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Abstract

Objective

Repetitive Transcranial Magnetic Stimulation (rTMS) has been used in cognition impairment

due to various neuropsychiatric disorders. However, its optimum parameters and the neuro-

imaging mechanism are still of uncertainty. In order to simulate a study setting as close to

real world as possible, the present study introduces a new orthogonally-designed protocol,

consisting of the rTMS intervention with four key parameters (stimulating site, frequency,

intensity and pulse number) and three different levels in each one, and aims to investigate

the optimum parameters and the brain activity and connectivity in default mode network

(DMN), dorsal attention network (DAN), central executive network (CEN) following rTMS

intervention to post-stroke cognition impairment (PSCI).

Methods

A single-center, orthogonally-designed, triple-blind randomized controlled trial will be con-

ducted and forty-five PSCI patients will be recruited and randomly assigned to one of nine

active rTMS groups based on four rTMS paraments: stimulating site, frequency, intensity

and pulse number. Neuropsychological, activities of daily living, quality of life and functional

magnetic resonance imaging (fMRI) evaluations were be performed pre-, post- and 3

months after rTMS.
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Discussion

This study evaluates the optimum parameters of rTMS for patients with post-stroke cogni-

tion impairment and explores the alteration of neural function in DMN, DAN, CEN brain net-

work. These results would facilitate the standardized application of rTMS in cognition

impairment rehabilitation.

Introduction

Post-stroke cognitive impairment (PSCI) is one of the vascular cognitive impairments and

probably develop into dementia [1]. It was reported that 20–70% stroke survivor suffered from

the cognitive impairment within 6 months after stroke attack [2, 3]. It is not only a common,

important disability after stroke but also could hinder the rehabilitation of stroke-related

sequelae including motor dysfunction, sensor deficits and the limited activities of daily living

[4]. The pathogenesis of PSCI is multifactorial being similar with VCI. In terms of brain struc-

ture, it is generally related to focal, multifocal or diffuse cortical and/or subcortical large

infarct, microinfarcts or lacunes, as which is often affected important brain areas (thalamus,

frontobasal and/or limbic systems, etc.) [5]. Functionally, the PSCI is due to the disfunction of

neuronal metabolism, activation and connectivity, while the exact mechanism between vascu-

lar lesion, cognition, and neuroplasticity are not completely understood [6]. Current research

shows that many non-invasive neuromodulatory techniques could improve cognitive

impairment via neuroplasticity [7]. As a non-invasive brain stimulation,the repetitive transcra-

nial magnetic stimulation (rTMS) was widely used as a primary or an add-on treatment to

improve cognitive function in patients with stroke [8]. Several meta-analyses confirmed its

promising and positive effect on PSCI [9–11]. In these studies, mostly rTMS schemes included

four primary parameters: stimulating site, frequency, intensity and pulse number, however,

the rTMS intervention scheme varied substantially and the considerable heterogeneities of

rTMS parameters were the great challenging in its clinical practice. Furthermore, although

accumulating studies have shown that rTMS could improve the cognitive function in many

neurological and psychological diseases [12, 13], the brain functional mechanism is still

unclear. The present study hypothesized that rTMS could promote the cognition recovery

with an optimal parameter combination and it might be objectively existed that the interaction

effects between the four parameters: stimulating site, frequency, intensity and pulse number.

Furthermore, we predicted that the mechanism of rTMS might be related with the neuroplas-

ticity in three brain networks: default mode network (DMN), dorsal attention network

(DAN), central executive network (CEN). Hence, the prospective, single-center, orthogonally-

designed, triple-blind randomized controlled trial will be conducted and will be aimed to

explore the rTMS optimum parameters regimen for PSCI based on stimulating site, frequency,

intensity and pulse number and the neuroimaging mechanism in default mode network

(DMN), dorsal attention network (DAN), central executive network, (CEN) following rTMS

treatment in PSCI patients. All participants will be assigned averagely to one of nine paralleled

active rTMS groups which are designed according to the L9(34) orthogonal array with four dif-

ferent parameters: stimulating site, frequency, intensity and pulse number. This trial protocol

will be written in adherence to the standard protocol items: recommendations for interven-

tional trials (SPIRIT) 2013 guidelines [14].
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Methods

1. Patients

(1) Study setting. This study will be carried out at the West China Hospital of Sichuan

University (Chengdu, China). The post-stroke cognitive impairment patients in the wards of

the departments of neurology and rehabilitation medicine from December 2021 to December

2023 will be screened for eligibility and finally 45 patients will be enrolled in this trial.

