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Abstract

Closed-loop neurotechnologies often need to adaptively learn an encoding model that

relates the neural activity to the brain state, and is used for brain state decoding. The speed

and accuracy of adaptive learning algorithms are critically affected by the learning rate,

which dictates how fast model parameters are updated based on new observations. Despite

the importance of the learning rate, currently an analytical approach for its selection is

largely lacking and existing signal processing methods vastly tune it empirically or heuristi-

cally. Here, we develop a novel analytical calibration algorithm for optimal selection of the

learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental

trade-off that learning rate introduces between the steady-state error and the convergence

time of the estimated model parameters. We derive explicit functions that predict the effect

of learning rate on error and convergence time. Using these functions, our calibration algo-

rithm can keep the steady-state parameter error covariance smaller than a desired upper-

bound while minimizing the convergence time, or keep the convergence time faster than a

desired value while minimizing the error. We derive the algorithm both for discrete-valued

spikes modeled as point processes nonlinearly dependent on the brain state, and for contin-

uous-valued neural recordings modeled as Gaussian processes linearly dependent on the

brain state. Using extensive closed-loop simulations, we show that the analytical solution of

the calibration algorithm accurately predicts the effect of learning rate on parameter error

and convergence time. Moreover, the calibration algorithm allows for fast and accurate

learning of the encoding model and for fast convergence of decoding to accurate perfor-

mance. Finally, larger learning rates result in inaccurate encoding models and decoders,

and smaller learning rates delay their convergence. The calibration algorithm provides a

novel analytical approach to predictably achieve a desired level of error and convergence

time in adaptive learning, with application to closed-loop neurotechnologies and other signal

processing domains.
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Author summary

Closed-loop neurotechnologies for treatment of neurological disorders often require

adaptively learning an encoding model to relate the neural activity to the brain state and

decode this state. Fast and accurate adaptive learning is critically affected by the learning

rate, a key variable in any adaptive algorithm. However, existing signal processing algo-

rithms select the learning rate empirically or heuristically due to the lack of a principled

approach for learning rate calibration. Here, we develop a novel analytical calibration

algorithm to optimally select the learning rate. The learning rate introduces a trade-off

between the steady-state error and the convergence time of the estimated model parame-

ters. Our calibration algorithm can keep the steady-state parameter error smaller than a

desired value while minimizing the convergence time, or keep the convergence time faster

than a desired value while minimizing the error. Using extensive closed-loop simulations,

we show that the calibration algorithm allows for fast learning of accurate encoding mod-

els, and consequently for fast convergence of decoder performance to high values for both

discrete-valued spike recordings and continuous-valued recordings such as local field

potentials. The calibration algorithm can achieve a predictable level of speed and accuracy

in adaptive learning, with significant implications for neurotechnologies.

Introduction

Recent technological advances have enabled the real-time recording and processing of differ-

ent invasive neural signal modalities, including the electrocorticogram (ECoG), local field

potentials (LFP), and spiking activity [1]. This real-time recording capability has allowed for

the development of various neurotechnologies to treat neurological disorders. For example,

motor brain-machine interfaces (BMI) have the potential to restore movement to disabled

patients by recording the neural activity—such as ECoG, LFP, or spikes—in real time, decod-

ing from this activity the motor intent of the subject, and using the decoded intent to actuate

and control an external device [2–12]. Closed-loop deep brain stimulation (DBS) systems, e.g.,

for treatment of Parkinson’s disease, use recordings such as ECoG or LFP to decode the under-

lying diseased state of the brain and adjust the electrical stimulation pattern to an appropriate

brain region, e.g., the subthalamic nucleus (STN) [13–16]. These neurotechnologies are exam-

ples of closed-loop neural systems.

Closed-loop neural systems need to learn an encoding model that relates the neural signal

(e.g., spikes) to the underlying brain state (e.g., motor intent) for each subject. The encoding

model is often taken as a parametric function and is used to derive mathematical algorithms,

termed decoders, that estimate the subject’s brain state from their neural activity. These

closed-loop neural systems run in real time and often require the encoding model parameters

to be learned in closed loop, online and adaptively (Fig 1). For example, in motor BMIs, neural

encoding can differ for movement of the BMI compared to that of the native arm or to imag-

ined movements [17–20]. Hence encoding model parameters are better learned adaptively in

closed-loop BMI operation [17, 21–30]. Another reason for real-time adaptive learning could

be the non-stationary nature of neural activity patterns over time, for example due to learning

in motor BMIs [17–19], due to new experience in the hippocampus [31, 32], or due to stimula-

tion-induced plasticity in DBS systems [14, 33, 34]. Adaptive learning algorithms in closed-

loop neural systems, such as adaptive Kalman filters (KF), are typically batch-based. They col-

lect batches of neural activity, fit a new set of parameters in each batch using maximum-likeli-

hood techniques, and update the model parameters [22, 23, 27]. In addition to these methods,
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adaptive point process filters (PPF) have also been developed for tracking plasticity in offline

datasets [31, 32, 35, 36]. Recently, control-based state-space algorithms have been designed for

adaptive learning of point process spike models during closed-loop BMI operation, and have

improved the speed of real-time parameter convergence compared with batch-based methods

[28, 29].

