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IntroductIon

Recent advances in the digital pathology spurred by the Food and 
Drug Administration (FDA) approval of whole‑slide imaging 
for the primary diagnosis have led to the development of 
numerous computer image analysis systems and deep‑learning 
algorithms, which have opened the door to computer‑assisted 
diagnostics in the pathology. Prior studies have established the 
safe use of digital pathology in primary diagnostic reporting 
generally[1‑3] and in the gastrointestinal pathology specifically.[4]

Many computer image analysis systems are based on machine 
learning, a term coined to express a program that can “learn” 
without explicit programing to achieve a task. While this 
may be complex, a machine learning system is often simply 
creating a function for a line of best fit, but in the multiple 

dimensions. These systems can be trained in supervised 
learning or unsupervised learning. Supervised learning consists 
of providing the system with both the data (inputs) and the 
result (output). As input parameters change (for example, the 
color or granularity of a cell’s cytoplasm), the function alters 
the coefficients to create a more accurate function. In anatomic 
pathology, the system is provided with the visual data or images 
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of a tumor and given the diagnosis (a training set of images). 
As the system is shown more examples of a tumor, the model 
adjusts its function to match the provided data. When the 
system is then given input data without the result (a test set of 
images), the model can execute the same function and come 
up with an output that is, ideally, accurate.

Deep learning is a subset of machine learning and is based on 
interconnected simple processing nodes, similar to neurons in 
a brain. These densely connected nodes typically operate on 
a feed forward (mono‑directional data flow) system with the 
data passing through the several layers of nodes. Each node 
receives data from multiple nodes from the layer above it. The 
system then multiplies the data by the weight coefficient (that 
was determined in training) and sums these values. If the sum 
of values exceeds a threshold (also determined in training), 
the data propagate to the next layer (just as action potentials 
do in neurons); if not, it passes no data to its outgoing 
connections. In the training of a deep‑learning system, each 
of the coefficients and thresholds are randomized, and data are 
fed into the initial layer. It then passes through the system and 
the output is compared to the “correct” output. The coefficients 
and thresholds are then adjusted over many iterations as the 
function evolves. As such, deep‑learning algorithms have been 
applied to anatomic pathology due to the visual analysis that 
is intrinsic to anatomic pathology.

A common type of deep learning used in the image analysis is 
a convolutional neural network (CNN). CNNs are regularized 
feedforward artificial neural networks. They serve as solutions 
to overfitting, where the analysis fits too closely to the exact 
data set and is unable to fit additional data. For example, if a 
nonregularized system was trained to recognize a Coke can 
as soda, it could exclude a Pepsi can due to overfitting. CNNs 
have shown promise in both neoplastic and nonneoplastic 
anatomic pathology and have been particularly well studied 
in breast pathology; focused on identification, grade, 
hormone immunohistochemical (IHC) status, and lymph node 
metastases with impressive results.[1,2,5‑12]

Well‑differentiated neuroendocrine tumors (WDNETs) are a 
diverse group of tumors that share a neural crest origin and 
a similar histologic appearance. WDNETs can demonstrate 
a wide variety of architectural patterns, including solid, 
nested, trabecular, insular, glandular, or cribriform, often in a 
fibrous or hyalinized stroma. WDNETs usually have uniform 
nuclei, finely stippled chromatin (salt‑and‑pepper), granular 
cytoplasm, and a monotonous appearance.[13]

A review of the Surveillance, Epidemiology, and End Results 
Program of the National Cancer Institute found: “The 
greatest incidence of carcinoids were the gastrointestinal 
tract (67.5%) and the bronchopulmonary system (25.3%). 
Within the gastrointestinal tract, most carcinoid tumors 
occurred in the small intestine (41.8%), rectum (27.4%), 
and stomach (8.7%).”[14] While WDNETs from the disparate 
locations can have very similar morphologic appearances, they 
vary significantly in both response to site‑specific therapy and 

prognosis.[15,16] The latter can especially be site dependent, as 
the majority of WDNET metastases of occult origin come 
from the ileum, jejunum, or pancreas. This contrasts with most 
gastric, appendiceal, and small (<1 cm) rectal WDNETs, which 
are usually clinically indolent.

