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Abstract

Through transfection of short single-stranded oligodeoxyribonucleotides (ssODNs) small

genomic alterations can be introduced into mammalian cells with high precision. ssODNs

integrate into the genome during DNA replication, but the resulting heteroduplex is prone to

detection by DNA mismatch repair (MMR), which prevents effective gene modification. We

have previously demonstrated that the suppressive action of MMR can be avoided when the

mismatching nucleotide in the ssODN is a locked nucleic acid (LNA). Here, we reveal that

LNA-modified ssODNs (LMOs) are not integrated as intact entities in mammalian cells, but

are severely truncated before and after target hybridization. We found that single additional

(non-LNA-modified) mutations in the 5’-arm of LMOs influenced targeting efficiencies nega-

tively and activated the MMR pathway. In contrast, additional mutations in the 3’-arm did not

affect targeting efficiencies and were not subject to MMR. Even more strikingly, homology in

the 3’-arm was largely dispensable for effective targeting, suggestive for extensive 3’-end

trimming. We propose a refined model for LMO-directed gene modification in mammalian

cells that includes LMO degradation.

Author summary

The first step of many gene editing approaches in mammalian cells is to generate a tar-

geted DNA lesion. By administering a repair template as second step, endogenous DNA

repair mechanisms can be misled to introduce specific gene variants. However, subtle

gene modification can also be achieved with high precision through a one-action protocol

in the absence of DNA breaks. We have shown before that short single-stranded DNA

molecules (LMOs) are very useful to introduce and study genetic variants that may predis-

pose patients to cancer. While LMOs are known to integrate into the genome during

DNA replication, the precise mechanism is poorly understood. We targeted mouse

embryonic stem cells with differently designed LMOs to examine their effectiveness and

editing outcomes. Based on these results we conclude that the two LMO termini are pro-

cessed at different moments during the gene editing process. While the 3’-arm is degraded
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prior to LMO binding to the target site, the 5’-arm is degraded afterwards. Counterintui-

tively we also observe that partial degradation of the 3’-arm increases targeting efficien-

cies. Taken together our data provides novel mechanistic insight into our understanding

of replication-coupled gene editing and may guide future LMO design strategies.

Introduction

The ability to generate gene modifications is of great importance to a wide variety of research

fields in molecular biology. Especially the ability to generate precise gene modifications at

endogenous loci with the resolution of single nucleotides enables the study of specific protein

residues. Various strategies have been developed to edit the genome with single-stranded

repair templates in combination with site-specific nucleases such as Zinc-finger nucleases [1],

TAL-effector nucleases (TALENs) [2] or CRISPR/Cas9 [3]. Besides use as repair-template in

combination with a site-specific DNA double stranded break (DSB), ssODNs with a centrally

positioned mutation are also used to generate subtle gene modifications in the absence of

DSBs. Targeting chromosomal DNA during replication has proven to be highly effective for

multiplex genome engineering in simple prokaryotic and eukaryotic model organisms like

Escherichia coli [4–6] and Saccharomyces cerevisiae [7,8]. In addition, we have demonstrated

the applicability of this technology in mammalian cells by setting up screens that enable the

classification of Lynch syndrome-associated variants of uncertain clinical significance in

MSH2, MSH6 and MLH1 [9–11].

Over the years different mechanistic models have been proposed for the process by which

ssODNs integrate into the genome of mammalian cells (reviewed by Aarts and te Riele: [12]),

but most evidence suggests that the process takes place during DNA replication [13–16].

According to this model ssODNs hybridize to their target site when single-stranded DNA is

exposed at the replication fork due to the unwinding of the DNA double helix by replicative

helicases. Thereafter ssODNs may prime DNA synthesis by replicative polymerases. Finally,

ssODNs become physically integrated into the genome and thereby introduce mutations to

the nascent DNA [17,18].

It has become evident that MMR greatly suppresses targeting efficiencies in both eukaryote

and prokaryote organisms by 2–3 orders of magnitude [7,19,20]. In eukaryotic cells heterodi-

meric protein MutSα is involved in the detection of base-base mismatches that are the result of

replication errors [21]. Together with MutLα it initiates a repair process that leads to excision

of the nascent strand containing the falsely incorporated nucleotide. Thereafter replicative

polymerases get a second opportunity to resynthesize the DNA. Similarly, also mismatches

arising from annealing of the ssODN to its chromosomal complement elicit a MMR reaction,

which in this case leads to abortion of the gene modification reaction. Recently, we have found

that MMR can be evaded specifically at the site of modification by the inclusion of a single

locked nucleic acid (LNA) at the central mismatching nucleotide of ssODNs in mouse embry-

onic stem cells (mESCs) and E. coli [22]. LNA modification of ssODNs prevented MMR acti-

vation and led to equal targeting efficiencies in MMR-deficient (MMR-) and -proficient

(MMR+) cells. Subsequent optimization of the protocol resulted in targeting efficiencies in the

order of 10−3 in MMR+ mESCs. The possibility to evade MMR, the simplicity of the protocol

(no additional components are required) and its high precision make it an attractive alterna-

tive for the generation of a large variety of subtle gene modifications, especially if they result in

a selectable phenotype [9,22].
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To study the processes that affect the integration of LMOs into the genome in more detail,

we made use of LMOs designed to correct the defective AAG start codon of a neomycin (neo)

reporter in mESCs but containing one or more additional mismatch (AMM)-creating nucleo-

tides. We found that the presence of single AMMs in the 5’-arm or 3’-arm of LMOs differen-

tially influenced the outcome of gene modification in terms of targeting efficiencies, activation

of the MMR pathway and introduction of the AMM into the genome. Based on these data we

propose a refinement of the current replication-dependent model for ssODN-directed gene

modification in mammalian cells: LMOs are not incorporated as intact entities but undergo

several trimming events before they become incorporated into the genome of mESCs.