(2) Eligibility criteria. The study researchers will execute the eligibility screen in accor-

dance with the inclusion and exclusion criteria. All the participants should sign an informed

consent after eligibility confirmation.

Inclusion criteria:

• Male or female patients between 18 and 75 years of age;

• Right-handed;

• Patients who meet the diagnostic criteria for vascular cognitive impairment reported in the

Guidelines from the Vascular Impairment of Cognition Classification Consensus Study [15]

and the Chinese vascular cognitive impairment guideline 2019 [16] as which mainly be con-

cluded as: (1) Cognitive impairment at least one domain in attention and executive, mem-

ory, language and visuospatial function confirmed by clinical and neuropsychological

evaluation (MoCA� 24) with or without the impairment in instrumental activities of daily

life (IADL); (2) Imaging evidence due to stroke confirmed by magnetic resonance imaging

(MRI); (3) Cognitive impairment should be independent of the motor/sensory sequelae of

the vascular event and with a clear temporal relationship (within 6 months and lasted for at

least 3 months) between a vascular event and onset of cognitive deficits;

• No severe aphasia (Unable to accomplish cognitive tests);

• Normal cognitive functions before stroke;

• Voluntary participation and signed the informed consent (Signed by the patient or the

authorized person).

Exclusion criteria:

• Cognitive impairment due to primary or secondary neurological disease, such as normal cra-

nial pressure hydrocephalus, frontotemporal dementia, Parkinson’s disease, multiple sclero-

sis, encephalitis and delirium;

• Cognitive impairment due to depression, schizophrenia, bipolar disorder, psychotic disor-

der, vitamin D deficiency, toxicosis or else systematic diseases;

• Drug/alcohol abuse/dependence within the last 3 months of first recognition of impairment.

• rTMS treatment contraindications such as epilepsy patients, pregnant or lactating women or

with a metal or electric implanted device (eg. deep brain stimulator, ventriculoperitoneal

shunt, aneurysm clip, pacemaker, cochlear, surgical staples on the scalp).

• MRI contraindications (such as metal implants or claustrophobia)

• participating in a concurrent pharmacological or nonpharmacologic treatment research.

(3) Participant timeline. Study will commence with the eligibility screen for participants.

Once eligibility is confirmed, the patient will sign an informed consent and be allocated to one
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of nine active rTMS group. Clinical assessments and functional magnetic resonance imaging

(fMRI) scan will be performed at baseline (W0), termination of 20 rTMS sessions (W5) and

the follow-up (W17). In the any phase of the study procedure, we will record the number and

reasons for any participants who will be excluded or any who will decline consent or withdraw

from the study. The SPIRIT schedule and the flowchart of the study are presented in Fig 1.

(4) Sample size. Because no previous orthogonally designed study provides a significant

difference of MoCA or MMSE scores for rTMS treatment to PSCI, which would allow us to

accurately estimate the adequate sample size for this trial, we decided to recruit 45 PSCI

patients who will be randomly divided into nine groups and three subgroups based on orthog-

onal design (5 patients per group, 15 patients per stimulating site subgroup), in consideration

of the research grant, the recruitment feasibility and the recommended sample size in neuro-

imaging research (medians:14.5) [17].

