data and were
included in analyses. Participant characteristics are displayed
in Table 1.

Procedure
Participants completed two separate study protocols (median

intersession interval = 7 days, with MRI testing occurring first
across all subjects). Participants were instructed to abstain
from food, drink, exercise, caffeine and tobacco products for 8
h and alcoholic beverages for 12 h prior to both sessions. The
first session included a neuroimaging scan that included a
resting arterial spin-labeling perfusion protocol (described
below). The second session included continuous blood
pressure monitoring (described below) while in a plastic MRI
scanner replica.

Table 1. Participant characteristics (n = 92).

Variable Value
Age, yr 40.6 (6.4)
Sex (M/F), n (%) 48 (52)/44(48)
Waist Circumference (in) 36.95 (4.8)
Insulin (μU/mL) 8.29 (5.9)
Glucose (mg/dL) 90.34 (15.0)
Systolic Blood Pressure 126.55 (11.3)
Baroreflex Sensitivity (ln msec/mmHg) 2.13 (0.4)

M = male; F = female
Data are presented as mean (standard deviation) unless otherwise noted.
doi: 10.1371/journal.pone.0083288.t001
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BRS was quantified using the Finometer® system. The
Finometer uses a photoplethysmograph to detect, digitally
sample and store a continuous measure of estimated brachial
pressure. Finger arterial blood pressure first calibrated to
brachial blood pressure using an upper-arm cuff and corrected
to account for the height difference between the finger and
heart [38]. Data were visually inspected offline prior to analysis,
described below.

BRS was computed using the xBRS software package,
which uses a crosscorrelation, time-domain method to quantify
“spontaneous” associations between systolic blood pressure
and interbeat interval values [39,40]. BRS was computed by
cross-correlating systolic blood pressure and interbeat interval
in 10-s epochs using a delay ranging from 0 to 5 s and
providing up to six correlations for each delay and epoch. For
each epoch, the delay yielding (i) the highest correlation and (ii)
a coefficient of determination significant at p < 0.01 was
retained, and the respective regression slope was taken as the
BRS estimate in msec/mmHg. If these conditions were unmet,
a BRS estimate was not calculated. Resting BRS estimates
were averaged over the last 5 minutes of the 8 minute
baseline. As expected, BRS values were skewed and were
subjected to log-normal transformation.

Following an overnight fast, blood was drawn just prior to
MRI scanning. Serum was analyzed using a Synchron CX
chemistry analyzer (Beckman-Coulter, Brea, CA) using
reagents for glucose, triglyceride, HDL and total cholesterol.
LDL cholesterol values were estimated by subtracting the HDL
cholesterol level from total cholesterol. Insulin was quantified
using the Immulite Immunoassay System (Siemens). IR was
computed using Homeostatic Model Assessment of IR (HOMA-
IR) values, which approximates IR based on fasting glucose
and insulin levels [41]. Prior to analyses, HOMA-IR values were
natural log adjusted to reduce skew.

Brain Imaging Acquisition
Neuroimaging data were acquired on a 3T Trio TIM whole

body scanner (Siemens), equipped with a 12-channel, phased-
array head coil. Resting perfusion images were acquired with a
pulsed arterial spin-labeling sequence. For this sequence,
interleaved perfusion images with and without arterial spin
labeling were obtained over a 5-minute, 28-second period
using gradient-echo echo-planar imaging. The pulsed arterial
spin-labeling sequence used a modified flow-sensitive
alternating inversion recovery method [42], specifically applying
a saturation pulse 700 msec after an inversion pulse. To
reduce transit artifact, a 1000-msec delay separated the end of
the labeling pulse and the time of image acquisition. Resting
perfusion image acquisition parameters were: field of view:
240×240 mm (64x64 matrix); repetition time: 4000 msec; echo
time: 18 msec; and flip angle: 90°. Twenty-one slices (5 mm
thick, 1 mm gap) were acquired sequentially in an inferior-to-
superior direction for each brain image, yielding 80 total
perfusion images (40 labeled and 40 unlabeled; 3 initial
discarded images allowing for magnetic equilibration). Two
additional unlabeled (control) perfusion images using the same
parameters but a longer TR, 8000 msec were acquired as
reference for the equilibrium brain tissue magnetization.