Metastatic WDNETs behave differently depending on the 
site of origin. For example, small intestinal WDNETs are 
associated with the greater incidence of obstruction and 
perforation.[17‑20] In addition, the site‑specific response to 
different chemotherapeutic regiments is well documented, 
with cytotoxic chemotherapies showing little response in 
midgut WDNETs, and targeted biologic agents (e.g., Sunitinib) 
demonstrating promising the results in pancreatic WDNETs 
but not in midgut WDNETs.[19,21] Molecular studies have 
demonstrated variant expression of key signaling pathway 
components between WDNETs of different sites, which 
explains this biologically divergent behavior.[15,21‑24]

When metastatic WDNETs are encountered and no primary 
site can be identified, this can pose a significant diagnostic 
challenge. Despite multiple modern imaging modalities, 21% 
of WDNETs are occult.[25] IHC has been employed to confirm 
neuroendocrine differentiation and identify the site of origin.

General IHC markers of the neuroendocrine phenotype 
include synaptophysin, chromogranin, HISL‑19, neuron 
specific enolase, the proprotein convertases PC2 and PC3, the 
lymphoreticular epitope Leu‑7, and the neural cell adhesion 
molecule (or CD56).[26‑28] Once a neuroendocrine phenotype is 
identified, additional IHC can be used to further characterize 
a likely site of origin. The most common WDNET IHC panel 
pathologists employ include caudal‑type homeobox 2 (CDX2) 
for midgut, thyroid transcription factor‑1 (TTF1) for lung, 
polyclonal Paired Box Gene 8 (pPAX8) or PAX6 for pancreas, 
and Special AT‑Rich Sequence Binding Protein 2 (SATB2) for 
colorectal tumors.[29‑32] However, some markers perform better 
than others. CDX2 is arguably the most sensitive and specific 
of the lot, with strong/diffuse staining seen in up to 90% of 
jejunoileal WDNETs.[31,33] Weak‑to‑moderate CDX2 expression 
can be found in duodenal and pancreatic primaries, but this 
usually occurs in a minority of cases (approximately 30% of 
duodenal primaries and 15% of pancreatic primaries).[31,33] TTF1, 
on the other hand, suffers in diagnostic sensitivity (30%–80% 
depending on the study) but is highly specific for pulmonary 
origin.[29,31] Polyclonal PAX8 cross‑reacts with PAX6, a 
transcription factor critical to pancreatic islet development, 
and this feature has been exploited to utilize pPAX8 as a 
marker of pancreatic WDNETs, though it has only been shown 
to be 55% sensitive and duodenal primaries may express 
pPAX8 in up to 79% of cases.[31] Finally, SATB2 has recently 
demonstrated an 83%/93% sensitivity/specificity pairing for 
rectal WDNETs, making this a promising marker of lower 
gastrointestinal tract origin.[33] Given the wide‑ranging accuracy 
metrics for current IHC markers, there is a need for improved 
identification of WDNET site of origin when pathologists are 
faced with a metastasis from an unknown primary. CNNs have 



Figure 1: A duodenal example of how the WDNETs was annotated for CNN 
analysis. The green outline includes only the tumor cells and indistinct 
stromal/vascular tissue for analysis. The normal duodenal epithelium 
and smooth muscle are not outlined and are thus excluded from all 
CNN analysis. WDNETs: Well‑differentiated neuroendocrine tumors, 
CNN: Convolutional neural network
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proven capable in a wide range of challenging morphologic 
assessments and may therefore have a role in this difficult task.

MaterIals and Methods

This study was performed in accordance with the Institutional 
Review Board requirements at the University of New 
Mexico (Albuquerque, New Mexico).