(5) Recruitment. This trial aims to recruit 45 in- or outpatients with PSCI in the West

China Hospital of Sichuan University who are recommended by the rehabilitation physicians,

therapists, or any other medical practitioners and willing to receive rTMS treatment. Once the

oral consent to take part in the study is confirmed, written and verbal information about the

study aim and procedures is provided to all the volunteer participants. There are no biological

specimens collecting for storage and anticipated harm for the participants throughout the

study. All the personal information and any other data about the potential or enrolled patients

will be traceable in the medical records and available from the corresponding author on

request in order to protect confidentiality. After the written informed consents are obtained

from the eligibility-screened participants, the study will commence with the baseline assess-

ment and then the randomized allocation.

Fig 1. The schedule of the trial.

https://doi.org/10.1371/journal.pone.0271283.g001
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(6) Randomization and blinding. The random numbers sequence is generated using

SPSS software in computer and all eligible patients were equal assigned to one of nine active

rTMS treatment group based on four rTMS parameters. The random allocation and detailed

rTMS protocol are only known by the rTMS physiotherapists and blinded to physicians,

patients and other researchers (such as outcome assessors, data analysts). The rTMS physio-

therapists are not involved in any other study work such as patient recruitment, randomiza-

tion, allocation, outcome assessment and data analysis.

2. Interventions

(1) rTMS protocol. The rTMS treatments were delivered by a magnetic simulator (YRD

CCY-I, YIRUIDE medical equipment co., LTD, Wuhan, China) with a figure-8 coil. The

rTMS protocol was designed as nine combinations of four parameters at three different levels

in each parameter: stimulating site (the dorsolateral prefrontal cortex, DLPFC, Brodmann

areas 9 and 46; the inferior frontal gyrus, IFG, Brodmann areas 44 and 45; the temporo-pari-

etal cortex, TPC, Brodmann areas 39 and 40), frequency (5Hz, 10Hz, 20Hz), intensity (90%,

100%, 110% of the resting motion threshold, RMT) and pulse number (1000, 1500, 2000),

the detailed information are showed in Tables 1 and 2. The aforementioned rTMS parame-

ters and different levels were predetermined based on the previous studies involving in

rTMS treatment to cognition impairment duo to various neurological and psychological dis-

eases. Once the PSCI patients were recruited, they were randomly allocated into one of nine

active rTMS groups, a total of 20 sessions (four weeks, five consecutive daily sessions and

Table 1. The orthogonal experimental factors and levels of rTMS.

Level Experimental factor

A (Site) B (Frequency, Hz) C (Intensity, %RMT) D (Pulse)

1 DLPFC 5 90 1000

2 IFG 10 100 1500

3 TPC 20 110 2000

Note: DLPFC: Dorsolateral prefrontal cortex; IFG: Inferior frontal gyrus; RMT: Resting motor threshold; rTMS: Repetitive transcranial magnetic stimulation; TPC:

Temporoparietal cortex

https://doi.org/10.1371/journal.pone.0271283.t001

Table 2. The orthogonal array L9(34).

Groups Site (A) Frequency (B) Intensity (C) Pulse (D) rTMS protocols Sample Size

1 TPC 5 Hz 100%RMT 1500 A3B1C2D2 5

2 IFG 20 Hz 100%RMT 1000 A2B3C2D1 5

3 IFG 10 Hz 90%RMT 1500 A2B2C1D2 5

4 TPC 10 Hz 110%RMT 1000 A3B2C3D1 5

5 DLPFC 5 Hz 90%RMT 1000 A1B1C1D1 5

6 IFG 5 Hz 110%RMT 2000 A2B1C3D3 5

7 DLPFC 10 Hz 100%RMT 2000 A1B2C2D3 5

8 TPC 20 Hz 90%RMT 2000 A3B3C1D3 5

9 DLPFC 20 Hz 110%RMT 1500 A1B3C3D2 5

Note: A1: DLPFC; A2: IFG; A3: TPC; B1: 5Hz; B2: 10Hz; B3: 20Hz; C1: 90%RMT; C2: 100%RMT; C3: 110%RMT; D1: 1000; D2: 1500; D3: 2000; DLPFC: Dorsolateral