Results

LMOs with single additional mismatches reveal incomplete integration of

LMO sequences

To study and optimize the LMO-directed gene modification procedure in mammalian cells we

made use of a single copy neo-reporter, stably integrated at the Rosa26 locus in MMR+ and

MMR- mESCs [19]. Successful restoration of the defective start codon (AAG) into a functional

start codon (ATG) by LMOs with a length of 25 nucleotides (nt), results in G418-surviving col-

onies of which the number reflects the targeting efficiency [22]. Correction of this neo reporter

is achieved with 25 nt LMOs at an efficiency of 1 x 10−3 in MMR+ cells [22]. To study LMO

integration in the absence of MMR we used Msh2-/- mESCs [19] in which MMR is fully abro-

gated (which is not the case in e.g. Msh6-/- cells [23]). In some experiments, we used a reporter

in which neo was replaced for Gfp, allowing the targeting efficiency to be monitored by flow

cytometry.

We individually transfected six LMOs containing a single additional mismatch (AMM) at

nucleotide position (p)1, p5, p9, p17, p21 or p25 into MMR+ and MMR- mESCs and deter-

mined their targeting efficiencies (Fig 1A and 1B). In the MMR- cell line, we observed that the

efficiency was moderately reduced by an AMM in the 5’-arm at p1, p5 or p9, whereas an

AMM in the 3’-arm at p17, p21 or p25 yielded efficiencies equal to the control LMO (ctrl.). By

comparing the normalized efficiencies in MMR-deficient and -proficient cells, we found that

the presence of MMR exacerbated the suppressive effect of 5’-arm AMMs at p5 (2.7 fold) and

p9 (>80-fold) (Fig 1B). Consistently, the extra suppression by MMR was prevented through

LNA modification of these AMMs (S1 Fig). Strikingly, MMR did not affect targeting efficien-

cies when AMMs were present in the 3’-arm (Fig 1B).

To determine whether AMMs were co-introduced with the ATG-restoring mutation dur-

ing LMO-directed gene modification we analyzed the neo locus of individually picked G418R

colonies by Sanger sequencing (Fig 1C and 1D). In MMR- cells we found co-introduction of

AMMs at positions 5, 9 and 17 in 11%, 100% and 21% of analyzed colonies, respectively. By

contrast, no integration of AMM at p1, p21 and p25 was detected. Thus, even in the absence of

MMR a considerable amount of LMO-encoded sequence information was lost during the tar-

geting process. In MMR+ cells none of the G418R colonies demonstrated integration of AMM

at p1, p5, p17, p21 or p25 (Fig 1D). Only AMMp9, which greatly suppressed the targeting effi-

ciency, was introduced in all colonies. These very few colonies probably arose in the rare event

of a failed MMR response to AMMp9, resulting in incorporation of both AMMp9 and the cen-

tral neo correcting mutation. In summary, the efficiency and sequencing data suggests that

AMMp5 and -p9 were initially present in the annealed oligonucleotide, but then were recog-

nized by MMR and subsequently excised, in most cases together with the LNA-protected cen-

tral mismatch. In contrast, 3’ AMMs resist MMR and do not affect the targeting efficiency,

which may be indicative for 3’-end degradation prior to integration.
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To corroborate these conclusions for a different endogenous locus, we targeted MMR+

Msh2+pur/Δ mESCs in which one Msh2 allele (Δ) is fully deleted [9]. LMOs were designed to

generate MSH2 loss-of-function variant P622L and contained an AMM at p5, 9, or 17 (S2A

Fig). To mimic MMR-deficiency and proficiency, we used LNA-modified or non-modified

AMMs, respectively. These LMOs also carried a 5’-terminus 6-chloro-2-methoxyacridine

(Acr) modification that enhances targeting efficiencies [22,24]. Successful introduction of

P622L results in resistance to the methylating agent 6-thioguanine (6TG) [9] enabling quantifi-

cation of the targeting efficiency by counting the number of 6TGR colonies. Consistent with

our conclusion that the 5’-arm is present during target hybridization, AMMp5 and -p9 trig-

gered a MMR response which resulted in a severely reduced targeting efficiency (S2B Fig).

Inclusion of a MMR-evading LNA at p5 or p9 partially negated the strong efficiency reduction.

In contrast to LNA-modified AMMp9, LNA-modified AMMp5 was introduced only in a

Fig 1. Differential effects of single AMMs in the 5’- and 3’-arm of LMOs. (A) Schematic representation of the stably

integrated neo reporter in mESCs and sequences of LMOs that generate a functional neo start codon and contain single

AMMs. Blue capital characters indicate mismatches with respect to the reporter, underlined characters indicate LNA

modifications. (B) Relative neo targeting efficiency of LMOs with single AMMs at the indicated positions in MMR+

and MMR- cells. Bars indicate the mean with SD of at least three experiments. Significance was determined using a

corrected two-way ANOVA. (C, D) Proportion of G418R colonies from MMR- (C) and MMR+ (D) cells in which the

indicated AMM was integrated as determined by Sanger sequencing. Error bars represent 95% confidence interval.

https://doi.org/10.1371/journal.pgen.1009041.g001

PLOS GENETICS Mechanism of replication-coupled gene editing in mammalian cells

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009041 October 29, 2020 4 / 19

https://doi.org/10.1371/journal.pgen.1009041.g001
https://doi.org/10.1371/journal.pgen.1009041


minority of successful targeting events (S2C Fig), suggestive for a MMR-independent mecha-

nism of 5’-arm degradation after annealing. Consistent with 3’-arm degradation before target

hybridization, AMMp17 did not trigger MMR and did not influence the targeting efficiency.

LNA-modified AMMp17 incorporated at a rate of 75%, albeit with a mild efficiency reduction.

Again these results indicate that only a small part of the LMO becomes stably integrated into

the genome.

Sequence composition of the 3’-arm is largely irrelevant for LMO-mediated

gene modification

In addition to LMOs with a single AMM, we also targeted MMR+ and MMR- cells with LMOs

containing multiple AMMs. Whereas three 5’-arm mismatches synergistically suppressed the

targeting efficiency, three AMMs in the 3’-arm only moderately affected the targeting effi-

ciency (Fig 2A and 2B). Consistently, in case of concomitant 5’- and 3’-arm AMMs, targeting

efficiencies were largely determined by the 5’-arm AMMs and decreased with increasing num-

ber of AMMs (S3A and S3B Fig). Moreover, sequencing analysis revealed that AMM incorpo-

ration follows the same trend as for LMOs with a single AMM (S3C, S3D, S4A and S4B Figs).