We obtained 215 primary WDNET formalin fixed 
paraffin‑embedded tissue blocks from 215 individual subjects 
with known sites of origin from our archives. The tumors’ 
origins were as follows: appendix (n = 13), colorectum (n = 45), 
duodenum (n = 21), lung (n = 25), pancreas (n = 38), small 
bowel (n = 43, jejunum and ileum), and stomach (n = 30). The 
corresponding slides from all blocks were reviewed by two 
gastrointestinal pathologists, who confirmed the diagnosis and 
selected areas for the inclusion in tissue microarrays (TMAs). 
A total of seven WDNET TMAs were created and two 1.5 mm 
cores were placed for each case. The 1.5 mm cores were 
removed from the donor blocks and placed into the TMA 
blocks using the Chemicon Tissue Micro Arrayer ATA‑100. 
Slides were then created for each TMA block and these were 
stained with both hematoxylin and eosin (H&E) and the 
following IHC antibodies: PPAX8 (Proteintech 10336–1‑AP), 
CDX2 (Abcam ab76541), SATB2 (Cell Marque 384R), and 
TTF1 (Novocastral/Leica NCL‑L‑TTF1).

For IHC staining, all TMA blocks were sectioned at 4–5 µ, 
and the sections were mounted on charged (+) slides. Slides 
were baked at 60°C for 60 min. The Ventana Discovery 
platform was used for deparaffinization and staining. Prior 
to the application of the antibodies, slides were treated with 
Discovery Cell Conditioner #1 (Ventana 950–500) for 64 min 
at 100°C (pPAX8), for 32 min at 100°C (CDX2 and TTF1), and 
for 36 min at 95°C (SATB2). Each antibody dilution/incubation 
time and temperature was as follows: PPAX8 = 1:500/32 min at 
36°C, CDX2 = 1:1000/32 min at 36°C, SATB2 = 1:25/16 min 
at 37°C, TTF1 = 1:200/24 min at 37°C. All antibody 
incubation was followed by DAB CM detection. Slides 
were counterstained with hematoxylin (Ventana 760–2021) 
and bluing solution (Ventana 760–2037), removed from the 
autostainer and hand‑coverslipped.

The stained slides (IHC and H&E) were then digitized by 
scanning with the Aperio VERSA 200 slide scanner (Leica, 
Wetzlar, Germany) at ×20 and imported into a computer 
containing a 12 Core, 2.2 GHz Intel Xeon Processor E5‑2650 
chip and a Nvidia Titan XP graphics card. HALO‑AI image 
analysis software (Indica Labs, Albuquerque, New Mexico) 
was used to perform the training and testing on H and E slides 
only. HALO‑AI is a CNN that uses a fully convolutional 
version of the VGG architecture.

All 215 H&E‑stained cases were then manually annotated on 
the software. This was performed by the consensus of two 
gastrointestinal pathologists and one pathology resident viewing 
the digitized TMAs. The tissue was annotated to include only the 

tumor cells and nonneuroendocrine intratumoral cells inherent to 
the tumor (e.g., tumor‑associated endothelial cells and indistinct 
stroma) and to exclude any areas that might be informative as to 
the site of origin [Figure 1] (e.g., native background epithelium 
and smooth muscle). In the cases which proved insufficient on 
the TMAs, either due to the lack of tumor or other artifact, the 
most representative H and E slides from the original resection 
or biopsy were scanned and annotated separately, with the total 
annotation area not exceeding that of the TMA cores. Only six 
cases (2 from stomach, 1 from pancreas, 1 from duodenum, 
1 from colorectal, and 1 from appendix) required TMA core 
replacement with biopsy/resection tissue.