prefrontal cortex; IFG: Inferior frontal gyrus; RMT: Resting motor threshold; rTMS: Repetitive transcranial magnetic stimulation; TPC: Temporoparietal cortex

https://doi.org/10.1371/journal.pone.0271283.t002
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two days of rest per week) active rTMS treatments with different parameters combination

will be administered by two therapists with more than 5 work experience at the neuromodu-

lating center of the rehabilitation medicine department, West China Hospital, Sichuan Uni-

versity. In order to improve the patient’s adherence to the intervention protocols, once every

rTMS session was completed, a predesigned treatment record card should be filled and

signed by the rTMS therapists and the patients or their authorized persons and ultimately

returned to the study researchers.

The detailed information of parameters and grouping were as following:

Group 1: TPC; 5 Hz; 100%RMT; 1500 pulses (10s × 20 trains, 10s interval)

Group 2: IFG; 20 Hz; 90%RMT; 1500 pulses (3s × 25 trains, 20s interval)

Group 3: IFG; 10 Hz; 100%RMT; 1000 pulses (4s × 25 trains, 20s interval)

Group 4: TPC; 10 Hz; 90%RMT; 2000 pulses (8s × 25 trains, 20s interval)

Group 5: DLPFC; 5 Hz; 90%RMT; 1000 pulses (8s × 25 trains, 20s interval)

Group 6: IFG; 5 Hz; 110%RMT; 2000 pulses (20s × 20 trains, 20s interval)

Group 7: DLPFC; 10Hz; 110%RMT; 1500 pulses (6s × 25 trains, 20s interval)

Group 8: TPC; 20 Hz; 110%RMT; 1000 pulses (2s × 25trains, 20s interval)

Group 9: DLPFC; 20Hz; 100%RMT; 2000 pulses (5s × 20 trains, 20s interval)

(2) Neuro-navigation. The rTMS stimulating sites were identified on the 3D brain

reconstruction using a neuro-navigation system (Brainsight, Rogue Research Inc., Montreal,

QC, Canada). Before the experiment, T1 weighted images were individually obtained from

each patients using rapid acquisition gradient echo sequence (Philips Ingenia 3 Tesla,

MPRAGE, TR/TE = 2000ms/4.6 ms, voxel size = 0.98 mm × 0.98 mm × 1.2 mm, the field of

view = 250 mm × 250 mm × 240 mm, 200 sagittal slices). To localize the rTMS sites, the

method described by Mylius et al. [18] were used. Briefly, the boundary of the middle frontal

gyrus (MFG) was firstly drawn on the neuro-navigated 3D brain reconstruction, then the

DLPFC target was determined on the middle of the bonder line between the anterior one

third and the posterior two thirds of the MFG. Similarly, the IFG target was determined on

the middle of the transverse intermediate line of the inferior frontal gyrus (IFG), the TPC

target was determined on the middle of the border line between the supramarginal gyrus

(SG) and the angular gyrus (AG). All the rTMS stimulating sites were selected on the affected

cerebral hemisphere.

(3) RMT. The resting motor threshold (RMT) is defined as the lowest stimulation inten-

sity to induce a, at least 50% of the time in a finite number of trials (typically 10 trials).

The RMT was determined as the minimum stimulating intensity necessary to elicit an overt

motor response (motor evoked potential, MEP, larger than 50 μV) in the right abductor polli-

cis brevis (APB) at least 5 of 10 times [19].

(4) Route medical cares. The route medical cares based on the individualized illness for

each patient are permitted but the medications for improving cognition such as Pfizer’s Ari-

cept were prohibited during the trial.

(5) Discontinuing criteria.

• Patients who simply wishes to stop participation;

• Patients who could not undergo the baseline assessment;
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• Patients who did not complete the rTMS treatment sessions;

• Patients who suffered from worsening symptoms.