Functional images were coregistered and normalized to
Montreal Neurological Institute (MNI) space via a T1-weighted
three-dimensional magnetization-prepared rapid gradient echo
anatomical image (field of view: 256 x 208 mm (256x208
matrix); repetition time: 2100 msec; inversion time: 1100 msec;
echo time: 3.29 msec; flip angle: 8 degrees, 192 slices; 1 mm
thick, no gap).

Brain Image Processing and Analysis
Data processing was completed using SPM8 (Wellcome

Trust Centre for Neuroimaging; http://www.fil.ion.ucl.ac.uk/spm/
software/spm8/). Resting arterial spin labeling perfusion and
the reference images were realigned to the first image of the
series by rigid body transformation and smoothed with a 12mm
full-width-at-half-maximum isotropic Gaussian kernel. Pairwise
difference images of label and control were calculated and then
submitted to the Standard Kinetic Model, along with the mean
reference images, to construct rCBF images [43]. This yielded
40 rCBF images for each participant, which were then
averaged and normalized to MNI space for analysis.

Mediation analyses were conducted using bootstrap
regression analysis of voxelwise observations (BRAVO)
software (https://sites.google.com/site/bravotoolbox/). When
examining the relationship between two variables (in this case,
IR and BRS), mediation analysis examines the amount of
covariance that is accounted for by an intervening variable (i.e.,
cerebral blood flow)[44]. Accordingly, two multiple regressions
were performed in mediation modeling: first the intervening
variable (rCBF) was regressed on the independent variable
(IR) to determine the effect of IR on rCBF (path a). The
dependent variable (BRS) then was regressed on the
intervening variable (rCBF) while controlling for the
independent variable (IR) to determine the effect of rCBF on
DV (path b). The mediation effect, or the indirect effect, of IR
on BRS via rCBF was calculated by the product of the effects
from the two regressions (path a*b). Bootstrapping is a
statistical resampling method used to estimate a statistical
parameter, in this case the mediation effect of the intervening
variable [45], through repeated resampling of the data [46]. In
the present study, we estimated whether rCBF in voxels
accounted for a significant portion of the covariance between
IR and BRS. Models were run with 2000 bootstrap iterations
and included resting systolic blood pressure, sex, age, waist
circumference and global rCBF as covariates. As a result, a
statistical parameter map of rCBF mediation to the relationship
of IR and BRS was constructed (i.e., p-value map), allowing for
the examination of voxel-wise mediation effect. Once voxels
were identified that mediated the IR and BRS Association, a
cluster threshold was applied to maintain a whole brain
threshold of p < .05. AlphaSim software (http://
afni.nimh.nih.gov/afni/doc/manual/AlphaSim) was used to
determine the appropriate correction threshold for the image
mask (p = .005, voxel size = 3mm, FWHM x, y, z = 12.0, 12.5,
13.6, 5000 iterations, k = 109).

Covariance of IR and BRS was examined by using
hierarchical linear regression analyses conducted in SPSS (v.
20; IBM, Inc., Armonk, NY). Potential confounding variables
(age, sex, systolic blood pressure, waist circumference) were
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entered in the first step and the variable of interest was entered
in a second step.

Results

Relationship between IR and BRS
The hierarchical regression of BRS on IR showed that IR

was predictive of BRS in the expected direction (b = -0.16, p <
0.05; Figure S1). The variance explained by IR was
independent of sex, age, waist circumference and resting
systolic blood pressure (Fchange (1, 85) = 6.48, p < .05, R2

change =
0.06).