Similar results were obtained with LMOs carrying 5’-Acr modification (S3E–S3H, S4C and

S4D Figs).

Taken together, 5’-arm located AMMs reduced targeting efficiencies and were prone to

MMR response. This indicates that the 5’-arm remained part of the LMO during targeting and

was likely subject to degradation after target hybridization. By contrast, LMOs with AMMs

residing in the 3’-arm demonstrated equal-to-control efficiencies and did not evoke a MMR

response that suppressed the efficiency, suggesting that the 3’-arm was partially degraded

before annealing with its target. Strongly supportive for 3’-end degradation prior to annealing,

we found the nucleotide composition of the 3’-arm to be largely irrelevant. Replacing the nine

3’-terminal nucleotides for a stretch of nine C, A or T nucleotides or for arbitrary sequences or

random nucleotides had minimal effect on Gfp targeting efficiencies (Figs 2C, 2D, S3I and

S3J). Also at a different locus, Msh2, 3’-terminal C, A and T stretches did not affect the target-

ing efficiency (S3K and S3L Fig). These results strongly indicate these nucleotides were

removed prior to annealing. A stretch of G nucleotides, however, strongly suppressed efficien-

cies, which may be due to their tendency to form nuclease-resistant secondary structures.

5’-arm of LMOs is degraded after target hybridization by an endonuclease

As we found that the sequence dependence and degradation of LMOs is different for the 5’-

and 3’-arm, we investigated these processes separately. From previous work it has become evi-

dent that targeting efficiencies can be increased by protecting ssODNs from nucleolytic degra-

dation by modifying the 5’-terminus of a ssODN with LNA or Acr [22,24–26]. To investigate

the influence of these modifications on AMMp5 integration we transfected LMOs with

AMMp5 and additional LNA or 5’-Acr modification to MMR+ and MMR- cells and deter-

mined the efficiency of targeting (Fig 3A–3C). As expected, 5’-end modification increased the

targeting efficiency of control and AMMp5 LMOs in both MMR- and MMR+ cells (Fig 3B and

3C; please note the y-axis dimensions are different as AMMp5 reduces targeting efficiency).

However, the targeting-suppressive effect of AMMp5 in MMR- and even more in MMR+ cells

was not affected by LNA at p1 or 5’-Acr modification of the LMO (Fig 3C). Moreover,

sequencing revealed that LNA at p1 or 5’-Acr protection hardly affected the incorporation of

AMMp5 (Fig 3D and 3E). Since 5’-terminus modification by LNA or Acr increased targeting

efficiencies, possibly by providing protection from exonucleolytic degradation or through

increased stability of the LMO-target heteroduplex, the mostly unaffected incorporation rate
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of AMMp5 suggests that LMO annealing is eventually followed by removal of 5’-arm nucleo-

tides through endonucleolytic activity.

During regular DNA replication, Flap endonuclease 1 (FEN1) is recruited to remove the

flap structure from the 5’-end of a downstream Okazaki-fragment [27]. As LMOs are thought

to hybridize to the target site during DNA replication at the lagging strand template, we

hypothesized that FEN1 could be involved in 5’-arm LMO degradation. By lentiviral transduc-

tion of two different Fen1-shRNAs we generated stable FEN1 knockdown (KD) clones in

MMR- mESCs that showed strong reduction of FEN1 protein levels (S5A and S5B Fig). How-

ever, the targeting efficiencies of both the control and AMMp5 LMO in two FEN1 KD clones

Fig 2. Differential effects of multiple AMMs in the 5’- and 3’-arm of LMOs. (A) Sequence of LMOs with three

AMMs in the 5’- or 3’-arm. Blue capital characters indicate mismatches with respect to the reporter, underlined

characters indicate LNA modifications. (B) Relative neo targeting efficiency of LMOs with three AMMs in MMR- and

MMR+ cells. Bars indicate the mean with SD of three experiments. Significance was determined using a corrected

multiple t-test. (C) Sequence of LMOs with consecutive tracts of nine identical bases in the 3’-arm. (D) Targeting

efficiency at the Gfp reporter of LMOs containing mononucleotide tracts in the 3’-arm.

https://doi.org/10.1371/journal.pgen.1009041.g002
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were similar as in the parental cell line (S5C Fig). Also the integration rate of AMMp5 was

highly similar in the FEN1-KD clones and the parental cell line (S5D Fig). Possibly, endonu-

cleolytic processing by FEN1 or another endonuclease is a necessity for every LMO integra-

tion. Consistently, providing a LMO with a 5’-phosphate that could be ligated directly to a free

3’-end did not augment gene modification efficiency (S5E Fig) and did not affect incorpo-

ration of AMMp5 (S5F Fig), indicative for endonucleolytic activity.

To further examine 5’-arm degradation, we transfected MMR- cells with AMMp5 LMOs

that were modified with three consecutive nuclease-resistant phosphothioate (PTO) bonds at

different positions (Fig 3F and 3G). We observed that PTO bonds at the 5’-terminus had no

effect on the incorporation of AMMp5, suggestive for endonucleolytic cleavage downstream of

AMMp5. By contrast, internal PTO modification between p5 and p8 increased the AMMp5

incorporation rate from 11% up to 91% (Fig 3H). Internal PTO bonds between p8 and p11

also increased the incorporation rate but more modestly to 45%, consistent with available

endonucleolytic cleavage sites on both sides of AMMp5. These data demonstrate that integra-

tion of 5’-arm mutations can be stimulated by internal, but not by terminal PTO modification,

thus indicating that 5’-arms of LMOs are indeed processed by endonucleolytic activity.