A critical design parameter in any adaptive algorithm is the learning rate, which dictates

how fast model parameters are updated based on a new observation of neural activity (Fig 1).

The learning rate introduces a trade-off between the convergence time and the steady-state

error of the estimated model parameters [37]. Increasing the learning rate decreases the con-

vergence time, allowing for parameter estimates to reach their final values faster. However, this

faster convergence comes at the price of a larger steady-state parameter estimation error. Simi-

larly, a smaller learning rate will decrease the steady-state error, but lower the speed of conver-

gence. Hence principled calibration of the learning rate is critical for fast and accurate learning

of the encoding model, and consequently for both the transient and the steady-state perfor-

mance of the decoder.

Fig 1. Closed-loop neural system. Closed-loop neural systems often need to learn an encoding model adaptively and in real time. The encoding model

describes the relationship between neural recordings and the brain state. For example, the relevant brain state in motor BMIs is the intended velocity

and in DBS systems is the disease state, e.g., in Parkinson’s disease. The neural system uses the learned encoding model to decode the brain state. This

decoded brain state is then used, for example, to move a prosthetic in motor BMIs while providing visual feedback to the subject, or to control the

stimulation pattern applied to the brain in DBS systems. A critical parameter for any adaptive learning algorithm is the learning rate, which dictates

how fast the encoding model parameters are updated as new neural observations are received. An analytical calibration algorithm will enable achieving

a predictable level of accuracy and speed in adaptive learning to improve the transient and steady-state operation of neural systems.

https://doi.org/10.1371/journal.pcbi.1006168.g001
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To date, however, adaptive algorithms have chosen the learning rate empirically. For exam-

ple, in batch-based methods, once a new batch estimate is obtained, the parameter estimates

from previous batches are either replaced with these new estimates [22] or are smoothly

changed by weighted-averaging based on a desired half-life [23, 27]. In adaptive state-space

algorithms, such as adaptive PPF, learning rate is dictated by the choice of the noise covariance

in the prior model of the parameter decoder, which is again chosen empirically [28, 36, 38].

Given the significant impact of the learning rate on both the transient and the steady-state per-

formance of closed-loop neurotechnologies, it is important to develop a principled learning

rate calibration algorithm that can meet a desired error or convergence time performance for

any neural recording modality (such as spikes, ECoG, and LFP) and across applications. In

addition to neurotechnologies, designing such a calibration algorithm is also of great impor-

tance in general signal processing applications. Prior adaptive signal processing methods have

largely focused on non-Bayesian gradient decent algorithms. These algorithms, however, do

not predict the effect of the learning rate on error or convergence time (except for a limited

case of scalar linear models; see Discussions) and hence can only provide heuristics for tuning

the learning rate [39, 40]. A calibration algorithm that can write an explicit function for the

effect of the learning rate on error and/or convergence time for both linear and nonlinear

observation models would also provide a novel approach for learning rate selection in other

signal processing domains [41–47]. For example, in image processing [43], in electrocardiog-

raphy [41], in anesthesia control [44], in automated heart beat detection [46, 47], and in

unscented Kalman filters [42], adaptive filters with learning rates are used in decoding system

states or in learning system parameters in real time (see Discussions).

Here, we develop a mathematical framework to optimally calibrate the learning rate for

Bayesian adaptive learning of neural encoding models. We derive the calibration algorithm

both for learning a nonlinear point process model for discrete-valued spiking activity—which

we term point process encoding model—, and for learning a linear model with Gaussian noise

for continuous-valued neural activities (e.g., LFP or ECoG)—which we term Gaussian encod-

ing model. Our framework derives an explicit analytical function for the effect of learning rate

on parameter estimation error and/or convergence time. Minimizing the convergence time

and the steady-state error covariance are competing requirements. We thus formulate the cali-

bration problem through the fundamental trade-off that the learning rate introduces between

the convergence time and the steady-state error, and derive the optimal calibration algorithm

for two alternative objectives: satisfying a user-specified upper-bound on the steady-state

parameter error covariance while minimizing the convergence time, and vice versa. For both

objectives, we derive analytical solutions for the learning rate. The calibration algorithm can

pre-compute the learning rate prior to start of real-time adaptation.

