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Abstract: Steroid Nuclear Receptors (SNRs) are transcription factors of the nuclear receptor
super-family. Estrogen Receptor (ERα) is the best-studied and has a seminal role in the clinic both as
a prognostic marker but also as a predictor of response to anti-estrogenic therapies. Progesterone
Receptor (PR) is also used in the clinic but with a more debatable prognostic role and the role of the
four other SNRs, ERβ, Androgen Receptor (AR), Glucocorticoid Receptor (GR) and Mineralocorticoid
Receptor (MR), is starting only to be appreciated. ERα, but also to a certain degree the other SNRs,
have been reported to be involved in virtually every cancer-enabling process, both promoting and
impeding carcinogenesis. Epithelial-Mesenchymal Transition (EMT) and the reverse Mesenchymal
Epithelial Transition (MET) are such carcinogenesis-enabling processes with important roles in
invasion and metastasis initiation but also establishment of tumor in the metastatic site. EMT is
governed by several signal transduction pathways culminating in core transcription factors of the
process, such as Snail, Slug, ZEB1 and ZEB2, and Twist, among others. This paper will discuss direct
regulation of these core transcription factors by SNRs in breast cancer. Interrogation of publicly
available databases for binding sites of SNRs on promoters of core EMT factors will also be included
in an attempt to fill gaps where other experimental data are not available.
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1. Introduction

Breast cancer is the most common cancer in women and a majority of cases (about three-fourths)
express the Estrogen Receptor (ERα). Most of these cancers co-express different degrees of the
Progesterone Receptor (PR) and the Androgen Receptor (AR). Some of the ER-negative breast cancers
express the AR and constitute a special category of those ER-negative cancers which have commonly
apocrine features on pathologic examination [1]. All three receptors, together with Glucocorticoid
Receptor (GR), Mineralocorticoid Receptor (MR) and a second nuclear receptor for estrogens termed
ERβ, comprise the steroid receptor sub-family of nuclear transcription factors. They display a
common protein structure with conserved domains, not only within the steroid receptor sub-family
but also with non-steroid receptors [2]. These domains include an amino-terminal activation domain
(Activation Function 1, AF-1), a DNA-binding domain, a hinge region and a carboxy-terminal
ligand-binding domain [3]. Response sequences on target gene promoters have similarities amongst
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the Steroid Nuclear Receptors (SNRs) [4]. The various SNRs regulate different sets of genes due to
additional factors such as the availability of their ligands, their own expression and post-translational
modifications that regulate their transcriptional activity and the availability of co-regulators such as
co-activators, co-repressors and pioneer factors that shape the overall effect of each SNR on the whole
genome scale in a particular cell by modifying the chromatin landscape and the ability of SNRs to
interact with it [5–7].

The roles of Epithelial to Mesenchymal Transition (EMT) and the reverse Mesenchymal to
Epithelial Transition (MET) processes as central enabling capabilities in cancer invasion and metastasis
have been confirmed over the last several years and involve the activity of a core set of transcription
factors (TFs) activated by signal transduction pathways in neoplastic cells [8,9]. The following sections
will discuss available evidence of direct regulation of transcription of EMT core transcription factor
genes by SNRs in breast cancer. Indirect regulations are also important but will not be considered
in detail in this overview, except in situations where their discussion will elucidate the discussion of
direct regulations. A further inquiry through publicly available promoter databases will be reported
on direct regulations where other experimental data are lacking in order to guide future investigations.

2. Epithelial to Mesenchymal Transition (EMT) and Mesenchymal to Epithelial Transition (MET)
in Breast Cancer

EMT is a process that physiologically takes place during normal embryonic development and
in adult tissue injury repair. In contrast to these two physiologic conditions where EMT serves
normal functions, cancer is a pathologic condition where EMT occurs [8]. During EMT in cancer,
transformed epithelial cells lose epithelial membrane adhesions, invade through the epithelium
basement membrane and acquire the ability to move on freely in neighboring tissue or to metastasize
to distant organs using vascular routes. Cells undergoing EMT, in addition to losing inter-cellular
junctions, lose epithelial cell polarity, gain a fibroblast-like shape, down-regulate epithelial markers
such as E-cadherin, claudins, occludins and cytokeratins, and up-regulate mesenchymal markers such
as S100A4 (also called FSP1(Fibroblast-Specific Protein 1)), vimentin and cadherin N [10].

EMT occurring in cancer may be incomplete both in the individual cell and the cell population
level and only part of the EMT markers may be expressed in small sub-sets of cancer cells [11].
Incomplete EMT, as, for example, seen during the process of collective migration, allows cells to detach
from the epithelial site, acquire some mesenchymal features, but still move as small groups of few cells
without losing adhesions between the members of the group [11]. Further witness of the role of EMT as
intrinsic to the malignant process is borne by the discovery that beyond specific EMT-inducing factors,
such as the core EMT transcription factors Snail and Slug, a multitude of general cancer-regulating
pathways are important EMT regulators [9]. Examples specifically pertinent to breast cancer include
Her2/Neu receptor-activated pathways as well as ER and PR receptors, discussed in subsequent
sections. Due to the incompleteness of the EMT process in cancer, neoplastic cells may more readily
revert back to an epithelial state through the reverse process of Mesenchymal to Epithelial Transition
(MET), which participates in metastasis establishment in remote organs [12]. The EMT circuitry in
transformed cells closely co-operates with the pluripotency network of cancer stem cells in order to
obtain the required plasticity for alternating epithelial and mesenchymal states [13].

Several pathways activated in cancer have the ability to activate a set of core EMT transcription
regulators which eventually lead to E-cadherin down-regulation and cell-cell adhesion dissolution.
EMT core factors include Snail1 and Snail2 (also called Slug), ZEB1 (also known as TCF8 or δEF1) and
ZEB2 (also known as SIP1 or Zfhx16), Twist, FoxC2, TCF3 (also known as E47 or E2A), Goosecoid
homeobox (also called SAMS) and LBX1.