Effective protection from 3’-arm degradation reduces LMO targeting

efficiencies

Next, we investigated the effect of preventing degradation that takes place at the 3’-arm. We

assessed the effects of Acr, LNA, 2’O-Me and PTO modifications in the 3’-arm of AMMp17

ssODNs in MMR- cells (S6 Fig). We observed that LNA, 2’O-Me and three PTO modifications

did not significantly affect targeting efficiencies, while internal Acr reduced the targeting effi-

ciency (S6B Fig). Whereas internal Acr did not affect the incorporation rate of AMMp17,

sequencing revealed that LNA, 2’O-Me and PTO modifications increased the incorporation

rate for AMMp17 from 42% to 100% (S6C Fig). Thus, degradation of the 3’-arm was effectively

prevented by these three modifications, without affecting the targeting efficiency.

We next combined LNA modification in the 3’-arm with the central mismatching LNA in

control and AMMp17 LMOs (Fig 4A–4C). Again we found that a LNA located in the 3’-arm at

p17 or p21 increased the integration rate of AMMp17 from 21% to ~70% in MMR- cells (Fig

4D), indicative for reduced 3’-arm degradation. Notably, LNA modification of the 3’-terminal

position (p25) did not affect AMMp17 incorporation rate. In MMR+ cells AMMp17 could only

be integrated when an LNA was placed at the same position as the extra mismatch (Fig 4E).

While the increased incorporation rate of AMMp17 in MMR- cells indicates that 3’-arm degra-

dation can be effectively prevented, the positioning of a second LNA on p21 adversely affected

the efficiency by 75%. This suggests that gene modification is promoted by 3’-arm degradation.

In an alternative attempt to reduce the level of 3’-arm degradation we generated knockout

clones for TREX1 (S7A Fig), one of the most abundant 3’-5’ exonucleases in the cell that acts

Fig 3. The 5’-arm of LMOs is degraded during the process of targeting through endonuclease activity. (A)

Sequence of 5’-arm modified LMOs with and without AMMp5. Blue capital characters indicate mismatches with

respect to the reporter, underlined characters indicate LNA modifications, Acr indicates modification at 5’-terminus

with 6-chloro-2-methoxyacridine. (B, C) Relative neo targeting efficiency of 5’-arm modified control LMOs (B) and

AMMp5 LMOs (C) in MMR- and MMR+ cells normalized to control LMOs. Bars indicate the mean with SD of at least

three experiments. Significance was determined using a corrected two-way ANOVA. (D, E) Proportion of G418R

colonies from MMR- (D) and MMR+ (E) cells in which AMMp5 was integrated as determined by Sanger sequencing.

(F) Sequence of AMMp5 LMOs with PTO modifications in the 5’-arm. Asterisks indicate PTO bonds. (G) Relative neo
targeting efficiency of PTO-modified LMOs with AMMp5 in MMR- cells. Bars indicate the mean with SD of three

experiments. Significance was determined using a corrected one-way ANOVA. (H) Proportion of G418R colonies

from MMR- cells in which AMMp5 was integrated as determined by Sanger sequencing. Error bars for AMMp5

integration rate (C, D, G) represent 95% confidence interval.

https://doi.org/10.1371/journal.pgen.1009041.g003
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on single-stranded DNA [28–30]. Surprisingly, in comparison to the parental cell line we

obtained lowered efficiencies in all of four analyzed TREX1 KO clones (S7B Fig). In line with

results observed for LMOs with a second LNA on p21, this suggests that 3’-5’ degradation is

beneficial for effective targeting with LMOs. Endogenous 3’-5’ exonuclease activity is probably

sufficient in mESCs as overexpression of hTREX1 did not influence targeting efficiencies

(S7C–S7E Fig).

Fig 4. Suppression of 3’-5’ LMO degradation increases 3’-arm integration but does not increase targeting

efficiencies. (A) Sequences of control and AMMp17 LMOs with a second LNA modification in the 3’-arm. Blue capital

characters indicate mismatches with respect to the reporter, underlined characters indicate LNA modifications. (B, C)

Relative neo targeting efficiency of 3’-arm modified control LMOs (B) and AMMp17 LMOs (C) in MMR- and MMR+

cells normalized to control LMO. Bars indicate the mean with SD of at least four experiments. ND indicates not

determined. Significance was determined using a corrected two-way ANOVA. (D, E) Proportion of G418R colonies

from MMR- (D) and MMR+ (E) cells in which AMMp17 was integrated as determined by Sanger sequencing. Error

bars represent 95% confidence interval.

https://doi.org/10.1371/journal.pgen.1009041.g004
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LMOs with a centrally positioned LNA-protected mismatch yield the

highest targeting efficiency

The finding that LMOs are subject to extensive nucleolytic degradation prompted us to deter-

mine the optimal position of the LNA-protected mutation in a 25 nt LMO (Fig 5). We confirmed

that placement of the mutation in the central position yielded the highest efficiency. Consistent

with 5’-end degradation through endonucleolytic activity, we observed that positioning the

mutation towards the 5’-end decreased the efficiency profoundly. A more subtle efficiency

decrease was detected for LMOs with the mutation placed towards the 3’-end. Since this subtle

efficiency decrease seems to contradict the extensive degradation of the 3’-arm as observed

above, we analyzed the protective effect of LNA modification in this repositioning experiment.

By comparing the targeting efficiency of ssODNs with and without LNA protection at the mutat-

ing position in MMR- cells we found that LNA modification increased the targeting efficiency if

the mutation was central or repositioned towards the 3’-arm at p19 (S8 Fig). No benefit from

LNA was observed when the mutation was positioned in the 5’-arm. Taken together, we envisage

that the complex interplay between 5’- and 3’-arm degradation leads to an outcome in which a

centrally placed mutation has the highest likelihood to remain unaffected by both degradation

processes. In addition to MMR evasion, it appears that LNA modification of this central muta-

tion enhances the targeting efficiency by providing protection from degradation.

