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With escalating urbanization, the environmental, demographic, and socio-

economic heterogeneity of urban landscapes poses a challenge to mathematical

models for the transmission of vector-borne infections. Classical coupled

vector–human models typically assume that mosquito abundance is either

independent from, or proportional to, human population density, implying

a decreasing force of infection, or per capita infection rate with host number.

We question these assumptions by introducing an explicit dependence

between host and vector densities through different recruitment functions,

whose dynamical consequences we examine in a modified model formu-

lation. Contrasting patterns in the force of infection are demonstrated,

including in particular increasing trends when recruitment grows sufficiently

fast with human density. Interaction of these patterns with seasonality in

temperature can give rise to pronounced differences in timing, relative

peak sizes, and duration of epidemics. These proposed dependencies explain

empirical dengue risk patterns observed in the city of Delhi where socio-

economic status has an impact on both human and mosquito densities.

These observed risk trends with host density are inconsistent with current

standard models. A better understanding of the connection between vector

recruitment and host density is needed to address the population dynamics

of mosquito-transmitted infections in urban landscapes.
1. Introduction
Vector-borne infections impose a major public health burden worldwide and

also affect livestock and wildlife, as the result of both established and recently

emergent pathogens. Globally, these pathogens account for more than 17% of

all infectious diseases in humans and cause more than 700 000 deaths annually

[1]. Environmental and demographic factors influencing their distribution are

currently experiencing pronounced change, from modified seasons to climate

trends, to expanding land use and urbanization [2,3]. Urban landscapes provide

environmental settings for the persistence of urban malaria in South Asia, and

the emergence, re-emergence, and establishment around the world of several

infectious diseases transmitted by mosquitoes [4–7]. Most vector-borne infec-

tions are in these landscapes the product of the peridomestic distribution of

the vectors [8,9]. This domiciliary coexistence results from suitable environ-

ments generated by human activities and also from the vectors’ ability to

adapt their life cycle to new habitats [10]. The mosquito Aedes aegypti provides

a perfect example of this adaptation, with almost any water container serving as
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a potential breeding site [11]. The main vector of dengue

virus, this mosquito is also responsible for the emergence of

the Zika and chikungunya viruses, and for the transmission

of the recently re-emerging yellow fever virus in several

countries [12,13].

Rapid urbanization raises the central question of the

effects of host density on these transmission systems. In par-

ticular, we can ask whether the transmission rate experienced

by an individual host increases or decreases with population

density [14]. Typically, in standard mathematical models

for vector-borne infections formulated as extensions of the

original Ross–MacDonald equations [15,16], this force of

infection decreases because of the common assumptions

of either a constant ratio between mosquito and human

numbers (e.g. [13,17]) or their complete independence [14].

These deep-seated assumptions, either implicit or unrecog-

nized, lack empirical justification (but see [18] for evidence

in Rift Valley fever in livestock). Although they could be

perhaps sufficient in temporal models for a given location,

as long as comparisons are not sought across locations with

differences in population density, the form of this depen-

dence could be critical in spatio-temporal models, especially

in urban landscapes. More complex dengue models that

explicitly track the distribution and abundance of containers

do exist [19], but these formulations require empirical

specification and do not provide direct understanding of

the consequences of variation in human density.

We consider here a basic modification of classical models

for the population dynamics of vector-borne infection and

introduce an explicit dependence between host density

and vector abundance through mosquitoes’ recruitment. This

modified system recognizes that increasing human densities

are expected to generate increasing numbers of mosquito

breeding sites and thus mosquito numbers, albeit with a

likely asymptote. Within the classical framework of models,

a family of functions is considered to represent a spectrum of

variation in the mosquito recruitment–human density relation-

ship and to investigate its dynamical consequences in

both temporal and spatial settings. We specifically derive con-

ditions for an increased per capita risk of infection with human

density and demonstrate fundamental differences in trans-

mission dynamics compared with models with standard

assumptions. With empirical data on reported cases from the

city of Delhi, India, evidence is presented for the existence of

such a dependence across different parts of the city correspond-

ing to different human densities and socio-economic

typologies.