3. Outcomes

The primary outcomes are the Montreal Cognitive Assessment Beijing Version (MoCA-BJ)

and the Trail-Making Test (TMT). The secondary outcomes are the modified Barthel index

(MBI), the Lawton Instrumental Activities of Daily Living Scale (LIADL), the stroke-specific

quality of life (SS-QOL), the functional magnetic resonance imaging (fMRI) scan and the

adverse events. All measurements of clinical assessments were administered three times: pre-

treatment (baseline), post-treatment, and at a three-month follow-up. All of the cognitive

assessments were performed by a trained neuropsychologist who was blind to the treatment

status of the participants throughout the study. The MRI scan were conducted at baseline and

at the end of rTMS treatment.

(1) MoCA-BJ. The MoCA- BJ scale is one of the Chinese versions of the Montreal cogni-

tive assessment used to assess the general cognitive function [20], which has high sensitivity

and specificity for screening cognitive impairment from patients with stroke [21].

(2) TMT. The trail marking test (TMT) was firstly used in 1944 for America army individ-

ual intelligence assessment [22]. Nowadays, it is widely employed as a diagnostic tool for visual

attention and executive functioning and the processing speed for neuropsychological diseases

[23, 24]. It consists of two parts in which the subject is instructed to connect a set of 25 circles

containing numbers (Part A) or numbers and letters (Part B) arrayed pseudorandomly on a

letter-size sheet of paper as fast as possible while still maintaining accuracy.

(3) ADL. The basic activities of daily living are assessed with the modified Barthel Index

(MBI) [25], which is used to assess the individual self-care performance and derived from the

Barthel index [26]. In this study, we used the Chinese version of MBI [27], it also consists of

ten items: personal hygiene, bathing, feeding, toileting, stair climbing, dressing, bowel control,

bladder control, ambulation or wheelchair and chair-bed transfer with total 100 scores indicat-

ing completed independence. The instrumental activities of daily living are evaluated with the

Lawton Instrumental Activities of Daily Living Scale (LIADL) [28], which is consists of eight

items: ability to use telephone, shopping, food preparation, housekeeping, laundry, mode of

transporation, responsibility for own medications, ability to handle finances with higher scores

representing more independent.

(4) SS-QOL. The Stroke-Specific Quality of Life Scale (SS-QOL), the first health-related

QOL measure for stroke patients, was made available in 1999 [29]. It consists of 12 domains,

78 items with total 390 scores indicating a quality of life and is commonly used to evaluate the

treatment methods, the rehabilitation programs and the burden of disease in stroke related

studies [30].

(5) MRI scan and data preprocessing. MRI scanned on a 3.0 Tesla MRI system (GE

Medical Systems, Waukesha, WI, USA) at the West China Hospital of Sichuan University.

The structural MRI (High-resolution 3-demention T1-weighted, gradient echo, GRE)

sequence (TR/TE = 8.5 ms/3.2 ms; flip angle = 12˚; field of view = 256 × 256 mm2;

matrix = 256 × 256; slice thickness = 1 mm; and 176 axial slices, scanning time = 4min33s)

images were obtained with the same parameters in neuro-navigation. The resting-state func-

tional MRI images were conducted with T2�- weighted Gradient echo—echo planar imaging

(GRE-EPI) sequence (TR/TE = 2000 ms/35 ms; flip angle = 90˚; field of view = 230 × 230

mm2; matrix = 64 × 64; slice thickness = 3.6 mm; and 35 axial slices, dummy samples = 5; sta-

tistical samples = 235, scanning time = 8 min) at pre- and post- treatment. When the fMRI
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scanning, the patients were required to close their eyes and keep awake and relax. All of the

rs-fMRI data were preprocessed using Statistical Parametric Mapping (SPM8, http://www.fil.

ion.ucl.ac.uk/spm) and Data Processing Assistant for Resting-State fMRI (DPARSF) [31].