Discussion

Our work provides new mechanistic insight into LMO-directed gene modification at the repli-

cation fork in mammalian cells. In summary, by incorporation of additional mutations into

short 25 nt LMOs we found evidence for extensive degradation of the 5’- and 3’-arm of LMOs

during targeting (Fig 6). We show that mutations in the 5’-arm strongly reduce the targeting

efficiency and demonstrate that their presence can trigger a MMR response. Apparently, these

mutations remain part of the LMO during target hybridization and are subject to MMR sur-

veillance. Inclusion of 5’-end protection by LNA or Acr increases targeting efficiencies, but in

the majority of integration events the first 6 to 8 nt of the 5’-arm were removed by endonucleo-

lytic activity. As MMR exacerbated the suppressive effect of 5’-arm AMMs at p5 and p9, the

single LNA modification at the central mismatch was apparently insufficient to block nucleoly-

tic degradation upon activation of MMR by adjacent mismatches. Alternatively, MMR-

directed 5’-arm loss may destabilize annealed LMOs and hence prohibit gene correction.

In contrast to the 5’-arm, we demonstrate that the 3’-arm is likely to be degraded before tar-

get hybridization. Remarkably, inclusion of one or multiple mutations in the 3’-arm of LMOs

barely influenced targeting efficiencies in MMR+ cells. Consistently, it has been shown that

Fig 5. LMOs with a centrally placed LNA-protected mismatch provide the optimal targeting efficiency. (A, B)

Sequence (A) and neo targeting efficiency in MMR+ cells (B) of LMOs with repositioned LNA-protected mismatch.

Blue underlined capital characters indicate LNA-protected mismatch. Bars indicate the mean with SD of four

experiments. Significance was determined using a corrected one-way ANOVA.

https://doi.org/10.1371/journal.pgen.1009041.g005
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ssODNs with a 3’-H group were equally active as ssODNs with a 3’-OH terminus [17]. Based on

these findings we have extensively tested various LMO designs of which some were able to block

3’-arm degradation. For example, a second mutation was efficiently introduced in MMR+ cells

through the incorporation of an additional LNA-protected mismatch at p17. Interestingly,

through inclusion of an additional LNA at p21 or by removal of 3’-5’ exonuclease TREX1, we

unexpectedly found that degradation of the 3’-arm might be beneficial for optimal targeting effi-

ciencies if a central LNA modification is present. Intriguingly, in the absence of a central LNA,

the p21 LNA did not affect targeting efficiency (compare Figs 4C and S6B). We therefore propose

that 3’-arm degradation can be beneficial, but becomes deleterious when degradation extends

beyond the central mismatch. Thus, protection of a non-modified central mismatch by the p21

LNA compensates for the loss of otherwise beneficial 3’-arm degradation. When the central mis-

match is already protected by an LNA, the negative effect of 3’-arm retention by p21 LNA domi-

nates. Taken together, our data indicate that nucleases process LMOs and thereby provide a

biologically active molecule that can integrate into the genome of proliferating cells [17,31].

We realize that our model for 5’ and 3’ processing of ssODNs was deduced from colony

counts and sequencing data rather than based on direct experimental evidence. However,

given the modest frequency of successful targeting events, it is uncertain whether the fate of

the total ssODN population is representative for the few ssODNs that ultimately effectuated

the desired gene modification. We therefore restricted our analyses to successful targeting

events in order to obtain information on the fate of the “winning ssODN”. Nevertheless,

ssODN attributes such as stability, target site affinity, promiscuity and type of mismatches

could affect intracellular processing and hence targeting efficacy. Therefore, we cannot exclude

that ssODNs designed for other loci might be processed differently yielding unanticipated

results. Nevertheless, most data were obtained by comparing highly similar ssODNs targeting

the defective start codon of an integrated neo/Gfp reporter and the relaxed requirement for 3’-

arm homology was validated at the Msh2 locus.

Although replication-coupled gene editing using LMOs is highly precise at the target locus,

we realize that the use of short LMOs in combination with intracellular degradation processes

may increase off-target gene editing rates. While the sequence of the 3’-arm was found to be

largely irrelevant for targeting, we observed that mutations within the 5’-arm activate MMR

(Figs 1, S1 and S2). Hence, if a LMO anneals to an off-target site and thereby generates one or

more mismatches at the 5’-arm, MMR would strongly suppress off-target LMO integration.

To minimize potential off-target LMO integrations we recommend to apply replication-cou-

pled gene editing solely in MMR+ cells.

Direct modification of genomic DNA at the replication fork has proven to be highly effec-

tive in non-mammalian cells like E. coli and S. cerevisiae. Efficient targeting in E. coli requires

Fig 6. Degradation steps during LMO-directed gene modification. (A) After transfection to mammalian cells, LMOs

are partially degraded by 3’-5’ exonucleases; the centrally positioned LNA provides protection from degradation. (B)

The 3’-arm truncated LMOs anneal to their ssDNA target site during DNA replication. (C) DNA MMR scans DNA for

mismatches and removes the nascent strand carrying a non-matching base. LNA-protected mismatches evade MMR.

(D, E) After annealing, the 5’-arm of the LMO is removed through endonucleolytic activity before it becomes fully

integrated (E) into the newly synthesized DNA strand.

https://doi.org/10.1371/journal.pgen.1009041.g006
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ssODNs of at least 35–60 nt in length to allow for binding by phage protein Beta which pro-

vides additional protection from degradation and promotes hybridization to transiently sin-

gle-stranded target regions [32–35]. Nevertheless, E. coli also showed a pattern of incomplete

ssODN incorporation with decreasing incorporation rates towards the termini [36]. In addi-

tion, homology at the 5’-arm was found to be of much more importance than at the 3’-arm

[37]. Similar to our 5’-Acr modified LMOs, 5’-PTO modification enhanced targeting efficien-

cies in E. coli while 5’-end degradation by DNA Pol I was not affected [4,36,37].