Consequences of variation in host numbers have been pre-

viously addressed from the perspective of density-dependent

versus frequency-dependent transmission in relation to the

biting behaviour of vectors [14,20]. We argue that the con-

dition needed for density dependence and therefore for an

increasing force of infection, namely a very small number of

encounters between vectors and hosts (of less than one host

per vector per week) [14], finds restricted application in

urban landscapes. In these environments, the abundance of

breeding sites rather than host encounters is likely to act as

the limiting factor determining the carrying capacity of

vectors. Understanding how to include this currently missing

link between host and vector abundance is critical to

modelling the population dynamics of vector-borne infec-

tions in the heterogeneous landscapes of today’s urbanized

world.
2. Material and methods
In our modified model, we consider that humans generate

potential breeding sites in the form of water containers for

the recruitment of the vector, and that this relationship can be

described by a function whose specific form potentially depends

on social factors. Thus, a function V(N ) describing the carrying

capacity of mosquitoes as a function of human density N is intro-

duced in the classical formulation of coupled vector–human

transmission models.

(a) The model
As in classical epidemiological models for vector-borne infec-

tions, we consider two coupled subsystems: the first is an SIR
(susceptible, S; infected, I; recovered, R) model for the host; the

second, an SI (susceptible, W; infected, Z) model for the vector.

The population dynamics of the system is described by the

following system of equations:

dW
dt
¼ M lM � mM

W
V

� �
� ad

I
N

W

and
dZ
dt
¼ ad

I
N

W � mMM
Z
V

,

9>>>=
>>>;

ð2:1aÞ

dS
dt
¼ lNN � ad

ZS
N
� mNS,

dI
dt
¼ ad

ZS
N
� gI � mNI

and
dR
dt
¼ gI � mNR,

9>>>>>>>=
>>>>>>>;

ð2:1bÞ

where lj and mj denote the birth and mortality rates (with j ¼M
for vectors and j ¼ N for hosts), a is the biting rate, g, the recov-

ery rate and d, the virus transmission probability given a bite

by a susceptible mosquito of an infectious human. Without loss

of generality, we consider for simplicity an equal transmission

probability in both directions, from host to vector and from

vector to host. Although it is well known that most of these par-

ameters depend on temperature, we initially keep them constant

to begin with constant environmental conditions and then vary

specific parameters seasonally as a function of temperature.

(The parameter values are adapted from [21,22]. See electronic

supplementary material, table S1.) From (equation (2.1a)), the

total number of vectors, M ¼W þ Z, follows a logistic equation

(equation (2.2)), whose carrying capacity is proportional to the

function V(N ):

dM
dt
¼ lMM 1� M

ðlM=mMÞV

� �
: ð2:2Þ

(b) Functions V(N ) and the force of infection
The specific functions V(N ) considered here are motivated by the

expression for the force of infection, the transmission rate per

susceptible individual, which in our model is defined as FOI ¼

daZ/N. To examine different dynamical scenarios resulting

from variation in host density, we seek to consider functions

V(N ) giving different behaviours of the force of infection with N.

By making a quasi-static approximation to the set of differen-

tial equations and assuming that Ŵ � M̂ (from Ẑ� Ŵ), we

obtain from equation (2.1)

Ẑ ¼ ad

mM

I
N

V

M̂
Ŵ � ad

mM

I
N

V: ð2:3Þ

Substituting this expression for the infected vector in the FOI, we

have that

FOI ffi ðadÞ
2

mM

IV
N2

, ð2:4Þ
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Figure 1. (a) The different functions V(N ) considered in this study. (b) Mean value of the force of infection (over 2 000 runs for t ¼ 25 days and normalized by its
maximum value with respect to N ) as a function of human density N, where colours represent simulations with different functions V(N ). The FOI values in (b)
correspond to a cut at t ¼ 25 days of the surfaces in (c), (d ), (e), and ( f ) for the linear, quadratic, sigmoid, and constant cases, respectively. These surface plots
show the force of infection (100�) as a function of time and N.
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and substituting equation (2.4) into equation (2.1b), we obtain the

following approximation for I:

I � I0 exp
ðadÞ2

mM

V
N

f ðtÞ
 !