Associations between IR and rCBF (Path a)
In a whole brain analysis, a large cluster encompassing

several regions displayed positive associations between IR and
rCBF (Figure S2, Table S2a). The cluster included the bilateral
somatosensory cortex, left parietal operculum reaching into the
insular cortex, left dorsolateral prefrontal cortex and bilateral
posterior cingulate cortex (k = 643, p < .01). In the whole brain
analysis using a corrected statistical significance threshold, no
association was seen between IR and rCBF in other
hypothesized components of the CAN, such as the amygdala,
hypothalamus and perigenual anterior cingulate cortex.
Likewise, no regions displayed inverse relationships between
IR and rCBF.

Associations between rCBF and BRS (Path b)
A number of regions showed negative associations between

rCBF and BRS (pcorrected < .05, Figure S3, Table S2b). A
substantial cluster of regions previously linked to baroreflex
regulation was associated with BRS including the right
amygdala and insula (k = 432, p < .001). Additional regions in
the CAN that displayed inverse associations with BRS included
left anterior cingulate cortex (k = 241, p < .001), right mid-
cingulate cortex (k = 647, p < .001), bilateral posterior cingulate
cortex (k = 134, p < .001) and a broad region encompassing
the right dorsolateral prefrontal cortex, insula and operculum (k
= 1794, p < .001). One cluster of activity in the right superior
temporal gyrus displayed a positive association with BRS (x, y,
z: 45, -52, 1; k = 151).

Regions that statistically mediate IR and BRS
associations (Path a*b)

rCBF in a distributed set of brain regions mediated the
relationship between IR and BRS (pcorrected < .05, Figure 1,
Table 2). As hypothesized, regions previously associated with
baroreflex regulation, as well as regions that show alterations
in activity in individuals with IR, statistically mediated the
relationship between IR and BRS (pcorrected < .05). These
regions included the right insula (k = 809, p < .001), as well as
bilateral perigenual anterior cingulate (k = 176, p < .01).
Additionally, bilateral regions of the dorsolateral prefrontal
cortex reached threshold (k = 295, p < .001), as did a cluster in
the posterior midcingulate cortex and posterior cingulate cortex
(k = 429, p < .001). In all cases, values were negative reflecting

a positive relationship between IR and rCBF, which in turn
predicted a decrease in BRS.

Discussion

Regional blood flow to brain regions involved in autonomic
regulation statistically mediated the inverse relationship
between IR and BRS. These regions included the perigenual
anterior cingulate cortex and insula. As such, the present
findings highlight the role of forebrain regions of the human
brain in linking alterations in BRS that accompany IR.
Additionally, a region encompassing the posterior midcingulate
and posterior cingulate cortices statistically mediated between
IR and BRS. Although these regions are generally not thought
to be strongly or directly involved in the regulation and
monitoring of autonomic activity [47], their functional
connections with other regions which are part of the CAN may
account for their statistical significance in the present analysis.
Specifically, the posterior midcingulate cortex has been shown
to have strong functional connectivity with the insula, whereas
the posterior cingulate cortex is functionally connected to the
perigenual anterior cingulate cortex [48]. A recent meta-
analysis of the neural correlates of autonomic function
suggested that the posterior cingulate cortex is part of a
network associated with parasympathetic control [27]. This
meta-analysis further indicated that markers of both
sympathetic and parasympathetic autonomic activity are
associated with activity in regions of the CAN, including the
anterior cingulate and insular cortices. Finally, both the insula
and midcingulate cortex were suggested to be associated with
indicators of autonomic activity across affective, cognitive and
somatosensory tasks, indicating their centrality in autonomic
monitoring and modulation across diverse behavioral states. In
aggregate, our findings would appear to agree with the main
results of this meta-analysis. However, the current study did
not examine functional or structural relationships between
regions that are presumably involved in central autonomic
regulation, leaving unclear how the interplay between
autonomic control regions relates to baroreflex function in the
context of insulin resistance. Accordingly, this will be an
important direction for future research. 