Previous observations in S. cerevisiae also indicated loss of ssODN sequences during the

process of targeting [8,38]. Only bases within a central core of about 15 out of 40 nt ssODNs

were incorporated regularly [38]. While the presence of MMR reduced targeting efficiencies,

no effect of MMR was detected on integration patterns in S. cerevisiae. Furthermore, it was

found that elimination of FEN1 in S. cerevisiae led to an incorporation rate increase specific

for mutations which were included in the 5’-arm at both leading and lagging strand [38]. In

combination with our observations in mammalian cells, this suggests a highly conserved mode

of 5’-end processing of ssODNs at the replication fork. Given the pivotal role of FEN1 in Oka-

zaki fragment maturation during DNA replication in mammalian cells [27], FEN1 is a likely

candidate for 5’-arm excision. However due to its essential function and intricate regulation

we haven’t been able to conclusively determine its role in LMO degradation. Besides or instead

of FEN1, other structure-specific endonucleases that are active during DNA replication may

be involved in LMO degradation [39].

In E. coli, removal of a set of five exonucleases resulted in improved performance of Lambda

Red-mediated multiplex genome engineering by ssODNs [40]. However, singleplex engineering

benefitted only from removal of four exonucleases at 100-fold reduced ssODN concentrations

[41], suggesting that only under conditions with limited ssODN concentrations, protection

from degradation by exonuclease removal results in elevated efficiencies. At variance, we pro-

pose that 3’-arm degradation might be beneficial for targeting with LMOs as an additional LNA

at position 21 in the 3’-arm, or knockout of exonuclease TREX1, reduced targeting efficiency in

mESCs. Possibly, reduced efficiency of a LMO may occur when the 3’-arm can form a nuclease-

resistant secondary structure. Poor performance of certain LMOs may be relieved by replacing

the 3’-arm for a degradation-prone sequence like nine C, T or A nucleotides.

LMO-based targeting efficiencies of up to 3 x 10−3 have been achieved for correction of the

defective neo start codon using 5’-Acr modified LMOs [22]. This technology is currently less

efficient than the ±40% gene editing frequencies that we have obtained for the same target site

through templated-repair of a Cas9-induced DSB using 120 nt ssODNs [42]. However, the

lack of additional planned and unforeseen mutations at the target site (which is adherent to

CRISPR/Cas) makes LMO technology especially useful for direct phenotypic assessment of

variants identified in disease-related genes. As a proof-of-concept we have demonstrated this

approach for the classification of variants of uncertain clinical significance (VUS) identified in

the MMR genes MSH2 [9], MSH6 [10] and MLH1 [11]. While identification of pathogenic

MMR gene variants was based on their acquired resistance to a methylating compound, the

readout in other VUS screens could be based on more subtle and less binary phenotypic

changes that can be assessed by flow cytometry, high-throughput microscopy or integrative

single cell analyses [43,44]. Thus, while templated-repair of induced DSBs is an efficient

approach to generate, and subsequently characterize gene variants with non-selectable pheno-

types, LMO-based replication-coupled gene editing is useful to characterize gene variants that

result in easily-detectable phenotypic changes.

In conclusion, we find that 25 nt LMOs are processed in mammalian cells before and

after annealing to their chromosomal target sequence during replication-coupled gene modifi-

cation. Upon successful targeting in mESCs we estimate that only ~8 out of the 25 nt of a LMO
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become physically incorporated into the genome. This remarkable finding provides new

mechanistic insights into a previously over-simplified model and may help to rationally design

LMOs that incorporate multiple mutations simultaneously. We find that LNA protection of

the centrally positioned mismatch not only prevents MMR activation in mESCs, but also 3’-5’

degradation. Also in CHO and HeLa cells optimal efficiencies were achieved by protecting the

central mismatch from degradation with nearby PTO modifications [45,46]. Based on our

findings, better LMO design and the use of genetically adapted recipient cell lines may enhance

targeting efficiencies which could result in broader application of this gene editing technique

in mammalian cells.

Materials and methods

Cell culture and ssODN-directed gene modification of mESCs

To determine ssODN-directed gene modification efficiencies in MMR+ and MMR- mammalian

cells we made use of wild-type (MMR+) and Msh2-/- (MMR-) mESCs with a single stably inte-

grated neo or Gfp reporter [18,19]. mESCs were routinely cultured on top of a feeder layer of

irradiated mouse embryonic fibroblasts (MEFs) in complete medium (CM) [47]. For experi-

ments mESCs were cultured feeder-free in 60% Buffalo Rat Liver (BRL)-conditioned CM on

gelatin-coated cell culture plastics. One day prior to targeting the neo reporter, 7 x 105 cells were

seeded to 6-wells. Cells were transfected with 3 μg ssODN (unless otherwise indicated) in com-

plex with 7.5 μL TransIT-siQUEST (Mirus) in 250 uL serum-free medium [22]. 24 h after trans-

fection cells were counted on a CASY 1 cell counter (Schärfe System) and seeded to 8.5 cm

plates in 30% BRL-conditioned CM. Next day cells were exposed to 750 μg/mL G418 (Geneti-

cin; Life Technologies) to select for successfully targeted cells. The number of surviving colonies

was determined 10–12 days after seeding to 8.5 cm plates. For targeting P622L in exon 12 of

Msh2 we made use of a previously published hemizygous mESC cell line (Msh2+pur/Δ) [9]. Cells

were seeded and targeted as described above and were seeded to 8.5 cm plates 2 days after tar-

geting. One day thereafter we started selection for targeted cells using 300 μM 6-thioguanine

(6TG) (Sigma-Aldrich). Number of resistant colonies was determined after 12 days. Efficiency

represents the number of colonies over the total number of seeded cells. To simplify the com-

parison of targeting outcomes for different ssODNs across different cell lines, targeting efficien-

cies were normalized to control ssODN where indicated using the following method: for every

single replicate efficiencies were divided by the mean targeting efficiency of the control ssODN

per experiment and per cell line (Efficiencynormalized ssODN ‘x’ = (Efficiencyreplicate ssODN ‘x’ /

Efficiencymean control ssODN) x 100%). Targeting of the Gfp reporter was done similarly, but on

cells that were seeded one day before to 12-wells (2.8 x 105 cells/well) and by transfection that

was scaled down by a factor of 2.5. 24 h after transfection cells were passaged 1:10 to 6-wells and

were analyzed for Gfp-expression 5 days post transfection by flow cytometry on a Calibur (Bec-

ton Dickinson) or Cyan ADP (Beckman Coulter) machine. DAPI was used as a live-dead

marker and cytometry data was analyzed using Summit V4.3 (Dako Colorado Inc.). ssODNs

were obtained salt-free from Eurogentec and dissolved to 1 μg/μL in PBS or T10E0.1; a complete

list with ssODN sequences, sample sizes and underlying numerical data can be found in

S1 Dataset.