Of the 215 cases, 130 (60%) were randomly selected for the 
inclusion in the CNN training set and 85 (40%) were randomly 
included in the test set [Table 1]. Training was performed by 
HALO‑AI only on the annotated areas of the TMAs, consisting 
of the aggregate of the two cores or biopsy/resection slides, 
broken down into “image patches” of 400 × 400 pixels (where 
1 pixel = 1 µm) at resolutions corresponding to a × 5.5, a × 10, 
and a × 20 digital view magnification. The image patches were 
generated by the automated selection of random points and 
cropping a patch around the point. The patches were further 
augmented with random rotations and random shifts to hue, 
saturation, contrast, and brightness. Training was performed for 
a total of 325,790 analytic iterations using RMSProp at × 5.5, 
451,176 at × 10, and 534,805 at × 20. During these iterations, 
the algorithm would continuously change the node‑weighted 
values based off the annotation of the two gastrointestinal 
pathologists. The HALO‑AI operator stopped the algorithm 
once an error rate/cross entropy rate of <0.01 was achieved 
for the × 5.5 and × 10 and < 0.02 at × 20.

After training was completed, for the test set, the annotated 
areas (performed on the two TMA cores for each case) were 
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arbitrarily designated with colored digital labels according to 
the HALO‑AI site of origin diagnosis. Appendiceal origin was 
given a magenta digital label, colorectal origin a brown label, 
pancreatic origin a yellow label [Figure 2], duodenal origin a 
bright green label [Figure 3], lung origin a blue label, small 
bowel origin a red label, and stomach origin an olive‑green 
label. HALO‑AI analyzed these cases blindly, assigning each 
annotated region (“patch”) a likelihood score for that area, 
which corresponded to the most probable diagnostic call. The 
output for each test case was ultimately X% area (WDNET 
favored site of origin) versus Y% area (additional preferred site 
of origin) based on these calls. These percentages are termed 
area distribution (AD) in this paper, with each case receiving 
a mosaic of %AD calls, comprised of various percentages 
adding up to 100%.

The ADs were compared against the known site of origin 
to determine if the correct diagnosis was achieved. If the 
majority or plurality of a sample was assigned the correct 
AD by HALO‑AI, this was considered a correct diagnosis 
in the binary correct or incorrect classification. Majority was 
defined as >50% of the sample called correctly and plurality 
was defined as the greatest AD called overall if a majority AD 
was not achieved.

The IHC‑stained slides were annotated in the similar fashion 
with representative areas of tumor selected for cytonuclear 
analysis by the HALO Cytonuclear Analysis Module (this 
module is not a CNN), with the cut‑off staining optical density 
values (negative, low, moderate, and strong) determined by a 
consensus of both GI pathologists. The total number of cases 
for IHC analysis was reduced as the IHC was only performed 
on cases with adequate TMAs (the biopsy/resection‑only cases 
were excluded due to financial limitations). In addition, some 
samples within TMAs were exhausted during preparation 
prohibiting analysis for all four IHC stains. Accordingly, 
179 cases remained for IHC analysis.

H‑score (a measure of nuclear immunoreactivity, determined 
by the calculation 3 × percentage of strongly staining nuclei + 2 
× percentage of moderately staining nuclei + 1 × percentage 
of weakly staining nuclei, giving a range of 0–300)[29] cutoffs 
for positivity were designated at ≥60 for pPAX8, ≥30 for 
TTF1, ≥20 for SATB2, and ≥10 for CDX2 by a consensus 
of the GI pathologists as values that represent “real‑world 
positivity”[30‑32] [Figure 4]. To elaborate, the pathologists found 
that the pPAX8 displayed the weakest nuclear staining and 
most nonspecific background staining, resulting in the highest 
H‑score cutoff compared to the other stains. Conversely, 
the pathologists found the CDX2 stain was the most crisp, 
resulting in the lowest H‑score cutoff. All H‑score cutoffs were 
established without knowledge of the CNN results.