: ð2:5Þ

Then, from equations (2.4) and (2.5), we can write an approxi-

mate analytical expression for the force of infection itself,

FOI � hðtÞ V
N2

exp bðtÞV
N

� �
, ð2:6Þ

where h(t) and b(t) denote two functions of time.

Motivated by equation (2.6), we chose a family of power

functions, namely VðNÞ/Nk. To analyse the behaviour of the

FOI with N for different exponents k, we take the derivative of

the approximate FOI and obtain the following equation:

dFOI

dt
� hðtÞ exp bðtÞV

N

� �
Nk�3ð1þ bðtÞNk�1Þ

� k � 1þ 1

1þ bðtÞNk�1

� �� �
: ð2:7Þ

From equation (2.7), given that the factor 1 þ 1/(b(t)Nk21 þ 1) . 1

is bounded from below, we have that the FOI is a decreasing

function of N if k is lower than or equal to one. This factor is

also bounded from above, 2 . 1 þ 1/(b(t)Nk21 þ 1), which

implies an increasing behaviour of the FOI with N when k is

greater than or equal to two.

Figure 1a illustrates the family of functions V(N ) considered

here (k ¼ 0, 1, 2), together with an additional sigmoid curve

corresponding to a type III functional form. (This additional

function allows for a non-monotonic behaviour with N, given
that we now have variation at both a higher and lower rate

than quadratic in different parts of the curve.)

(c) Temporal, seasonal, and spatial simulations
We numerically implement the full model (equation (2.1)) stochas-

tically in continuous time, technically as a Markov ( jump) process

[23–25], to represent Poisson processes with exponentially

distributed times (for faster simulation, we use the approximation

method described in [26]). A stochastic implementation allows us

to take into account the effect of extinction outcomes on the means

presented below and to specifically consider probabilistic quan-

tities when analysing the Delhi data. To introduce seasonality,

we generated periodic vector abundance by sinusoidally forcing

the mortality and birth rates of the mosquitoes, mimicking the

effect of seasonal temperature variation.

For the spatial simulations, a grid of units represents two-

dimensional space, and within each unit, both vector and host

populations follow the above transmission model in system

(2.1). The coupling between units is implemented via mosquito

movement to neighbouring units, with the flight rate depending

on the local carrying capacity [21] (see electronic supplementary

material, table S1 for details).

(d) Empirical data and analysis
To explore empirical evidence for the hypothetical dependence

represented by V(N ), we analysed yearly reported dengue

cases for the city of Delhi (India) for years 2008, 2009, and

2010 [27]. This yearly dengue data are published and described

in detail in [27] as part of a Geographical Information System

for the city constructed at a spatial scale of 250 m � 250 m (the

spatial ‘unit’). In this previous study, each of these 10 676 units
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was assigned to one of eight socio-economic classes based on a

principal component analysis (PCA) classification. The socio-

economic and demographic characteristics for the PCA analysis

consisted of six variables, four of which were selected from the

property tax information for Delhi’s colonies as known risk

factors associated with other infectious diseases. These variables

are level of infrastructure, economic status of resident, type of

colony, and total property tax score. Two additional variables

consist of the percentage of land dedicated to industry and the

population density estimated from the 2011 census and remote

sensing. The spatial resolution was chosen to create homo-

geneous units as described in [27]. The resulting groupings of

these units are called ‘typologies’ hereafter and include Rich,

Deprived Low Density (or Dep. LD), Deprived Medium Density

(or Dep. MD), Deprived High Density (Dep. HD) as well as

Planned, Industrial, Cantonment, and Rural Periphery [27]. The

Deprived typologies as their name indicates correspond to

conditions of low wealth. We focus here on typologies with a

sufficient number of units for the analysis described below;

these include in particular Rich and Deprived LD and MD.