Although overlapping, the genomic effects of different EMT factors are distinct [14]. In breast
cancer, the expression of EMT core factors supports different phases of EMT. For example, involvement
of Snail1 appears to be instrumental in the initiation of the process while Twist1 becomes essential later
during EMT establishment [15]. ZEB proteins are additional factors required for EMT maintenance [16].
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Most information on EMT transcription in breast cancer refers to the triple-negative basal-like sub-type
associated with BRCA1 mutations which increase Slug protein stability [17] but data on ER-positive
cancers are also available.

3. SNRs and EMT in Breast Cancer

SNRs constitute a sub-family of the nuclear receptor family which has 48 members in humans [4].
The sub-family has six members with differing importance in breast cancer. While ERα is unarguably
the most extensively studied protein in the disease and has the distinction of being the first successfully
targeted by a treatment protein with the introduction of tamoxifen 40 years ago, PR and AR also
have recognized but more controversial roles. ERβ has the peculiarity that, despite being a target of
treatment, given that current hormonal therapies inhibit its activity in parallel with the activity of
ERα, it is not currently evaluated clinically as a response marker. GR and, even more, MR, although
not completely ignored, have hardly obtained the attention of the other NRs and their clinical role
as contributors to pathogenesis of the disease or targets to therapy is less well-defined [18]. All six
SNRs bind DNA as dimers and the binding sequences (Response Elements, REs) on the promoters are
similar [4]. ERα consensus RE (ERE) consists of two tandem examers with the sequence 5’-AGGTCA-3’
in an inverted repeat configuration divided by a spacer of three nucleotides (IR3). ERβ has a similar
binding sequence to ERα but the second examer requirements are less strict in certain positions.
The four other NRs use also IR3 configuration in their binding but their recognized examer is different
from ER in the third and fourth nucleotides and consists of the sequence 5’-AGAACA-3’. In addition,
AR and PR may use a direct repeat configuration with a three-nucleotide spacer (DR3) as an alternative
to IR3 [19]. Although the presence of a binding site of a SNR is important for the regulation of a target
gene, it has to be recognized that a regulation may be indirect through a different transcription factor
whose expression is regulated by the SNR. Alternatively, there are occasions where SNRs regulate their
targets by being tethered to another transcription factor such as AP-1 or Sp1 [20,21]. Moreover, the
presence of a RE is not always sufficient for a regulation to occur, as additional prerequisites have to
be fulfilled such as expression of the SNR itself in a given breast cancer cell and a permissive open
chromatin configuration obtained at least partially through binding of pioneer factors that guide SNRs
to sub-sets of their targets [22].

3.1. ERα

ERα is expressed in the majority (about three-fourths) of breast cancers. The degree of expression,
though, varies significantly both between different patients with ER-positive disease and in different
cells of the same cancer. Currently, all breast cancer patients with ER expression in more than 1%
of their cancer cells are treated as ER-positive and hormonal manipulations are included in their
adjuvant treatment schedules. An example of differential expression of ER in cells of the same breast
cancer is provided by the presence of ER-negative stem cells in ER-positive cancers which mimics
the normal epithelial breast tissue hierarchy [23–25]. Experiments using human embryonic stem
cells expressing ERα and cultured in the presence of estrogens in vitro have confirmed that ERα
activity is associated with differentiation and promotes the epithelial phenotype [26]. As it will be
discussed in next sections, this is due in part to direct suppression of core EMT factors. In addition,
ERα suppresses EMT through suppression of EMT, promoting signalling transduction cascades such
as TGFβ and NF-κB [27]. Knock-down of ERα by siRNA or by lentiviral-transfected shRNA in
ERα-positive breast cancer cells leads to EMT and increased migration and invasion [28,29]. The effect
of estrogen-activated ERα on TGFβ signalling down-regulation is mediated by binding to Smad2 and
Smad3 and promoting their proteasome degradation [30]. This would impede the growth-inhibiting
and EMT-promoting effects of the TGFβ cascade and favour the epithelial phenotype but also accelerate
cancer cell growth, both known effects of ERα signalling in breast cancer (Figure 1). Changes in
TGFβ signalling between normal and cancerous ER-positive cells have been proposed to explain
differences in their proliferation status [31] but may also explain the EMT suppressing effect of ERα
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in ER-positive cancers. On the other hand, there is an inverse correlation of ERα expression and
NF-κB sub-unit RelB expression in breast cancer cell lines and human breast cancer samples [32]
(Figure 1). Suppression of ERα in ER-positive MCF7 cells by siRNA leads to up-regulation of RelB
and the increased expression is associated with a mesenchymal phenotype, vimentin induction,
E-cadherin suppression and increased migration in matrigel assay [32]. Interestingly, the same group
has reported a reciprocal regulation whence RelB represses ERα expression [33]. Both Snail1 and ZEB1,
which are activated in breast stem-like cells, suppress ER expression [34,35] and in the case of Snail1,
NF-κB signalling is involved [35]. Another pathway through which ERα suppresses EMT involves
up-regulation of protein MTA3 (Metastatic Tumor Antigen 3) which is a suppressor of Snail and other
EMT proteins [36].
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Figure 1. Pathways leading to EMT regulation by SNRs ERα, PR and AR. Transcriptional activity
affecting EMT may be coupled with proteasome recycling, and thus the relationship of EMT regulation
and receptor expression may not be straightforward. Arrows denote activation and reverse T signs
denote inhibition.