Briefly, the volumes in the first 5 s were discarded for signal equilibrium. The remaining data

were corrected for head motion. These data were then spatially normalized to the Montreal

Neurological Institute (MNI) space and resampled to 3-mm isotropic voxels. We perform

spatial smoothing with an 8 × 8 × 8 mm3 Gaussian kernel only for the ALFF analysis. Next,

the linear trend of the data was removed, and temporal band-pass filtering (0.01–0.1 Hz,

only for the functional connectivity (FC) analysis) was performed to reduce the effects of

low-frequency drift and high-frequency physiological noise. Finally, six head motion param-

eters and three potential nuisance signals, including the cerebrospinal fluid, white matter

and global signals, were removed from the time course of each voxel using multiple linear

regression.

(6) ALFF and FC. The amplitude of low frequency fluctuation (ALFF) and functional

connectivity (FC) will be used to explore different brain effects in the three stimulating -site

subgroups.

The ALFF refers to the low frequency fluctuation of BOLD signal of the brain voxel, which

will be calculated with DPARSF package after data preprocessing. The generated ALFF maps

will be used for statistical analysis.

FC will be used to explore the functional connectivity changes in three brain networks

(default mode network, DMN; dorsal attention network, DAN; central executive network,

CEN) after treatment, which were obtained by meta-analysis (http://www.neurosynth.org/),

were used as imaging indicators to analyze according to the methods described by Tomasi

et al. [32]. First, Independent component analysis (ICA) will be used to extract DMN, DAN

and CEN networks of the three groups, and then the brain regions with differences in the cor-

responding network will be found by visual observation, which will be used as regions of inter-

est (ROI) to conduct Pearson correlation with the whole brain voxel. The FC maps obtained

will be used for statistical analysis.

(7) Adverse events. Adverse Events (AE) during or�1h after session, including headache,

scalp dysesthesia/paresthesia at stimulation site, muscle pain of temporal or neck muscles and

seizures, will be documented after each treatment session and during the whole treatment

period.

4. Statistical analyses

The data of MoCA-BJ, TMT, MBI, LIADL and SS-QOL were shown as mean ± standard devia-

tion (SD) and analyzed by the range analysis and one-way analysis of variance (ANOVA),

which was used the SPSS 22.0 software (IBM, Armonk, NY, USA, 2020). The range analysis

was used to determine the influence of each parameter at a specific level on the effect indicator

and obtain the optimum combination of rTMS parameters. The one-way ANOVA was used to

determine the statistical significance in nine different parameters’ combination of rTMS.

P< 0.05 was considered significant.

For ALFF and FC maps, paired T-test will be used for intra-group comparison and one-

way ANOVA analysis will be used for inter-group comparison in the three stimulating site

subgroups. Then multiple comparison correction will be performed using Gaussian random

field theory (GRF) with voxel p< 0.005, cluster p< 0.05. The Pearson correlation analyses

were used to calculate the correlations between the changes in ALFF and FC with the clinical

symptom scores at baseline and the end of the rTMS treatment (p< 0.05).
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5. Ethics approval and declaration of interests

The trial will be conducted in accordance with the ethical principles outlined in the Declara-

tion of Helsinki, 1996 and was approved by the Ethics Committee on Biomedical Research,

West China Hospital of Sichuan University (2020–1121).

6. Trial status

This trial was registered on the website of Chinese Clinical Trial Registry (Registration num-

ber: ChiCTR2100049625; https://www.chictr.org.cn/). At the writing of this paper, we are

recruiting subjects. The study began in December 2021 and planned to complete in December

2023.

Discussion

As a non-invasive brain stimulation technique, the rTMS uses high intensity magnetic field

pulses to modulate neural activity and in turn modifying the brain function. Over the past few

decades, rTMS is widely applied into the cognition impairment due to many neurological, psy-

chiatrical and psychological diseases, such as stroke, Alzheimer’s disease, Parkinson’s disease,

schizophrenia, obsessive compulsive disorder. Several meta-analyses and RCT have showed

that the safe and beneficial value of rTMS in cognitive function rehabilitation [10, 33–35].