Sanger sequencing of individual colonies

Analysis of the neo reporter or Msh2 exon 12 sequence was done on individual G418 or 6TG

resistant (G418R/6TGR) colonies. Colonies were picked after selection from one or more repli-

cate experiments and expanded in 96-wells on top of irradiated MEFs. After isolation of geno-

mic DNA, PCR was used to amplify and Sanger sequence the neo start region or exon 12 of
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Msh2 from each colony individually. Figures indicate the number of colonies with incorpo-

ration of corresponding AMM over the total number of sequenced colonies.

Generation of TREX1 knock-out clones and hTREX1 overexpression

TREX1 knock-out (KO) clones were generated in WT neo mESCs by CRISPR/Cas9 using two

guide (g)RNAs (gRNA#1 GAGCCGGAGTGCCGTACAT; gRNA#2 GACTTCGGGCCGAGA

CGA) targeting the single exon of Trex1. gRNAs were spaced by 618 bp and were cloned into

pX330.pgkpur [42,48]. Both Cas9-Trex1-gRNA vectors (500 ng each) were simultaneously

transfected to cells growing in 6-wells by use of transfection reagent TransIT-LT1 (Mirus)

[42]. Cells were passaged 24 h after transfection 1:4 to 6-wells and we selected for vector uptake

with 3.6 μg/mL puromycin (Sigma-Aldrich) for 48 h. After subcloning loss of TREX1 expres-

sion was confirmed by western blot using primary a-mTREX1 (#611986, BD Biosciences), a-γ-

tubulin (#T6557, Sigma-Aldrich) and secondary a-mouse IgG IRDye 800CW (#926–32210,

Licor) antibodies. We generated TREX1 overexpression in WT neoAAG mESCs by lentiviral

transduction of hTREX1 (pLX304-Blast-hTrex1-V5; OHS6085-101926659; Dharmacon). We

selected for successful lentiviral integration by blasticidin selection at 10 μg/mL for 5 days.

TREX1 overexpression in the pool of surviving cells was verified by western blot according to

the protocol described above.

Generation of FEN1 knock-down clones

FEN1 knock-down (KD) clones were independently generated in MMR- neoAAG mESCs by

individual lentiviral transduction of two different Fen1 hairpins (TRC mouse library;

TRCN0000071131, TRCN0000071132; Dharmacon). We selected for viral integration with

1.8 μg/mL puromycin for 3 days. After subcloning we isolated total RNA (High Pure RNA iso-

lation kit, Roche) and used SuperScript II reverse transcriptase (Thermofisher Scientific) to

prepare cDNA. Fen1 expression was determined on cDNA by qPCR which was normalized to

β-actin expression (qPCR primers: Fen1-Fw TTCACGGCCTTGCCAAACTAA, -Rev TGCGA

CCAAAGTAGCTCTTGA; β-actin-Fw TCCACCCGCGAGCACAGCTTCTTTG, -Rev ACAT

GCCGGAGCCGTTGTCGACG). FEN1 KD was validated by western blotting using primary

a-FEN1 (#SC-28355, Santa Cruz Biotechnology), a-CDK4 (#SC-260-G, Santa Cruz Biotechnol-

ogy) and secondary a-mouse or a-goat IgG IRDye 800CW antibodies (#926–32210, #926–

32214, Licor).

Data analysis

Statistical significance of targeting efficiencies was determined using Graphpad Prism 7

(Graphpad Software, Inc) as indicated in figure legends: two-sided t-tests, corrected for multi-

ple testing by Holm-Sidak method if applicable; one-way or two-way ANOVA, corrected for

multiple testing by Holm-Sidak method. To determine the statistical significance of AMM

integration rates for different LMOs we used the two-sided Fisher’s exact test using the same

software. 95% confidence intervals were calculated using Wilson/Brown method to quantify

the uncertainty of the calculated proportions based on compiled sequencing data. Level of sig-

nificance was indicated as follows: not significant, ns; P<0.05, �; P<0.01, ��; P<0.001, ���;

P<0.0001, ����.

Supporting information

S1 Fig. Evasion of MMR-dependent suppression for AMMp5 and p9 by additional LNA

modification. (A, B) Sequence (A) and relative neo targeting efficiency in MMR- and MMR+
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cells (B) of AMMp5 LMOs with or without second LNA modification on p5. Significance was

determined using a corrected multiple t-test. (C, D) Sequence (C) and relative neo targeting

efficiency in MMR- and MMR+ cells (D) of AMMp9 LMOs with or without second LNA mod-

ification on p9. Bars indicate the mean with SD of at least five (B) or three (D) experiments.

Blue capital characters indicate mismatches with respect to the reporter, underlined characters

indicate LNA modifications. Significance was determined using a corrected multiple t-test.

(TIF)

S2 Fig. Effects of a single AMM on targeting efficiency at the Msh2 gene. (A) Sequence of

5’-Acr modified antisense Msh2 P622L LMOs with single AMMs. Blue capital characters indi-

cate mismatches with respect to Msh2 exon 12, underlined characters indicate LNA modifica-

tions. (B) Background-corrected targeting efficiencies of LMOs with a single AMM in

Msh2+pur/Δ cells. LMOs with an LNA on p5, 9 or 17 (+LNA) were used to mimic targeting in

MMR- cells. A non-specific LMO was used to determine the rate of spontaneous 6TGR back-

ground colony formation. NA indicates not applicable. Bars indicate the mean with SD of

three experiments. Significance for comparing LMOs with different AMMs was determined

using a corrected one-way ANOVA; significance for comparing LMOs with and without addi-

tional LNA modification was determined using a corrected multiple t-test. (C, D) Proportion

of 6TGR colonies in which the indicated AMM was integrated after targeting with single AMM

LMOs with additional LNA (+LNA, (C)) and without additional LNA (-LNA, (D)) as deter-

mined by Sanger sequencing. Error bars represent 95% confidence interval.