3.2. ERβ

ERβ is transcribed from a gene at human chromosome locus 14q23, a different chromosomal
location from the ERα gene which is situated at chromosome 6q25 [37]. ERβ is the main receptor
expressed in normal mammary epithelium [38]. The two SNRs have very high homology (96%)
in their DNA-binding domain and significant homology also in their ligand-binding domain [39].
Thus, they bind natural agonists and drug antagonists with similar affinity. Nevertheless, and
despite their high homology, their binding sequence requirements are slightly different, as mentioned.
In breast cancer, there is a high correlation of ERα and ERβ expression and most ERα-positive
cancers (55% of the total number of breast cancers) also express ERβ (Figure 2). The remaining
ERα-positive breast cancers (about 15% of total breast cancers) are ERβ-negative. The ERα-negative
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breast cancers are equally divided between ERβ-positive and ERβ-negative. In ERα-positive cancers,
ERβ has a modulating activity, acting as dominant negative regulator and reducing ERα-dependent
transcription [37]. Another immunohistochemical study found only half of luminal cancers to express
ERβ, and that was true also for about 40% of basal-like carcinomas [40]. In this study ERβ was a
negative prognostic factor for overall survival. Still another study affirmed a somewhat lower ERβ
positivity in 33% and 25% of ERα-positive and -negative breast cancers, respectively [41]. In the
cohort with ERα-positive cancers that received tamoxifen treatment, ERβ expression was associated
with an improved recurrence-free survival. In vitro studies confirmed that treatment of ERα-positive
breast cancer cell lines with ER inhibitors produced an enhanced inhibitory effect when ERβ was
co-expressed [41]. In contrast, ERα-negative cell lines with ERβ expression were not inhibited by ER
inhibitors but were inhibited by ERβ-specific agonists (Figure 3). In the same vein, genomic studies
have shown that the transcriptomes of the two ER receptors overlap significantly but can be modified
by the each other’s presence [42]. Importantly for EMT, in MCF7 breast cancer cells transduced with
the receptor, ERβ regulates many components of the TGFβ pathways, resulting in suppression of the
TGFβ cascade and up-regulation of the BMP cascade through up-regulation of BMP7 [42]. Overall,
these effects result in EMT suppression. A similar genomic study that used another breast cancer
cell line, T47D, confirmed only a partial overlap of the two ER receptors transcriptomes but failed to
confirm the extensive role of ERβ transcription on TGFβ signalling [43]. Experimental differences
notwithstanding, these results may pinpoint the importance of the specific cellular environment for
specific gene regulation. The above data of ERβ expression in normal mammary glands as well as
the inhibitory effects observed with its activation in the absence of ERα and the suppression of the
TGFβ pathway that it mediates argue for a negative effect of ERβ for EMT and a tumor-suppressor
and anti-metastatic role in breast cancer. In ERα-positive cancers, the presence of ERβmay, at least in
certain occasions, act as an EMT promoter by interfering with ERα activity, but, on the other hand, due
to this interference with ERα activity, ERβmay sensitize to hormone-blocking agents by setting ERα
activity to a lower level that would be more easy to inhibit.
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3.3. PR

PR expression is observed mainly in ER-positive breast cancers [44]. There is some controversy
about the role of PR in breast cancer, given that progesterone is pro-proliferative in the normal breast
and hormone replacement therapy which includes progestagens in addition to estrogens increases
the risk of breast cancer in postmenopausal women [45]. Despite this controversy, most data agree
that ER-positive/ PR-negative or low breast cancers align with the genomic luminal B sub-type
and are associated with inferior clinical outcomes compared with luminal A cancers with high PR
expression [46]. Part of the controversy regarding the role of PR in established breast cancer stems
also from the fact that PR expression does not completely correlate with its activity and indeed it
was proposed that the most transcriptionally active form of PR is unstable due to fast proteasome
degradation and would not be captured by standard immunohistochemistry [47] (Figure 1). Besides
being a marker of ER transcriptional activity as a target gene of ER, PR may also have profound effects
on the ER transcriptome by decreasing the availability of transcription factor AP1, an ER co-factor, by
inducing phosphatase MKP-1 (MAPK Phosphatase 1, also known as DUSP1), an inhibitor of the MAPK
cascade that activates AP-1 [48]. In addition, this constitutes a negative feedback loop because MAPK
positively affects PR transcriptional activity by phosphorylating the receptor at serine 294 residue [49].

A physiologic role of PR in normal mammary glands during pregnancy and lactation in mice
is mediated by junctional effects [50]. During pregnancy, high progesterone levels lead to increased
PR activity that contributes to suppression of differentiation towards a lactation-capable epithelial
specialized cell by suppressing production of milk proteins such as casein (Figure 3). In addition,
PR activity helps keep tight junctions between mammary cells loose, a fact that facilitates motility
during remodelling of the gland. After parturition, the precipitous drop of circulating progesterone
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levels leads to both induction of lactation and closure of the tight junctions to allow milk to
accumulate in the ducts [51]. Several components of cascades involved in EMT, such as Wnt4 of
the Wnt/β-catenin cascade, RANKL, a ligand of the NF-κB cascade and Id4, involved in regulation of
EMT factor TCF3/E47, are induced by PR, contributing to the physiologic role of PR during mammary
alveologenesis [52–54]. These physiologic PR effects may be usurped during EMT of cancer to promote
loss of tight junctions and to enable motility and metastasis of transformed cells.

Suppression of E-cadherin and induction of EMT was reported to be mediated by activation
of the B isoform of PR (PR-B) in vivo in rat mammary tumors and in vitro in human cell lines [55].
PR-B is the main isoform in normal mammary development, while PR-A, transcribed from the same
gene but from an alternative promoter, lacks the 165 aminoterminal amino acids and acts as a PR-B
repressor [56]. Nevertheless, suppression of E-cadherin by PR-B was an indirect effect through
activation of the Wnt-β-catenin pathway, a well-known E-cadherin regulator. In contrast, activation of
PR with synthetic progestin promesterone had no effect on induction of EMT core factors Snail and
ZEB1 [55].

Overall, PR expression and activity favours junctional resolution and EMT. The apparent
positive prognostic influence of PR expression in ER-positive cancers may be due to robust ER
activity in these cancers, implied by the fact that PR is an ER target gene, and in addition,
by the fact that strong PR expression, as detected by immunohistochemistry, may denote,
counter-intuitively, a less transcriptionally active protein, given that transcriptional activity is coupled
with proteasomal degradation.