We show that the calibration algorithm can analytically solve for the optimal learning rate

for both point process and Gaussian encoding models. We use extensive Monte-Carlo simula-

tions of adaptive Bayesian filters operating on both discrete-valued spikes and continuous-val-

ued neural observations to validate the analytical predictions of the calibration algorithm.

With these simulations, we demonstrate that the learning rate selected analytically by the cali-

bration algorithm minimizes the convergence time while satisfying an upper-bound on the

steady-state error covariance or vice versa. Thus the algorithm results in fast and accurate

learning of the encoding model. In addition to the encoding model, we also examine the influ-

ence of the calibration algorithm on decoding by taking a motor BMI system, which uses dis-

crete-valued spikes or continuous-valued neural activity (e.g., ECoG or LFP), as an example.

We perform extensive closed-loop BMI simulations [38, 48] that closely conform to our non-

human primate BMI experiments [28, 29, 49–51] (see Discussions). Using these simulations,

we show that analytically selecting the optimal learning rate can improve both the transient
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operation of the BMI by allowing its decoding performance to converge faster, and the steady-

state performance of the BMI by allowing it to learn a more accurate decoder. We also demon-

strate that large learning rates lead to inaccurate encoding models and decoders, and small

learning rates delay the convergence of encoding models and decoder performance. By provid-

ing a novel analytical approach for learning rate optimization, this calibration algorithm has

significant implications for closed-loop neurotechnologies and for other signal processing

applications (see Discussions).

Methods

We derive the calibration algorithm for adaptation of two widely-used neural encoding mod-

els—the linear model with Gaussian noise for continuous-valued signals such as LFP and

ECoG, and the nonlinear point process model for the spiking activity. In the former case, the

calibration algorithm adjusts the learning rate of an adaptive KF, and in the latter case it

adjusts the learning rate of an adaptive PPF. We design the calibration algorithm for adaptive

PPF and KF, as these filters have been validated in closed-loop non-human primate and

human experiments both in our work and in other studies (e.g., [22, 23, 26–30]). However, to

date, the learning rates in these filters have been selected using empirical tuning. Instead, the

new calibration algorithm provides a novel analytical approach for selecting the learning rate

to achieve a predictable and desired level of parameter error and convergence time in these

widely-used adaptive filters.

In both the adaptive PPF and the adaptive KF, the learning rate is dictated by the noise

covariance of the decoder’s prior model for the parameters. In what follows, we derive calibra-

tion algorithms for two possible objectives: to keep the steady-state parameter error covariance

smaller than a user-specified upper-bound while minimizing the convergence time, or to keep

the convergence time faster than a user-specified upper-bound while minimizing the steady-

state error covariance. We first derive analytical expressions for both the steady-state error

covariance and the convergence time as a function of the learning rate by writing the recursive

error dynamics and the corresponding recursive error covariance equations for the adaptive

PPF and adaptive KF. By taking the limit of these recursions as time goes to infinity, we find

the analytical expressions for the steady-state error covariance and the convergence time as a

function of the learning rate. We then find the inverse maps of these functions, which provide

the optimal learning rate for a desired objective. We also introduce the numerical simulation

setup used to evaluate the effect of the calibration algorithm on both encoding models and

decoding. The flowchart of the calibration algorithm is in Fig 2. Readers mainly interested in

the results can skip the rest of this section.

The calibration algorithm for continuous neural signals

In this section, we derive the calibration algorithm for continuous signals such as LFP and

ECoG. We first present the observation model and the adaptive KF for these signals. We then

find the steady-state error covariance and the convergence time as functions of the learning

rate. Finally, we derive the inverse functions to select the optimal learning rate.