The H‑score values were tabulated and compared to the IHC 
characteristics of specific tumor origin as previously described 
in the literature, except in the case of gastric WDNETs which 
are not well described.[33] The IHC diagnosis was deemed 
correct if the most specific marker for a particular site of 
origin met the appropriate H‑score cutoff and was deemed 
incorrect if it did not meet this cutoff. This was done to 
ensure that nonspecific staining for an additional incorrect 
IHC marker could not be used to artificially reduce the IHC 
accuracy calculations. For example, because CDX2 can show 
variable expression in pancreatic and appendiceal/colorectal 

Table 1: Well‑differentiated neuroendocrine tumors: 
HALO‑AI training and testing

Site of origin (n) Training set Test set
Appendix (13) 8 5
Colorectal (45) 27 18
Duodenum (21) 13 8
Lung (25) 15 10
Pancreas (38) 23 15
Small Bowel (43) 26 17
Stomach (30) 18 12
Total (215) 130 85

Figure 2: An entire pancreatic WDNET TMA core (a) and its corresponding 
HALO‑AI colored AD (b). The majority of the tumor was assigned a yellow 
AD by HALO‑AI. Because yellow corresponded to the pancreas site of 
origin, the CNN was credited with a correct diagnosis. Minority ADs 
in this case are the stomach (olive green), duodenum (bright green), 
and lung (blue). WDNET: Well‑differentiated neuroendocrine tumor, 
CNN: Convolutional neural network, TMA: Tissue microarray, AD: Area 
distribution

ba

Figure 3: A duodenal WDNET (a) and its corresponding HALO‑AI‑colored 
AD (b). The majority of the tumor was assigned a bright green AD by 
HALO‑AI. Because bright green corresponded to the duodenum site of 
origin, the CNN was credited with a correct diagnosis. Minority ADs in this 
case are the pancreas (yellow) and lung (blue). WDNET: Well‑differentiated 
neuroendocrine tumor, CNN: Convolutional neural network, AD: Area 
distribution

ba



Figure 4: A composite image of representative IHC stains. CDX2, TTF1, 
and SATB2 demonstrated relatively crisp expression. Hence, they required 
lower H‑score cutoffs to determine a true positive result. The pPAX8 stain 
displayed the weakest nuclear expression and showed some nonspecific 
cytoplasmic positivity, necessitating a higher H‑score cutoff to determine 
a true positive result. IHC: Immunohistochemistry
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WDNETs but is not as specific for these sites as pPAX8 and 
SATB2, respectively; CDX2 expression was considered 
irrelevant in these sites, and the more specific markers (pPAX8 
and SATB2) were given precedence. In such an example, a 
pancreatic tumor that was positive for pPAX8 and CDX2 
would be deemed correct by IHC due to the specific pPAX8 
expression. Alternatively, a colorectal WDNET that was 
negative for SATB2 but positive for CDX2 would be deemed 
incorrect by IHC because this combination is more common 
in jejunoileal tumors. Accordingly, IHC characteristics used 
to define a correct diagnosis for each primary site were as 
follows: Appendix/Colorectum = SATB2+, Lung = TTF1+, 
Pancreas = pPAX8+, Small Bowel (Ileum/Jejunum) = CDX2+, 
Duodenum = CDX2 + or pPAX8+.

results

HALO‑AI
The CNN performed similarly at all magnifications with 
insignificant performance improvement as magnification 
increased. The 10x classifier performance was thus chosen as 
the optimal magnification because it offered a good balance 
of speed and accuracy when compared to the × 5 and × 20 
classifiers. HALO‑AI correctly identified 72% of all cases 
in the test set [Table 2]. As Table 2 demonstrates, the CNN 
performed best with colorectal cases, correctly identifying 
94%. The small bowel was likewise accurate at 88% correct 
identification. The stomach and duodenum performed similarly 
at 81% and 80%, respectively. Lung and appendix were both 

correctly classified 60% of the time. The worst performer was 
the pancreas at 31% correct, which prompted a return to the 
original materials to confirm that no annotation errors had 
occurred. No errors were identified.