3.4. AR

AR is expressed in a sub-set of ER-negative breast cancers but also in an even more significant
proportion of ER-positive cancers. In a series of triple-negative breast cancers, using a cut-off of 10%
to determine AR positivity, it was shown that about 20% of patient tumors were positive for AR [57].
In contrast, another series showed a higher (40%) positivity of AR in triple-negative tumors [58].
A similar percentage was seen in another study which also confirmed that ER-positive cancers had
a much higher AR positivity at 83% [59] (Figure 2). A meta-analysis of 19 studies that included
7693 patients showed 74.8% of ER-positive patients to be concomitantly AR-positive while 31.8% of
ER-negative patients were AR-positive [60]. In addition, AR expression was a good prognostic marker
irrespective of ER expression.

AR activation by dihydrotestosterone treatment in breast cancer cells has been reported to
directly suppress the E-cadherin promoter in an artificial transfection system in breast cancer cell lines
and favour metastatic spread in vivo in mice [61]. ER-positive cell lines with epithelial morphology
displayed a mesenchymal morphology when transfected with AR and treated with dihydrotestosterone.
In addition, a binding site for AR was characterized in the E-cadherin gene promoter (Figure 1). Thus,
AR may have EMT-promoting effects through this suppression and even independently of any effects
on EMT core transcription factors. These results are in contrast with the above-discussed absence
of direct induction of E-cadherin by PR, despite the similar binding sequence requirements of the
two steroid receptors, and speak again for the importance of the many additional factors regulating
transcription initiation that are required in order for transcription to proceed. In addition, even subtle
deviations in certain nucleotide sites of binding sequences may affect the binding of one receptor to a
specific promoter more than the binding of another [19].

Interestingly, there was no correlation of AR with E-cadherin expression or DFS (Disease-Free
Survival) in the aforementioned study of triple-negative cancers [57]. In addition, the fact that AR
expression is associated with a good prognosis in all sub-types of breast cancer may imply that it has
tumor-suppressing and thus anti-metastatic and EMT-suppressing effects. Nevertheless, as evidenced
from the case of ER which has tumor-promoting effects, despite its expression in less aggressive breast
cancers and EMT-suppressing activity, this may not be entirely correct. Moreover, AR transcription is
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associated with turnover of the receptor in the proteasome, similarly to PR activity [62]. Thus, a higher
expression by immunohistochemistry may imply higher stability due to lower transcriptional activity.

3.5. GR

GR displays both anti-proliferative and anti-apoptotic effects in mammary cancer and
pre-cancerous cells [63,64]. GR expression is seen in about 60% of breast cancers and appears to
be associated with ER expression with about 70% of ER-positive tumors expressing GR compared
with only about 30% of ER-negative tumors [65] (Figure 2). A gradual decrease of GR expression
from normal breast tissue to in situ carcinoma to invasive carcinoma has been described [66,67]. GR
is able to bind to ER promoter sites in a manner facilitated by FoxA1 and AP1, and displace ER and
repress promoter activity [68,69]. These effects are dependent on both ER and GR receptor ligation
and may have important implications for glucocorticoid influence on the global ER program and also
specifically on EMT in ER-positive cancers. A mutual modulation of ER and GR DNA binding has
been confirmed in another genomic study which also confirmed a role for AP1 in these interplays [70].
Regarding ER-negative carcinomas, functional disabling of GR signalling is evident in tumors with
BRCA gene mutations or BRCA dysfunction [71]. BRCA1 has a role in the suppression of Twist and
its silencing leads to Twist de-repression and EMT [72]. In addition, BRCA1 is a post-translational
suppressor of Slug [73]. Thus, EMT promotion in triple-negative basal-like breast cancer cells that
have BRCA1 dysfunction may be independent of GR. Nevertheless, EMT was also identified as one
of the primary processes regulated by GR in a ChIP-seq study of ER-negative MCF10A breast cancer
cells immortalized by c-myc transfection [74]. Interestingly, meta-analysis of data from publicly
available, clinically annotated transcriptome studies showed that the prognostic information of GR
expression was discordant between ER-positive and -negative patients. In ER-negative patients higher
GR expression conferred a worse prognosis while in ER-positive patients the reverse was true [74]
(Figure 3).

During lactation GR co-operates with prolactin-induced transcription factor Stat5 to induce
transcription from the casein promoter [75]. In this respect GR is antagonistic to the action of PR which,
as mentioned above, suppresses lactation (Figure 3). Whether this is true for other actions of PR, such
as its effects on intercellular junctions that affect cell motility, remains to be confirmed. A study with
MDA-MB-231 breast cancer cells that are ER- and PR-negative but GR-positive suggests that this may
be the case in some cellular environments as treatment with corticosteroids leads to an increase in focal
adhesions and a cobblestone-like morphology, implying a MET effect in this setting [76]. This is also in
contrast to what was shown in MCF10A cells as discussed above, but argues again for the importance
of cellular context. MDA-MB-231 cells line belongs to a sub-set of triple-negative breast cancer cell
lines that have been genomically characterised as mesenchymal as opposed to other triple-negative cell
lines, such as MDA-MB-468, which are characterised as basal-like [77]. These latter cell lines have been
reported to be less sensitive to GR inhibition, possibly due to the functional disabling of the steroid
receptor occurring with BRCA1 dysfunction [78]. These studies suggest that GR may have divergent
effects depending on ER expression in breast cancer. An additional important result to derive from
these data is that promotion of EMT or MET by a transcription factor in a specific setting is not directly
related to better or worse prognosis, respectively, but could rather be associated more with facilitation
by the factor in question of the passage of a malignant cell from one state to the other in order to be
able to metastasize and establish itself in the metastatic site [79].

3.6. MR

MR has overlapping effects with PR and GR in breast cancer and can substitute for GR during
mammary development [76,80]. Thus, it is expected that it may modulate EMT, although this has not
been specifically studied. In kidney epithelial cells, where its main physiologic role resides, stimulation
of MR with aldosterone has been implicated in promotion of fibrosis, a hallmark of EMT in tissue
injury [81]. Down-regulation of E-cadherin and up-regulation of Smooth Muscle Actin (SMA) were
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observed after ligand aldosterone exposure in human proximal tubule cells [82], but whether a similar
regulation occurs in the breast has not been studied. This would be opposite to the GR effect despite
their similar DNA target sequences and reinforces the fact that extrapolations to different cellular
contexts are not justified given the high influence of these contexts for the final outcome of a nuclear
receptor’s actions.