A notable finding of the present study is the degree of
overlap in between regions that mediate IR and BRS, and
regions that have previously been linked to autonomic
regulation. The perigenual cingulate cortex and insula are key
nodes in the CAN and their activity has been correlated with
changes in heart rate and blood pressure evoked through a
variety of methods including the Valsalva maneuver [49],
exercise [50], and cognitive tasks [15]. A growing literature is
also showing that these regions are sensitive to the effects of
insulin, and these effects may be moderated by individual
differences in anthropometric measures of relative adiposity or
obesity [51]. Notably, the present study controlled for waist
circumference, an indirect indicator of adiposity, suggesting a
unique relationship between IR and rCBF in cortical regions.

Regions such as the insula have been linked to functions
that are involved in homeostatic control and food intake [52].
Previous research has implicated the insula as a key node for
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interoception [53], and there are extensive interconnections
between the insula and cingulate cortex [54]. The present study
found a lateralized effect, and the meta-analysis noted above
suggested that right anterior insula might be particularly
involved in sympathetic regulation. However, the studies within
the meta-analysis included only measures of electrodermal
activity as a marker of sympathetic activity. Future research will
be needed to confirm any laterality effects and clarify the
significance with regard to autonomic function.

The insula is also a key component of a network of regions
involved in food reward [55] and exhibits altered activity in
obese individuals [56]. Previous work from our group has
demonstrated altered connectivity of the insular cortex in
conjunction with IR [57]. Further research is needed to clarify
whether the alterations in insular activity, in this case as
measured by rCBF, are the result of a loss of insulin signaling,

increased plasma insulin values that co-occur with IR, or are
the result of perception of autonomic activity. Additionally, it will
be important to extend this work to populations with diagnoses
of type 2 diabetes to understand how these relationships may
change as the body loses control of glucose regulation.

Notably, participants were free of diagnosed type 2 diabetes
and our findings held when controlling for other factors that
may relate to decreased insulin sensitivity, namely age and
waist circumference. These findings fit with earlier findings that
fasting plasma insulin relates to low BRS after adjusting for
body mass index, and the relationship between body mass
index and BRS was mediated by fasting insulin levels [28].
Although the present study did not identify whether the
changes in BRS were due to alterations in sympathetic or
parasympathetic activity, it is important to note that BRS is an
early and independent predictor of mortality risk [39,58]. As

Figure 1.  Regions that statistically mediated the relationship between insulin resistance (IR) and baroreflex sensitivity
(BRS).  Results presented are ‘path a*b’ regression coefficient output from the BRAVO mediation toolbox. Regions displayed
statistically mediated the relationship between IR and BRS after covarying for resting systolic blood pressure, age, sex, waist
circumference and global cerebral bloodflow. To correct for multiple comparisons, a cluster threshold was utilized (p-uncorrected = .
005, k = 109) to maintain a whole brain threshold of p < .05.
doi: 10.1371/journal.pone.0083288.g001
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such, utilizing BRS as a marker of autonomic dysregulation is a
particularly useful tool for identifying early autonomic
dysfunction in populations that have not yet progressed to
clinically significant levels of disease, such as type 2 diabetes.

The present study has several limitations that should be
noted. First, the present data are cross-sectional and therefore
causality cannot be inferred. Future studies employing
prospective designs or that manipulate circulating insulin levels
will help to better understand the temporal sequence of events
that contribute to the association between IR and BRS. It is
likely that the relationships between IR, brain activity and BRS
are complex and bi-directional, involving efferent and afferent
dynamics. Understanding the temporal relationships between
alterations of brain activity and peripheral physiology could
potentially offer opportunities for early identification of early
markers of dysregulation.

An additional limitation of the present study is the use of
HOMA-IR as a measure of IR. Fasting insulin and glucose data
(used to compute the HOMA-IR index) provide an estimate of
IR that is suboptimal compared to more sensitive measures
such as the hyperinsulinemic-euglycemic clamp. However, the
HOMA-IR index is a widely-used measure that provides
excellent correlation with more sensitive measures [59].
HOMA-IR values in the present study were comparable to
previous studies examining ranges of IR in relatively healthy
subjects, and 20% of the current sample had HOMA-IR values
> 2.77 consistent with the top quintile of IR in population
studies [60]. A significant portion of the sample was missing
insulin data, almost entirely because of values that were below
detectable thresholds in the context of the fasting protocol.
Future studies employing more sensitive measures of IR, such
as euglycemic clamps, will be necessary to fully characterize
relationships between IR and BRS in individuals with low levels
of IR.