(TIF)

S3 Fig. Targeting efficiency and genomic integration of LMOs with multiple AMMs. (A, B)

Sequence (A) and relative neo targeting efficiency in MMR- and MMR+ cells (B) of LMOs with

two, three or four AMMs. Blue capital characters indicate mismatches with respect to the

reporter, underlined characters indicate LNA modifications. (C, D) Frequency of AMM inte-

gration at indicated positions after targeting with LMOs from (A) in MMR- (C) and MMR+

cells (D) as determined by Sanger sequencing. (E, F) Sequence (E) and relative neo targeting

efficiency in MMR- and MMR+ cells (F) of 5’-Acr modified LMOs with one, two, or three

AMMs. Bars indicate the mean with SD of at least three experiments. (G, H) Frequency of

AMM integration at indicated positions after targeting with 5’-Acr LMOs from (E) in MMR-

(G) and MMR+ cells (H) as determined by Sanger sequencing. Error bars (C, D, G, H) repre-

sent 95% confidence intervals. (I, J) LMOs with non-homologous 3’-arms (I) and targeting

efficiency (L) for Gfp reporter in MMR+ cells. LMO 9xN represents a mix of LMOs in which

the 3’-arm contains nine randomly introduced nucleotides. Bars indicate the mean with SD of

two or three experiments. (K, L) 5’-Acr-modified antisense LMOs introducing the pathogenic

P622L substitution in Msh2 containing mononucleotide tracts in the 3’-arm (K) and corrected

targeting efficiencies (L). Bars indicate the mean with SD of four experiments. Significance

was determined using a corrected two-way (B, F) or one-way ANOVA (J, L).

(TIF)

S4 Fig. Sanger sequencing data from colonies modified by LMOs with multiple AMMs. (A,

B) Sequencing data from individual colonies (rows) modified by LMOs with multiple AMMs

in MMR- (A) and MMR+ (B) cells. (C, D) Data from cells targeted with 5’-Acr modified LMOs

with one or multiple AMMs in MMR- (C) and MMR+ (D) cells. Total integration frequencies

per position are presented in S3 Fig.

(TIF)

S5 Fig. Targeting efficiency and genomic integration of LMOs with AMMp5 in Fen1 KD

clones. (A, B) Quantification of Fen1 gene expression by RT-qPCR (A) and FEN1 protein
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levels by western blot (B) in two independent stable Fen1 KD clones generated by lentiviral

shRNA integration in MMR- mESCs with neo reporter. Fen1 expression was normalized

against β-actin expression and data was obtained in two experiments with two technical repli-

cates; bars indicate mean with SD. Significance was determined using a corrected one-way

ANOVA. (C) Relative neo targeting efficiency using a 5’-Acr modified control and AMMp5

LMO in parental and Fen1 KD clones A1 and B4. Efficiency was normalized against efficiency

obtained with the control LMO in the parental cell line. Bars indicate the mean with SD of at

least two experiments. Significance was determined using a corrected two-way ANOVA. (D)

Proportion of G418R colonies with integration of AMMp5 in MMR- Fen1 KD clones A1 and

B4 after targeting with 5’-Acr modified AMMp5 LMO as determined by Sanger sequencing.

(E) Relative neo targeting efficiency of 5’-phosphate modified LMOs in the presence and

absence of AMMp5; data from at least two experiments. Significance was determined using a

corrected one-way ANOVA. (F) Proportion of MMR- G418R cells in which AMMp5 was inte-

grated. Error bars in (D) and (F) represent 95% confidence interval.

(TIF)

S6 Fig. Protection of ssODNs from 3’-5’ degradation by various modifications in the 3’-

arm. (A) Sequences of ssODNs (without LNA modification of the AAG-correcting central

nucleotide) with AMMp17 and various 3’-arm modifications. Blue capital characters indicate

mismatches with respect to the neo reporter, underlined characters indicate LNA modifica-

tions, ‘1’ indicates internal modification with 6-chloro-2-methoxyacridine, red underlined

capital characters indicate modification with 2’O-Methyl nucleotides and asterisks indicate

PTO-modified bonds. (B) Relative neo targeting efficiency in MMR- cells with AMMp17 con-

taining ssODNs in combination with 3’-arm modifications. Bars indicate the mean and SD

from at least three experiments. Significance was determined using a corrected one-way

ANOVA. (C) Proportion of MMR- G418R colonies in which AMMp17 was integrated. Error

bars represent 95% confidence interval.

(TIF)

S7 Fig. Targeting efficiency in TREX1 KO and hTREX1 overexpressing mESCs. (A) Confir-

mation of CRISPR/Cas9 mediated knockout of TREX1 in MMR+ mESCs by western blot. (B)

Efficiency of neo targeting in four TREX1 KO clones with 400 pmol 25 nt LMOs. Bars indicate

the mean with SD of at least three experiments. Significance was determined using a corrected

one-way ANOVA. (C, D) Validation (C) and quantification (D) of hTREX1 overexpression

(OE) in MMR+ mESCs by western blot. Bars indicate mean and SD from two experiments. (E)

Neo targeting efficiency with 5’-Acr modified LMO in MMR+ parental and TREX1 OE cells.

Bars indicate mean and SD from four experiments. Significance was determined using a stu-

dent’s t-test.

(TIF)

S8 Fig. LNA modification improves targeting efficiency in MMR- cells if mismatch is

placed centrally or in 3’-arm. Relative Gfp targeting efficiency of ssODNs in presence and

absence of LNA modification on the AAG-correcting mismatch in MMR- cells. Efficiency was

normalized to ssODN with centrally positioned mismatch (p13) without LNA. Bars indicate

mean with SD from seven experiments. Significance was determined using a corrected two-

way ANOVA.

(TIF)

S1 Dataset. LMO sequences and numerical data.

(XLSX)
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