From these data it becomes apparent that SNRs have regulatory roles in EMT and affect the
process both positively and negatively with implications for the promotion of the reverse MET process
as well. The role of ERα in EMT suppression is mediated by both indirect mechanisms but also direct
effects on promoters of core EMT factors which will be discussed in subsequent sections. Among the
other SNRs, effects are divergent depending on ERα expression.

4. Snail1 and Slug and Regulation by SNRs

Snail1 and Slug (Snail2) are zinc finger-containing transcription factors of the C2H2 type that
promote EMT by suppressing expression of E-cadherin and other adhesion molecules. Both proteins
bind E-box sequences with the consensus 51-CANNTG-31 in the promoter of the E-cadherin gene
with their zinc fingers [83]. Snail1 is a more potent E-cadherin suppressor. Both Snail proteins as
well as TCF3 are expressed in the branching sites during normal mammary morphogenesis and are
necessary and sufficient for induction of the process [84]. Snail1 and Slug protect cells in mammary
tubules undergoing branching from apoptosis induced by p53 and BID [84]. Snail1 also protects
non-transformed human mammary epithelial cells from anoikis [85]. Snail1 inhibition, on the other
hand, correlates with down-regulation of RhoA, a GTPase that promotes motility [86]. Both Snail
family members are expressed in breast cancer at the mRNA and protein level [13,87,88].

Activation of ERα by estrogen ligation in breast cancer cell lines leads to direct repression of the
Slug promoter as the liganded nuclear receptor attracts a repressor complex which includes histone
deacetylase 1 and N-CoR (Nuclear Co-Repressor) but not SRC-3 (Steroid Receptor Coactivator 3)
or IKKα in MCF7 breast cancer cells [89]. Three ERα half binding sites have been identified in
the Slug promoter, but it remains unknown whether one or more of them is the actual required
binding site. Of note, a search for full sites in the three human promoters of Slug listed in TRED
(Transcriptional Regulatory Element Database, https://cb.utdallas.edu/cgi-bin/TRED/) did not
disclose any ERα-binding sequences. Slug suppression in ERα-transfected breast cancer cells treated
with estradiol up-regulates E-cadherin expression and decreases their invasiveness in an in vitro
assay [90]. In contrast, when ERα was knocked down in cells initially expressing it, Slug was
up-regulated and cell morphology was altered to a more fibroblast-like phenotype [90]. In addition to
direct suppression, ERα suppresses Snail proteins indirectly through transcriptional repressor MTA3
in the case of Snail and through inactivation of GSK3 kinase in the case of Slug [90,91]. In this last study
that showed Slug suppression by ERα, Snail was activated, although this effect could not overrule
Slug suppression which led to EMT promotion [90]. Moreover, in another study using a different
breast cancer cell line T47D, ERα in co-operation with SRC-3 up-regulated Snail and suppressed
E-cadherin [92]. Thus, ERα signalling may have divergent effects in Snail protein regulation, depending
on the cellular context and co-activators present. It also has to be considered that Snail proteins are
regulated by multiple factors and ERα is not their sole regulator. Multiple parallel regulations lead
to clinical cases where high levels of Snails expression are observed in breast cancers with high ERα
content [93]. This may additionally be due to the fact that expression of ERα is not always associated
with functional transcriptional competence.

AR has a role in EMT induction in benign epithelial prostate hyperplasia cells and this effect
appears to be mediated through TGF-β signalling and Snail induction [94]. In prostate cancer cell
lines expressing AR, treatment with androgens led to significant induction of Slug within 2 h of
treatment, suggesting a direct up-regulation. This effect was not observed in AR-negative lines or after
knock-down of AR with siRNA [95]. No experimental data are available to ascertain an effect of AR
in Snail family regulation in breast cancer cells. In fact, studies have shown significant differences of
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the AR actions between breast and prostate cells and, thus, data from the prostate cannot be directly
extrapolated to breast cancer [96].

An in silico investigation of the human Snail and Slug gene promoters listed in the TRED and EPD
(Eukaryotic Promoter Database, www.epd.vital-it.ch) promoter databases was performed using the
binding sequences listed in the JASPAR database. The database enlists binding logos for ERα, ERβ,
AR and NR3C1 (GR). It does not list PR and MR, but their binding sites are similar to AR and GR,
respectively, as discussed previously. This search disclosed several binding sites for ERβ and GR in
promoters of both Snail family transcription factors (Table 1). As mentioned above, no full sites for
ERαwere identified in Slug promoters and only a single site was identified in Snail promoters (Table 1).
AR has several putative binding sites in Slug promoters but only a few in Snail. Overall, these data
would argue for ERβ and GR (and in the case of Slug, for AR) being putative, more important Snail
and Slug regulators than ERα.

Table 1. Number of binding sites of Steroid Nuclear Receptors (SNRs) in the different promoters
of EMT core transcription factors Snail, Slug and ZEB1 and ZEB2, listed in the TRED and EPD
databases. Progesterone Receptor (PR) and Mineralocorticoid Receptor (MR) appear in parentheses in
the Androgen Receptor (AR) and Glucocorticoid Receptor (GR) column headings, respectively, as they
have the same binding sites. In the last column, the number of promoters with clusters (more than
three) of binding sites for each SNR (ERα/ERβ/AR/GR) is presented.