The imaging protocol had several limitations that may have
affected the present findings. The 5mm slice thickness used
may not have been of adequate resolution to detect activity in

certain regions associated with autonomic regulation and food
intake, such as the hypothalamus. Also, the brainstem was
outside the field of view. Future studies should employ
specialized imaging methods for detecting brainstem activity
[61,62] to more fully understand alterations in brainstem and
forebrain components of the CAN that may be influenced by IR.
Further, the amount of spatial smoothing required for arterial
spin labeling studies may have also contributed to the lack of
findings in other regions of the CAN. Future studies utilizing
methods with increased spatial resolution may thus improve
our understanding of more discrete regions that explain the
relationship between IR and BRS. It will also be important for
future work examining network connectivity dynamics within
these brain systems to more fully understand how their activity
and interactions with each other are altered in conjunction with
IR. Finally, the present study did not examine structural brain
characteristics. It is possible that volumetric and other
structural factors may have contributed to partial-volume or
other effects on rCBF. For example, indicators of metabolic
dysregulation have been associated with volumetric and other
structural changes in several recent studies[63]. Understanding
how structural neural factors relate to functional neural
alterations that covary with IR and rCBF is therefore an
important future direction.

Conclusions

In summary, the present study replicated the finding that IR
inversely associates with BRS. A novel finding was the
identification of regions in the CAN whose blood flow dynamics
statistically mediated this relationship. These regions included
the insula and perigenual cingulate cortices. These results
suggest for the first time in humans that the central pathways
linking insulin resistance to baroreflex sensitivity include
forebrain regions involved in the homeostatic control of
autonomic and cardiovascular activity. Understanding how
insulin dysregulation relates to brain function may help

Table 2. Brain regions that statistically mediated the relationship between insulin resistance and baroreflex sensitivity.

Side Region Brodmann Area MNI Coordinates Number of voxels Peak intensity

   x y z   

R Insula, Dorsolateral Prefrontal Cortex 6, 4, 9, 13, 47, 22, 8, 3, 44, 38, 21, 46, 2, 42, 43, 1, 45 36 -1 55 809 -0.107

R, L Perigenual Anterior Cingulate 10, 11, 24, 32 0 47 -2 176 -0.065

L Postcentral Gyrus 4, 6, 21, 22, 40, 41, 42, 43, 41 -60 -16 13 126 -0.082

R, L
Posterior Midcingulate Cortex, Posterior
Cingulate Cortex

6, 23, 24, 31, 32 3 -10 37 429 -0.092

L Dorsolateral Prefrontal Cortex 2, 3, 4, 6, 8, 9 -27 32 46 295 -0.099

Greater insulin resistance (IR) was associated with increased resting cerebral blood flow (rCBF), which in turn was related to decreased baroreflex sensitivity (BRS). Next to
each left (L) or right (R) side is an approximation of the brain region as well as the Brodmann Area if applicable. Montreal Neurological Institute (MNI) coordinates indicate
the peak activation for each cluster: x = right (+) to left (-), y = anterior (+) to posterior (-), z = superior (+) to inferior (-). Clusters are derived from a whole brain analysis with
an uncorrected height threshold of p < .005 and extent threshold of k = 109. Peak intensity values in the final column are for the voxel with the strongest indirect effect (a * b)
and are derived from the probability maps generated from the BRAVO mediation toolbox. All regions displayed negative values reflecting the positive association between IR
and rCBF, which in turn predicted decreased BRS.
doi: 10.1371/journal.pone.0083288.t002
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characterize the pathways through which insulin resistance
may lead to cardiovascular autonomic impairments and
associated risk for adverse disease outcomes and premature
mortality.
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