Immunohistochemistry
The IHC accuracy of the 179 WDNETs available for staining 
is summarized in Table 3. The gastric cases were excluded 
from the IHC analysis as no gastric WDNET IHC profile is 
well‑established. The IHC performed well, identifying 146 
of the 179 WDNET sites of origin correctly (82%). With 
our established H‑score cutoffs, the IHC performed best 
on the colorectal cases (98% correct) and the small bowel 
cases (100% correct), similar to HALO‑AI which also 
performed best at these sites of origin. The duodenal and 
appendiceal WDNETs were correctly identified in 94% and 
92% of the cases, respectively. The lung site of the origin was 
identified in 82% of the WDNETs. Once again, the pancreas 
proved difficult to identify with only 14 of the 40 (35%) cases 
demonstrating sufficient pPAX8 expression to be considered 
correctly classified.

HALO‑AI versus immunohistochemistry
Of the 85 cases in the HALO‑AI test set, 66 had sufficient 
TMA material for IHC stains. Thus, 66 cases were available 
for a direct case‑by‑case comparison of IHC versus CNN to 
determine which method was most accurate in identifying 
site of origin. In this direct comparison, IHC and HALO‑AI 
performances were similar. The IHC panel correctly 
identified 50 of the 66 cases (76%) while HALO‑AI correctly 
identified 46 of the same 66 cases (70%) [Table 4]. Fisher’s 

Table 2: HALO‑AI test set accuracy, all available cases

Site of origin (n) Correct HALO‑AI diagnosis, n (%)
Appendix (5) 3 (60)
Colorectal (18) 17 (94)
Duodenum (8) 6 (80)
Lung (10) 6 (60)
Pancreas (16) 5 (31)
Small Bowel (17) 15 (88)
Stomach (11) 9 (81)
Total (85) 61 (72)

Table 3: Accuracy of immunohistochemistry, all available 
cases

Site of origin with paired 
specific IHC marker (n)

IHC expression ≥H-score cutoff 
(correct IHC diagnosis), n (%)

Appendix/SATB2 (13) 12 (92)
Colorectal/SATB2 (42) 41 (98)
Duodenum/CDX2 or pPAX8 (18) 17 (94)
Lung/TTF1 (22) 18 (82)
Pancreas/pPAX8 (40) 14 (35)
Small bowel/CDX2 (44) 44 (100)
Total (179) 146 (82)
IHC: Immunohistochemistry



J Pathol Inform 2020, 1:32 http://www.jpathinformatics.org/content/11/1/32

Journal of Pathology Informatics6

exact test found no significant difference between these 
accuracy rates (P = 0.56). Regarding subgroup analysis, IHC 
performed better than HALO‑AI at all primary sites except 
pancreas [Table 4]; though IHC’s diagnostic advantage 
only amounted to 1–2 cases per site of origin. Interestingly, 
HALO‑AI correctly identified 31% of pancreatic tumors 
compared to 13% for IHC in this head‑to‑head comparison.

dIscussIon

WDNETs are enigmatic neoplasms in that their morphologic 
appearances are similar across primary sites but their biologic 
behavior is quite different and often depends on their site of 
origin. Not surprisingly, therapeutic treatments for WDNETs 
are increasingly becoming site dependent. It is the pathologist’s 
job to identify a primary site when faced with a metastatic 
WDNET of unknown origin. To accomplish this, pathologists 
rely on IHC stains. These primarily include pPAX8 for 
the pancreas, CDX2 for jejunoileum, TTF1 for lung, and 
SATB2 for colorectum/appendix. While some of these stains 
exhibit adequate sensitivity as discussed previously, others, 
such as pPAX8 and TTF1, often fall short. Accordingly, we 
hypothesized that a CNN could potentially identify subtle 
morphologic differences in WDNETs from the various sites and 
possibly improve upon the current clinical gold standard (IHC) 
in identifying the site of origin.