Factor Database Promoter ERα ERβ AR (PR) GR (MR) Clusters

Snail TRED 1 0 3 2 4 0/3/0/2
2 1 7 1 3
3 0 3 1 2

Slug TRED 1 0 7 4 4 0/2/2/3
2 0 6 5 4
3 0 0 2 7

ZEB1 TRED 1 1 7 2 6 0/4/1//5
2 0 4 3 8
3 1 7 2 6

EPD 1 0 4 1 5
2 0 1 0 3

ZEB2 TRED 1 0 2 2 4 0/1/3/4
2 0 2 3 3
3 0 3 4 7

EPD 1 0 1 1 2
2 0 1 7 4

An additional investigation was performed using the Transcriptomine tool, a nuclear receptor
target gene database, offered by Nuclear Receptor Signaling Atlas (NURSA) to interrogate publicly
available data from microarray experiments (www.nursa.org). An interrogation of the database for
target genes with expression increase or decrease by at least two-fold in human mammary tissues or
cell lines disclosed regulations of several EMT core transcription factors in experiments using breast
cancer cell lines and manipulations of ERα and ERβ, but no experiments with the other SNRs were
available. Results from this interrogation relevant to Snail and Slug are discussed in this section and in
appropriate subsequent sections for each core factor wherever significant regulations were present.
In MDA-MB-321 ERα-negative cells transfected with ERα, activation by estradiol treatment for 24
h led to Snail up-regulation over 11 times greater than compared with estradiol-untreated cells [97].
Given the exposure timing, this may represent an indirect regulation. Additional experiments were
performed with the same cell line transfected with a mutant ERα that displays significantly decreased
ability to bind EREs but an increased GRE binding. Activation of these mutant transfectants by
estradiol exposure for 2 to 24 h led to an up-regulation of Slug consistently at all time points by
2- to 2.7-folds. In contrast, in MCF-7 cells that express endogenous ERα, knock-down of the receptor
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led to up-regulation of Slug by 30-fold [28]. A smaller increase of Slug was observed when MCF-7
cells transfected with ERβ were treated with estradiol [42]. These data speak for a possible direct
up-regulatory effect of GR for Slug (at least in an artificial transfection system) and a down-regulatory
effect of ERα in ERα-positive cells, partially antagonized when ERβ is present.

5. ZEB1 and ZEB2 and miR200 Family

ZEB1 and ZEB2 are zinc finger transcription regulators that contain a homeodomain flanked
by two zinc finger domains. Similar to the two Snail proteins, they promote EMT by binding to
DNA through E-boxes of target gene promoters such as E-cadherin [98]. Their function is inhibited
by the miR-200 family of miRs which bind multiple sites on the 3’-UTRs of their mRNAs, leading
to mRNA destruction, and promote the inverse process MET [99]. The miR-200 family consists of
two clusters transcribed from two chromosomal loci. miR-200a, miR-200b and miR-429 genes are
located in human chromosome locus 1p36 while miR-200c and miR-141 genes are in chromosome
12p13 [100,101]. In addition to down-regulation of ZEB1 and ZEB2 mRNAs, they also have several
other targets throughout the transcriptome and their action leads to a coordinated maintenance of the
epithelial phenotype [102]. There exists a double-negative feedback loop, as ZEB1 binds E-boxes in
miR-200 promoters and suppresses their transcription [103].

ZEB1 is induced by estrogens with kinetics consistent with a direct regulation of transcription
by ERα in various organisms and tissues [104,105]. Nevertheless, it was not induced by estrogens in
human mammary cancer cell lines MCF7 and T47D [106]. Additionally, ZEB1 was not induced by
estrogen treatment in OVCAR3 and Caov-3 ovarian cancer cell lines, but it was promptly induced
after one hour in a different ovarian cancer cell line, OV266 [106]. These data support a cell-dependent
ZEB1 regulation by estrogens even in the same cancer type. A study that examined miR200c
expression in patients with breast cancer found no correlation of the expression of this miR-200 family
miRNA with either ER or PR positivity [107]. A similar percentage of ER-positive and ER-negative
patients were expressing high or low levels of miR-200c and the same was true of PR-positive and
-negative patients [107]. In another study, though, the expression of miR-200 family mRNAs was
decreased in clones of MCF7 cells resistant to the ER modulator tamoxifen and to ER down-regulator
fulvestrant [108]. Parental cell line cells were sensitive to these agents and expressed a higher level
of these miRs. Thus, an association of miR-200 expression with ER expression and function may be
present in some cellular contexts, similarly to ZEB expression.

In a study employing breast cancer cell lines expressing one of the two isoforms of PR, either PR-A
or PR-B, ZEB1 was found to be up-regulated specifically by PR-B [109]. This study used an artificial
system with transfection of either of the two PR isoforms in a breast cancer cell line not expressing
endogenous PR. ZEB1 was induced by 3.6 times when cells transfected by PR-B were treated with
progesterone, while, as expected, no up-regulation was seen in cells transfected with PR-A, given that
this isoform may not interact with DNA by itself.

ZEB1 is induced by AR in prostate cancer cells and in triple-negative breast cancer cells [110,111].
Similar to the induction by estrogens, there were discrepancies in different cellular environments in
breast cancer, with a correlation of AR and ZEB1 expressions being evident in ER-negative but not in
ER-positive cells [111]. A reciprocal regulation is present with ZEB1 inducing AR. Response elements
of each transcription factor are present in the promoter of the other. Two Androgen Response Elements
(AREs) in the ZEB1 promoter are both required for ZEB1 induction by androgens in an artificial
promoter transfection system in prostate cancer cells [110]. In contrast, androgens do not induce ZEB1
in an AR-positive prostate cancer cell line. The authors of the study suggest that induction of ZEB1 is
seen by androgens in studies employing exogenous promoter constructs because these constructs do
not carry the 3’-tail used by miR-200 family members, while the endogenous mRNA species fail to
show androgen-induced up-regulation because they are promptly degraded by miR-200s [110].

Evaluation of both ZEB1 and ZEB2 promoters from the TRED and the EPD databases reveals
that ERβ, AR and GR have clusters of binding sites in ZEB1 or ZEB2 promoters and may be putative
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regulators. A single binding site of ERα is present in two ZEB1 promoters and no binding sites are
present in ZEB2 promoters (Table 1). Transcriptomine data show up-regulation of both ZEB factors
in MCF-7 cells with ERα knock-down [28]. This result, in combination with the discussed-above
absence of ZEB induction observed in the same cell line [106], is most consistent with a model of
ligand-independent suppressive ZEB promoter occupancy by ERα.