Given the more and more application of this method in clinical and research settings, it is cru-

cial to understand what is the optimal parameters of rTMS for cognition impairment and how

the rTMS modulates brain function via the high intensity magnetic field pulses. Fortunately,

some researchers have realized these two key points. Beynel L et al. thought that the rTMS

parameters include a vast composition of spatial and temporal parameters: coil geometry,

stimulation target, stimulation intensity; pulse waveform, pulse train frequency, number of

pulses, etc [36]. while it does not be summed precisely from the perspective of clinical applica-

tion. Based on the previous literature related to multiple sessions of rTMS for cognition

impairment, we hold the opinion that the most important four parameters of rTMS are stimu-

lating site, stimulating frequency, stimulating intensity and pulse number. Orthogonal design

is a powerful method for comparative effectiveness research, especially for intervention with

multiple parameters, it could significantly reduce the experiment numbers and alleviate the

research workloads [37]. In rehabilitation medicine, many physical modalities are delivered

with a specific equipment by presetting several parameters in the meantime. It is important

that these parameters should be investigated at the same time when we are going to assess the

efficacy and safety of this intervention. For example, the rTMS will be delivered to a patient

with cognition impairment, the stimulating site, frequency, intensity and pulses should be pre-

determined meanwhile. However, in the previous studies, it was common that only one

parameter, such as frequency, be compared with different level, or be compared between active

and sham rTMS. It is not entirely and exactly consistent with clinical practice. Hence, in order

to investigate the optimum parameters of clinical value of rTMS for post-stroke cognition

impairment, the present study is designed orthogonally with L9(34) orthogonal array based

four parameters with three different level in each parameter (sites: DLPFC, IFG, TPC; fre-

quency: 5Hz, 10Hz, 20Hz; intensity: 90%RMT, 100%RMT, 110%RMT; pulse number: 1000

pulses, 1500 pulses, 2000 pulses). On the other hand, although many studies showed that the

modulatory effect of rTMS on brain function, ig. enhancing the neural activity and the connec-

tivity between different brain regions [38], is correlated to the improvement of cognition func-

tion [39], the exact neurological mechanism has not been understanded very well. Giacomo

Koch et al. showed that the rTMS stimulation on precuneus enhances memory and neural

activity and connectivity in default mode network [40]. Recep A Ozdemir et al. Showed that
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the default mode network (DMN) and the dorsal attention network brain network (DMN/

DAN) specificity of rTMS activations is correlated with cognitive performance in healthy vol-

unteers [41]. Reza Kazemi et al. showed that the bilateral rTMS stimulation on DLPFC changes

resting state in CEN, DMN brain networks and cognitive function in patients with bipolar

depression [42]. However, whether the brain networks related to attention and executive func-

tion (CEN, DMN, DAN) is enhanced activity and connectivity and is correlated with the cog-

nitive improvement following the rTMS stimulation in patients with post-stroke cognition

impairment are still unclear. Therefor, in the current study, the amplitude of low-frequency

fluctuation (ALFF) and the functional connectivity (FC) of the resting-state fMRI signal has

been adopted to reflect the regional brain network (CEN, DMN, DAN) activity and connectiv-

ity and further our understanding of the complex cognitive function recovery process underly-

ing metaplasticity with rTMS, demonstrate how the adaptive metaplasticity can contribute to

the cognition impairment, and show that whether the maladaptive metaplasticity play a role in

the cognitive pathophysiology [43].

Although the present study brings forth a new orthogonal design to probe the optimal

rTMS parameters treating PSCI, it still has many limitations, including the small sample size

and the single-center study, due to the recruitment difficulty in the background of coronavirus

disease 2019 (COVID-19) management. Besides, the relatively simple parameter level design

and the heterogeneity of the oral medications in PSCI patients might be also the pitfalls in the

measures of cortical excitability and their response to rTMS treatments [44]. A multi-center,

large-sample and more rigorously designed study may be a possible solution in future.
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