Because of the noisy nature of the data with high under-

reporting, frequent asymptomatic infections [28], and only a

few reported cases at the level of units, as well as common extinc-

tions and absence of cases, we assessed the local capacity of units

within each typology to propagate infection. Given that the arri-

val of an infected individual is necessary to generate infected

hosts inside a unit, we considered that all the units with at

least one reported case in a given year have received an external

infection, and that units with more than one case are likely to

have experienced local transmission. In other words, we consider

that, in the span of one year, there is a very low probability

that more than one person has contracted the infection outside

their unit. This assumption is particularly sensible for 2008 and

2009, years with a low virus circulation in the city compared

with 2010. Then, for a given typology Ty, a unit u with a popu-

lation density N has a probability p of generating infected people

locally, given by

p ¼
jfIu � 2:u [ Ty ^ Nu ¼ Ngj
jfIu � 1:u [ Ty ^ Nu ¼ Ngj ¼

jBj
jAj : ð2:8Þ

For each typology, the units where infections are present are

grouped by human density N (set A), and from this set, the units

with two or more infections are selected (set B). Then, p is com-

puted as the ratio between the number of elements of these two

sets (equation (2.8); for a detailed description, see electronic sup-

plementary material, figure S1). Based on our finding below that

p depends on the ratio of vectors to humans and is invariant

with the function V(N ), we are able to estimate the power function

V(N ) that best fits the empirical variation of p with N. This allows

us to interrogate the data on whether V(N ) increases faster than

linearly, with consequences for an increased FOI with N.
3. Results
(a) The force of infection
The respective FOI from the simulations with the different

V(N ) curves (figure 1a) are plotted in figure 1b as a function

of N and for a given time chosen to fall before the peak of

the epidemic. (As the FOI varies dynamically, these curves

represent a time section through the corresponding surface

representing the variation of this quantity with N and time;

figure 1c–f.) We obtain different trends with N and, therefore,

different dynamic behaviours for different population den-

sities. For the linear and constant cases, the FOI decreases

when N grows, implying a lower rate of infection per suscep-

tible host when N is large. The opposite behaviour is
obtained when V(N ) is quadratic and for the sigmoid case,

the FOI exhibits a non-monotonic behaviour with N. In par-

ticular, the FOI does not necessarily decrease as expected

from existing models. The described trends of the FOI with

N are robust to variation in other model parameters (see elec-

tronic supplementary material, figure S2 as an example of

variation in the biting rate).

Vector recruitment also affects other importantepidemiologi-

cal quantities that do not vary dynamically under fixed external

conditions, in particular the basic reproductive number R0. (We

refer here strictly to R0 when the population as a whole is suscep-

tible.) From the system equations (equation (2.1)), we have

R2
0 ¼ ðV=NÞa2d2=ðmMðgþ mNÞÞ which, as known, shows that

R0 depends on the vector–host ratio. As a result, variation of R0

with N is not the same as that of the FOI. For example, R0 remains

constant with N, whereas the FOI decreases, for linear V(N) (see

electronic supplementary material, figure S3).
(b) Temporal and seasonal dynamics
Because the FOI is closely associated with system dynamics,

the above-described variation with N should result in distinct

patterns of the temporal evolution of infection. In figure 2a,

the different behaviours of incidence dynamics with N for

the linear, quadratic, and sigmoid cases are shown. For the

linear case, because the force of infection decreases with N,

the time to the epidemic peak increases with N. By contrast,

for the quadratic, case, the initial intensity of the epidemic

decreases with N, with a peak delay of 10 days for N ¼ 400

and 25 days for N ¼ 300 relative to N ¼ 500. For sigmoid

V(N ), outbreaks only occur for medium N values and are

absent for smaller and larger N. Consistent with its FOI

peak, medium-sized populations (N ¼ 300) have a larger

initial intensity of infection (and earliest peak timing).

The above dynamics are largely ruled by the depletion of

susceptible hosts. Another important mechanism behind the

turnaround of epidemics in vector-borne diseases is the strong

dependence of the mosquito life cycle and viral development

within the mosquito on temperature [29,30]. The effect of FOI

on initial epidemic intensity can give rise to more complex dyna-

mical patterns when environmental conditions vary over time.