6. Twist

Twist is a bHLH (basic Helix-Loop-Helix) transcription factor with a role in mammary
development [83]. Twist molecules bind E-boxes in target gene promoters as dimers. Twist1 was
detected in a small subset (1%) of patients with breast cancer, in circulating tumor cells [112]. A study
of the expression of Twist in breast cancer patients showed over-expression in about half of the
patients [113]. A similar percentage of the patients in the study showed high expressions of Snail and
Slug. An increased Twist1 expression is associated with decreased ER expression, down-regulation
of aromatase enzyme and development of letrozole resistance in breast cancer cells [114]. This study
did not address whether Twist targets ER for transcriptional down-regulation, but two other studies
showed that, in fact, this is the case [115,116]. Twist1 associates with regulatory elements (E-boxes)
on the ESR1 promoter and recruits the chromatin-suppressive apparatus. Histone acetylation and
DNA methylation are incurred [115]. As a result, cell lines with high Twist expression were noted
to be negative for ER by Western blotting, while the reverse was true for cell lines with low Twist
expression. Of interest, promoter methylation is indeed a factor contributing to ER silencing in breast
cancer patient specimens [117].

Regulation of ER by Twist may contribute to ER negativity of stem cells in ER-positive cancers
and also to the presence of mesenchymal features in ER-negative cancers. The reverse regulation of
Twist by ER or by other SNRs has not been reported. An in silico investigation of promoters of Twist
listed in the TRED and EPD databases disclosed the presence of AR and GR sites but not sites of any of
the two ERs (Table 2).

7. TCF3 and Id Proteins

TCF3, another bHLH transcription factor, is able to induce EMT in breast cancer cells by directly
suppressing E-cadherin through binding to E-boxes of the promoter called E-pal and E3 [118]. The HLH
factors of the Id family lacking a basic domain are inhibitors of TCF3 and modulate its effects on EMT
creation. Despite this inhibition and the fact that TCF3 has been found to bind the E-cadherin promoter
alone, Id proteins contribute to EMT maintenance in breast cancer and are expressed, together with
TCF3, in human breast cancer samples, with a higher expression in the basal sub-type compared to the
luminal sub-type [118]. Similarly, in another study using a different antibody, Id expression was noted
in several metaplastic breast carcinomas but not in carcinomas with the “usual” morphology [119].
These data imply that an optimal level of TCF3 activity is required for maintenance of EMT and Id
proteins participate in the regulation of this activity.

Association of TCF3 and Id family factors with the basal sub-type of breast cancers and their
lower expression in luminal types may imply a down-regulation by ER and/or PR, but this has not
been specifically reported. The investigation of promoters of TCF3 listed in the TRED database shows
clusters of ERβ, AR and GR binding sites (Table 2).
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Table 2. Number of binding sites of SNRs in the different promoters of Epithelial-Mesenchymal
Transition (EMT) core transcription factors Twist, TCF3, FOXC2, Goosecoid and LBX1, listed in the
TRED and EPD databases. PR and MR appear in parentheses in the AR and GR column headings,
respectively, as they have the same binding sites. In the last column, the number of promoters with
clusters (more than three binding sites) for each SNR is presented.

Factor Database Promoter ERα ERβ AR (PR) GR (MR) Clusters

Twist EPD 1 0 0 2 2 0/0/0/0
TCF3 TRED 1 0 1 1 2 0/1/1/2

2 1 3 0 6
3 0 1 3 8

FOXC2 TRED 1 0 1 3 1 0/1/1/1
2 0 3 2 3

Goosecoid EPD 1 0 0 1 1 0/0/0/0
LBX1 TRED 1 0 2 4 1 0/1/3/2

2 0 3 1 0
3 0 2 3 3
4 0 0 4 3

8. FoxC2

FoxC2, a member of the Forkhead box family of transcription factors, is involved in EMT induction
and the metastatic ability of breast cancer cells [120]. Signalling from the TGFβ cascade and the activity
of transcription factors Snail, Twist and Goosecoid led to FoxC2 induction concomitantly with induction
of EMT. Further experiments, to clarify the role of FoxC2 in EMT, showed that isolated FoxC2 induction
in epithelial cells increased expression of mesenchymal markers such as vimentin and N-cadherin but
could not completely suppress epithelial proteins such as E-cadherin [121]. These results argue for a role
of FoxC2 in mesenchymal phenotype maintenance after induction through other transcription factors.
Interestingly, a genomic study has proposed a role of FoxC2 in the reverse MET process [121]. Cellular
localization of the protein possibly plays a deciding role in the outcome, with cytoplasmic localization
promoting epithelial traits by protecting E-cadherin from internalization while nuclear localization
promotes EMT through transcription activity [122]. Insulin signalling, acting through the PI3K kinase,
activates FoxC2 [123]. In breast cancer, PI3K is activated down-stream of Her2 and other signalling
pathways and this may have implications for FoxC2 induction and EMT promotion. In contrast, when
a serine at position 124 of FoxC2 is phosphorylated by Casein Kinase 2 (CK2), the transcription factor
is retained in the cytoplasm and the epithelial phenotype is maintained [124]. The FoxC2 gene has
been reported to have a higher expression in the claudin-low sub-type of triple-negative breast cancers
compared with the basal sub-type and the luminal or Her2-overexpressing breast cancers [125].

No experimental data on FoxC2 regulation by SNRs have been reported. A search for binding
sites shows clusters of ERβ, AR and GR binding sites, but an absence of ERα binding sites in both the
FoxC2 promoters listed in TRED (Table 2).

9. Goosecoid

Goosecoic (GSC) is a gene which encodes for a transcription factor that is highly expressed during
embryonic development at the Spemann organizer, an area of the embryo where the establishment
of body plan is initiated in gastrulation [126]. Both the Wnt/β-catenin and the TGFβ signalling
cascades are important in Goosecoid induction from distinct promoters during development [127].
TGFβ signalling is also important for Goosecoid induction in human adult breast epithelial cells [126].
Goosecoid mRNA is increased in micro-dissected breast cancer specimens compared with adjacent
normal epithelium and the protein enhances tumor cell motility. Another cancer type where Goosecoid
has been studied and been found to promote metastatic potential is hepatocellular carcinoma [128].
Part of Goosecoid contribution in EMT is mediated by induction of FoxC2 [129].