Our CNN (HALO‑AI) trained on 130 WDNETs from seven 
different primary sites. We then tested the algorithm on 85 
subsequent cases, finding a site‑of‑origin accuracy rate of 
72% [Table 2]. This was somewhat comparable to the IHC 
accuracy rate of 82% [Table 3], but was not an improvement.

The vast majority of WDNETs to present as metastases of 
unknown origin would be expected to originate from either the 
small bowel or the pancreas.[34] In looking at these site‑specific 
accuracy rates, the CNN again demonstrated slightly inferior 
performance compared to IHC as HALO‑AI correctly 
identified 31% of pancreatic tumors and 88% of small‑bowel 
tumors; while IHC correctly identified 35% and 100%, 
respectively [Tables 2 and 3]. However, the aforementioned 
CNN/IHC site‑of‑origin accuracy rates were derived from 
all cases available to each testing method. Nineteen of the 
cases in the initial HALO‑AI test set ultimately did not have 
sufficient TMA material for IHC stains, and therefore, our 

initial comparisons do not reflect a true case‑by‑case test of 
IHC vs. CNN. When we included only those cases that were 
interrogated by both IHC and the CNN [n = 66, Table 4], we 
discovered that their respective accuracy rates compared so 
well (70% HALO‑AI vs. 76% IHC) that the small difference 
was considered insignificant (P = 0.56). Regarding the most 
clinically significant WDNET sites of origin, pancreas and 
small bowel, HALO‑AI actually outperformed IHC in the 
pancreatic tumors (31% HALO‑AI vs. 13% IHC) but remained 
inferior to IHC in the small bowel tumors (88% HALO‑AI 
vs. 100% IHC).

In our experience working with CNN algorithms, the 
HALO‑AI performance in this task is impressive as 
the algorithm’s site‑of‑origin accuracy rate on a direct 
case‑by‑case comparison was not significantly different than 
the existing clinical gold standard IHC panel, despite an 
admittedly limited number of site‑specific WDNETs available 
for training. In addition, one could argue that our method 
of determining correct IHC identification overestimates the 
accuracy of IHC, given that an incorrect marker was not 
counted against the IHC method if the more specific marker 
was also positive. CNN algorithms depend on the large image 
sets to hone their diagnostic accuracy. Accordingly, our data 
suggest strong potential for such algorithms to accurately 
identify WDNET site of origin that could rival IHC if trained 
on many more cases. We suggest this as a further avenue 
of research for those institutions that archive more of these 
tumors. In addition, we acquiesce that a more robust study 
would include only metastatic WDNETs as opposed to the 
primary tumors on which we relied. However, this would 
require large repositories of metastatic WDNETs with clearly 
defined sites of origin and could likely only be accomplished 
at the largest academic medical centers with vast WDNET 
repositories.

There is a myriad of benefits to CNN diagnosis over IHC 
including: Reduced turnaround time (as no staining would be 
required) and decreased recurring costs (the upfront cost of 
the CNN and scanning equipment could potentially be lower 
than IHC panels over time). In addition, the CNN could be 
configured to continually improve over time to further increase 
its accuracy while the accuracy of IHC panels generally 
remains static unless a new stain comes to the market.

conclusIon

We have demonstrated that a CNN can identify WDNET site 
of origin at an accuracy rate close to the current clinical gold 
standard IHC methods. We draw this conclusion based on the 
comparable CNN/IHC accuracy rates despite a limited number 
of cases available for CNN training.
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Table 4: Accuracy of HALO‑AI versus 
immunohistochemistry, head‑to‑head cases

Site of origin (n) HALO‑AI accuracy, n (%) IHC accuracy, n (%)
Appendix (5) 3 (60) 5 (100)
Colorectal (15) 14 (93) 15 (100)
Duodenum (6) 5 (83) 6 (100)
Lung (8) 5 (63) 6 (75)
Pancreas (16) 5 (31) 2 (13)
Small bowel (16) 14 (88) 16 (100)
Total (66) 46 (70) 50 (76)
IHC: Immunohistochemistry
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