With seasonal forcing, resulting average values of incidence

show patterns of repeated outbreaks, characteristic of vector-

borne infections, with the relative size of the annual peaks

varying with N in a way that depends closely on V(N)

(figure 2b). For example, in the linear case, although the largest

first peak is always obtained for small N, the size of the sub-

sequent peaks depends on N and increases for medium and

large N. A completely different dynamical behaviour is obtained

for the quadratic case, where peak size increases with N. In con-

trast to the linear case, for quadratic V(N), the importance of the

initial peak inverses with N, and the first and subsequent peaks

can become comparable, especially for small N. A relative later

temporal peak is associated with smaller values of N.
(c) Spatio-temporal dynamics
A spatial framework allows us to consider the effects of popu-

lation density distribution through the vector’s carrying

capacity, while keeping the total population size constant. In par-

ticular, we explore emerging patterns resulting from a given

population distribution for different functions of V(N). Results

illustrate the potential importance of the V(N) dependence
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with one particular and common pattern of population

distribution and a simple assumption about spatial coupling.

For the spatial framework a population density decreas-

ing from the grid centre, and linear, constant, and quadratic

functions V(N ) were considered in the simulations. All initial

conditions consist of susceptible populations and a single

infected host in the centre of the grid. For the non-seasonal

case (figure 4a(i)), the epidemic peak timing (T ), as well as

the beginning and the end of the outbreak vary significantly

with V(N ). Here, two spatial effects from the centre to the

periphery of the grid are at play, which act together to give

the aggregated temporal trajectory, that of FOI and V/N.

An early and sharp epidemic (at T ¼ 170 days) is obtained

for the quadratic case whose initial FOI is greater than that

for the linear and constant cases, given the host distribution.

The constant V(N ) exhibits a later peak (T ¼ 435 days) than

the linear case (T ¼ 350 days) because, in addition to the FOI

effect, disease spread occurs under a decreasing vector–

human ratio, whereas this ratio remains constant for linear

V(N ). As a consequence, for constant V(N ), the access to

units that can produce a large fraction of infected hosts

takes time, inasmuch the epidemic spreads by neighbouring

coupling only.

As a consequence of these differential dynamics, we obtain

very distinct temporal patterns when seasonal forcing by

temperature is applied (figure 3b). For example, for a quadratic

function V(N ), the early and sharp epidemic under constant

temperature generates two early, large outbreaks. By contrast,

a later and broader/flatter curve translates into a large number

of smaller outbreaks as generated by linear and constant func-

tions of V/N. Given that the total numbers of both humans

and vectors are the same across the simulations, these emer-

gent patterns result from the combination of variation in the

local force of infection with the spatial spread of the infection.

(d) Empirical patterns and estimated V(N ) from
Delhi data

Figure 4a(i) shows the probability p (see equation (2.8))

plotted as a function of N/Nmax for the Dep. MD, Dep. LD,
and Rich typologies for the Delhi data. Depending on the

typology, within its characteristic population density range,

we observe different trends for the probability p. For the

Dep. MD typology, p increases with N; for Dep. LD, this

quantity remains approximately constant, and for the Rich

typology, it increases and then decreases.

We then asked whether our temporal model is capable of

capturing these different patterns. We considered that each

unit experiences well-mixed conditions and, because p is the

probability that a unit generates infections locally upon arrival

of an external disease ‘spark’, we modelled units indepen-

dently from each other with a single infected human as the

initial condition. For each V(N ), figure 4a(ii) shows the prob-

ability of a unit exhibiting more than one infected host as a

function of N/Nmax. These simulated patterns qualitatively

capture the empirical trends, showing an increasing, a

constant, and non-monotonic (up and down) behaviour, for
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(d ) Values of V obtained from the observed p are plotted as a function of N for the Rich typology. The dashed line corresponds to the expected values under the
assumption of a constant ratio between V and N.
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the quadratic, constant, and sigmoid functions, respectively.

In particular, we highlight that the typical assumption of the

number of breeding sites, and hence mosquito population

size, being independent from host density, would generate a

decreasing behaviour of p with N/Nmax. Figure 4a suggests

that this pattern does not hold for any of the trends obtained

from the empirical data.