J. Clinical Medicine 2016, 5, 11 14 of 23

The influence of SNRs on Goosecoid regulation has not been explored in the literature. The single
EPD promoter listed has one binding site for AR and one for GR but no clusters of SNR sites (Table 2).

10. LBX1

LBX1 (Ladybird homeobox 1) is a transcription factor whose gene is located in human chromosome
10q24. The mouse homolog participates in myogenesis and neurogenesis during development by
promoting migration of dermomyotome precursors over long distances and the formation of skeletal
muscles of the limbs [130]. Thus, a role of LBX1 has been sought in cancer metastasis. Indeed, in
breast cancer, it has been found to be up-regulated compared with surrounding breast epithelium [131].
This is particularly evident in triple-negative cancers. LBX1 directly up-regulates ZEB1, ZEB2, Snail
and TGFB2 but not Twist1 and promotes breast cancer cell migration, implying a role as a master
regulator of EMT.

Although no further studies have been published so far regarding the role of LBX1 in breast
cancer, its association with ER- and PR-negative cancers may hint at a regulation by steroid receptors.
To investigate this possibility, a search for SNR binding sites in its four promoters listed in the TRED
database was performed and it disclosed clusters of putative ERβ, AR and GR sites but not any ERα
sites (Table 2).

11. Pioneer Factors

Pioneer factors are proteins that bind compact chromatin to facilitate the binding of other
transcription factors [132]. Several such factors that work to facilitate SNR DNA binding have been
identified. These include FOXA1, AP2γ, PBX1 and GATA3. FOXA1 is the best-studied and will be
used as an example of how pioneer factors shape the landscape of SNRs in breast cancer and thus
may modulate their influence on EMT. FoxA1 has been found to co-bind with ERα in about half
of the target genes of ERα in a whole genome ChIP-on-chip study in breast cells [133]. Elevated
FOXA1 expression is associated with a better prognosis and sensitivity to hormonal therapy in breast
cancer patients [134]. FOXA1 is also a pioneer factor for AR DNA binding in prostate cancer cells
and this function may be preserved in breast cancer expressing AR. An in vitro study confirmed this
role of FoxA1 in ER-negative, AR-positive breast cancer cells [135]. FoxA1 guided AR binding to a
sub-set of its binding sites and the silencing of FoxA1 abrogates this binding and negates the apocrine
gene signature associated with AR in these cells. Consistently, in a clinical study of non-metastatic
triple-negative breast cancers, co-expression of AR with FoxA1 defines a sub-group of patients with
a distinct behavior reminiscent of luminal cancers [136]. In prostate cancer, FOXA1 carries reverse
prognostic implications with high expression associated with hormone therapy resistance. As already
mentioned, FOXA1 also acts as a pioneer factor for GR. As a result, the binding of pioneer factors may
be a prerequisite for binding and transcription function of SNRs but may not be involved as a factor in
the decision of which specific factor would be favored on the promoter of a specific gene. In contrast to
SNRs and other TFs, pioneer factors may bind to remote sites up-stream of transcription initiation sites
of target genes. For this reason, investigation of a possible role of these factors in the regulation of EMT
core transcription factors should include longer sequences up-stream of transcription initiation sites.
As a consequence, identification of pioneer factor binding sites regulating EMT transcription would
require interrogation of several kilobases up-stream of initiation sites. Thus, an in silico investigation
of EMT factors is not feasible through a promoter database interrogation. Of additional interest in a
discussion of EMT, it should be noted that FoxA1 is a transcription activator of E-cadherin expression
and could have influence on epithelial maintenance independent of SNRs [137].

12. Perspective: EMT and Therapeutic Resistance Development and Reversal

The significance of the EMT process in the pathogenesis of cancer, especially its involvement
in the motility and metastasis of cancer in general and of breast cancer in particular, continues to
be elucidated. Metastatic potential is an in-built capability of neoplastic cells and, in addition, it is
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intertwined with the network of pluripotency in breast and other cancers [13,138–140]. This association
provides cancer cells with the plasticity required to switch from the epithelial state to the mesenchymal
state during metastasis and then back to the epithelial state in the metastatic site. EMT is also associated
with therapy resistance, which is a major hurdle in clinical oncology [141]. The implications of EMT for
drug resistance were confirmed in a study of breast cancer in an in vivo transgenic mouse model where
mice develop breast cancer with a short delay under the influence of a Her2 transgene [142]. Although
cancer cells that had undergone EMT were not instrumental for metastatic establishment in this model,
after cyclophosphamide treatment these EMT cells were more resistant to apoptosis and displayed an
increased abundance in metastatic foci. In addition, cells with EMT features were less proliferative than
other breast cancer cells. Decreased cycling is commonly a feature of stem cells which are also resistant
to treatments and also commonly co-express EMT features [138]. These studies confirm the clinical
importance of EMT in cancer progression, as resistant-to-chemotherapy (or other therapies such as
hormonal treatments) clones represent the ultimate source of cancer treatment failures. Moreover,
even at diagnosis, human cancer cells have already undergone selection through survival for several
generations against adverse conditions and the host immune system. Thus, primary resistance may
already be present, leading to first line treatment failure.

This review discusses the regulation of EMT by SNRs. Regulation by ERα is already exploited
therapeutically in breast cancer, but several other steroid receptors present opportunities for therapeutic
interventions. A more in-depth understanding of the influence of SNRs on EMT pathways and EMT
core transcription factors which establish and maintain the transition and participate in feedback loops
that reverse the cell to the epithelial state is a prerequisite to further advance therapeutic manipulations
of these receptors in breast cancer. It would also offer the opportunity to introduce combinations of
targeted interventions to interrupt EMT establishment based on specific molecular expression profiles.
Given that approved medications in clinical use exist for all NSRs, receptor expression profiling in
individual breast cancers together with knowledge of their regulation of EMT circuits may allow for a
more informed targeted approach, leading to successful anti-metastatic treatment, with the additional
advantage of not necessitating the cost and effort of new drug development.
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