To estimate the power-function dependence of V with N
(V(N ) ¼ cNk) that best explains these data for a given typol-

ogy, we first estimated the empirical mean value of V for

each set of spatial units with similar N. In this way, we can

obtain a set of empirical points (V, N ) to fit the corresponding

power function. To this end, we first observe that as expected

from [31], the probability p from the simulations depends

only on V/N and not on the specific function V(N )

(figure 3b). Thus, we can use this curve to compute from

the observed value of p (coloured points in figure 4b) the cor-

responding empirical value of V/N. We then use this ratio

itself to compute V by simple multiplication by the known

value of N. The exponent k can finally be estimated by a

linear regression of ln(V ) as a function of ln(N ) (figure 4c).

We obtain values k ¼ 2.01+ 0.10 for the Dep. MD case, and

k ¼ 1.24 + 0.08 for the Dep. LD, to which we have added

the data from the planned typology as explained in

figure 4c. Given the apparent non-monotonic behaviour of
V with N for the Rich typology (figure 4d ), we would need

to consider a piecewise linear dependence. Because this

would result, however, into too few points in each section,

especially for the decreasing branch, we did not fit V(N ) for

this case.

4. Discussion
It is well known that the force of infection is a key quantity for

epidemiological dynamics. Thus, its relation with human den-

sity should be critical to epidemic spread, particularly in urban

landscapes and other settings with heterogeneous population

distributions. With a simple modification of the classical

equations for vector-borne infections, we showed that the

effect of human density on the force of infection depends

strongly on the dependence of mosquitoes and human num-

bers represented by a function V(N). In particular, a dense

environment can be misrepresented by a dilution of the

infection probability rate as expected from the common

assumption of independent or linear human–vector recruit-

ment. Even under a constant temperature environment, we

showed that V(N ) determines epidemic peak timing, duration,

and beginning of the outbreak. Although a non-seasonal

environment is clearly unrealistic, these results translated into

very different incidence patterns under seasonal temperature
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forcing. These kinds of patterns in interannual variation are

typically addressed in terms of climate variability, for example

in temperature [32], and in some cases also as the result of

susceptible depletion. We show, however, that different

dependencies of the human–mosquito density relationship

introduce significant variation in the timing and size of

consecutive outbreaks, whether in a purely temporal or in a

spatio-temporal context.

Because the function V(N ) results from a variety of

socio-economic characteristics mediating the effect of density

on vector abundance, its shape would be expected to vary

within a city and especially in developing countries. We

have provided evidence for density-dependent risk patterns

within Delhi, where the probability that a spatial unit in the

city develops infections locally depends both on its popu-

lation density and typology. This variation in dengue risk

pattern V(N ) suggests different dependencies of vector abun-

dance on human density for the different socio-economic

typologies, with significant disease consequences. The esti-

mated quadratic dependence of the part of the city that was

previously classified as Deprived MD clearly departs from

the common assumptions made to formulate models of

vector-borne transmission. Poor socio-economic conditions

in Delhi are associated with a lack of access to regular pipe

water and solid waste [33]. As a result, the storage of water

and the proliferation of potential containers for rainfall

would produce breeding sites for mosquitoes and therefore

higher abundances with more humans. For the Deprived

LD case, the overall lower population density range could

explain the estimated lower exponent, whose value would

still imply a faster than linear production of breeding

sites. For the Rich typology, our results suggest that a non-

monotonic function V(N ) may underlie the risk patterns,

implying a saturation effect when population density is

large enough. Under better socio-economic conditions and

better access to water and urban services, an increasing

population density may not keep increasing the availability

of breeding sites. The numbers of water containers, such as

flower pots, air conditioners, and gutters, do not keep

increasing after a given number of humans is reached. With

an increasing presence of tall buildings, water containers

could be also less likely to produce mosquitoes [34,35]. Inter-

estingly, a sigmoid relationship between humans and vectors

has been proposed in [36] for an analysis of dengue fever in

Vietnam.

Our estimation of V(N ) for different parts of the city relied

on the observation that the probability p of local transmission

is invariant with the specific shape of this function, and only

depends on the ratio of V and N. This pattern is consistent

with the expression derived by Bartlett [31] for the prob-

ability of a major outbreak, which is in turn related to the

known relationship of R0 with this ratio [37] (see electronic

supplementary material, figure S3).

Different trends for R0 with N have already been debated

in terms of frequency versus density-dependent contacts

between host and vectors [38,39]. Because contacts are

considered the result of vector biting behaviour, these conflict-

ing predictions are reconciled by arguing that different forms

of the transmission term apply biologically only at certain

population densities [20]. The empirical patterns obtained

for Delhi would imply biting rate dependencies other than

those that have been proposed, and would be difficult to

justify solely on the basis of these arguments.
The shape of the relationship between the force of infection

and human density has been discussed for the different

assumptions of frequency-dependent and density-dependent

biting rates, as well as some intermediate cases, resulting

from behavioural considerations on the vector [14]. Although

a density-dependent assumption can provide an increasing

FOI with N, the conditions for this pattern to hold appear

restricted to an unrealistic number of humans per mosquito.

For the general transmission rate derived by the authors in

[14] from behavioural considerations, a density-dependent

scenario applies when 1=Th � Nm, where Th is the handling

time (related to the gonotrophic cycle, [29,40]) and Nm is the

number of humans encountered by mosquitoes per unit

time. By assuming that Th � 1 day, we obtain Nm � 7=week

(� indicating less than one order of magnitude) and,

therefore, in a span of a week vectors should not be able

to find more than a single host for the hypothesis of a

density-dependent biting rate behaviour to apply.

The spatial distribution of mosquitoes’ breeding sites is

key to understanding the spread of vector-borne infections

as it introduces an important source of spatial heterogeneity

[41]. For such heterogeneous environments, models based

on mosquito blood-meal search have been proposed [40,42].

For example, the authors in [42] studied configurations result-

ing from mosquitoes emerging at one location and spreading

subsequently driven by blood ingestion. This approach

would not apply at city scales for many vectors because

they would have to be able to fly long distances or be very

long-lived. The A. aegypti mosquito does not fly more than

a hundred metres from its breeding site under normal con-

ditions [43,44]. The authors of [42] recognize that allowing

the mosquito to oviposit everywhere is a critical assumption

of their model, needed to understand where and when adult

mosquitoes will emerge.

The growth of urban populations and climate change

define major environmental challenges of this century. In par-

ticular, urban environments introduce highly heterogeneous

environmental and socio-economic conditions that can

affect the population dynamics of vector-borne infections.

Although high-resolution data on human distributions and

their socio-economic conditions are becoming increasingly

accessible, spatial information is clearly much more limited

and challenging to obtain for vectors. The proposed function

relating vector and human numbers therefore provides one

empirical approach to represent important spatial hetero-

geneities in mathematical models for the population

dynamics of vector-borne infections in cities. Such functions

can be directly examined from field measurements of vector

abundance and recruitment, or indirectly derived from

disease surveillance data and associated joint distributions

of human densities and socio-economic conditions. Their

effects on spatio-temporal dynamics should be further inves-

tigated in models with different spatial structures and more

realistic spatial landscapes representative of specific urban

environments. Although for simplicity, we have considered

only neighbouring coupling, there is evidence on the impor-

tance of human movement for the transmission of dengue,

and the exploration of more realistic connectivity networks

is becoming increasingly possible [45,46]. We expect our

result of pronounced differences in temporal patterns of

epidemic spread to still hold across different functions V(N ).

As illustrated here with the seasonally forced simulations,

this dependence can have profound impact on the interplay
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of climate forcing and disease dynamics in urban environ-

ments. The importance of including urban characteristics

to better understand how increasing temperatures would

affect infectious diseases has already been argued by others

[47–49]. We underscore that such an agenda should include

population density as a central variable, with the possibility

that social and environmental characteristics can completely

reverse the expected pattern of decreased risk per individual

as human density increases.
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