Adaptive KF. We denote the continuous observation signal, such as ECoG or LFP, from

channel c by yc
t . This continuous signal can, for example, be taken as the LFP or ECoG log-

power in a desired frequency band as these powers have been shown to be related to the under-

lying brain states [52, 53]. As in various previous work (e.g., [54, 55]), we construct the contin-

uous observation model as a linear function of the underlying brain state with Gaussian noise

yc
t ¼ ðψ

cÞ
0
~v t þ zc

t : ð1Þ

Learning rate calibration algorithm for adaptive estimation
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The above equation constitutes the neural encoding model for continuous neural signals

where �0 indicates the transpose operation, and ~v t ¼ ½1; v0t�
0
is a column vector with vt denoting

the encoded brain state. Also, ψc = [ξc, (ηc)0]0 is a column vector containing the encoding

model parameters to be learned. In particular, ξc is the baseline log-power and ηc depends on

the application. Finally, zc
t is a white Gaussian noise with variance Zc. As an example, in motor

Fig 2. Flowchart of the calibration algorithm.

https://doi.org/10.1371/journal.pcbi.1006168.g002
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BMIs, we take the brain state vt as the intended velocity command whether in moving one’s

arm or in moving a BMI. We thus select ηc ¼ ½Zc
x; Z

c
y�
0
¼k ηc k ½ cos ðyc

Þ; sin ðyc
Þ�
0
with kηck

the modulation depth and θc the preferred direction of channel c. The goal of adaptation is to

learn the encoding model parameters in (1), i.e., ψc. In some cases, it may also be desired to

learn Zc adaptively. Here, we first focus on adaptive learning of the parameters ψc and the deri-

vation of the calibration algorithm. We then present a method to learn Zc concurrently with

the parameters.

We write a recursive Bayesian decoder to learn the parameters ψc recursively in real time.

In neurotechnologies, such as BMIs, neural encoding model parameters are either time-invari-

ant or change substantially slower compared with the time-scales of parameter learning (days

compared with minutes, respectively; see e.g., [18, 19, 56]). Thus neural encoding model

parameters in the adaptive learning algorithm can be largely assumed to be essentially fixed

within relevant time-scales of parameter adaptation (e.g., minutes) in BMIs [17–29, 49–51, 57–

64]. While one application of recursive Bayesian decoders (e.g., KF or PPF) is to track time-

varying parameters, these filters have also been used to estimate parameters that are fixed but

unknown and their application in this context has been studied extensively [65–69]. For exam-

ple, the KF has been used to estimate unknown fixed parameters in prior applications such as

climate modeling, control of fluid dynamics, spacecraft control, and robotics [66–69]. The PPF

has also been used to estimate fixed unknown parameters [28, 29].

Assuming that all channels are conditionally independent [28, 29] (see Discussions), we can

adapt the parameters for each channel separately. For convenience, we drop the superscript of

the channel in what follows. A recursive Bayesian decoder consists of a prior model for the

parameters, which models their uncertainty; it also consists of an observation model that

relates the parameters to the neural activity. The observation model is given by (1). We build

the prior model by modeling the uncertainty of ψ as a random-walk [28]

ψt ¼ ψt� 1 þ st: ð2Þ

Here st is a white Gaussian noise with covariance matrix S = sIn(s> 0), where In is the identity

matrix and n is the parameter dimension. Note that st is simply used to model our uncertainty

at time t about the unknown parameter ψ and thus is not representing a biophysical noise.

Consequently, the covariance parameter s is not a biophysical parameter to be learned; rather,

s is a design choice that controls how fast parameter estimates are updated and thus serves as a

tool to control the convergence time and error covariance in learning the neural encoding

model parameters ψ adaptively in real time (see Appendix A in S1 Text for details). We define

s as the learning rate since it dictates how fast parameters are updated in the Bayesian decoder

as new neural observations are made [70] (see (6) below and Appendix A in S1 Text for

details). Our goal is to solve for the optimal s that achieves a desired trade-off between the

steady-state error covariance and convergence time.

Combining (1) and (2) and since both the prior and observation models are linear and

Gaussian, we can derive a recursive KF to estimate ψt from y1, � � �, yt. KF finds the minimum

mean-squared error (MMSE) estimate of the parameters, which is given by the mean of the

posterior density. Denoting the posterior and prediction means by ψt|t and ψt|t−1, and their

covariances by St|t and St|t−1, respectively, the KF recursions are given as

ψtjt� 1
¼ ψt� 1jt� 1 ð3Þ

Stjt� 1 ¼ St� 1jt� 1 þ S ð4Þ

Learning rate calibration algorithm for adaptive estimation
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S� 1

tjt ¼ S� 1

tjt� 1
þ ~v t~v 0tZ

� 1 ð5Þ

ψtjt ¼ ψtjt� 1 þ Stjt~v tZ� 1ðyt � ~v 0tψtjt� 1Þ: ð6Þ

Note that St|t specifies the relative weight of the neural observation yt compared with the

previous parameter estimate in updating the current parameter estimate and thus determines

how fast ψt|t is learned in (6). Since St|t is a function of s, which is the only design choice in our

control, we call s the learning rate. As shown in Appendix A in S1 Text, as s increases, parame-

ters are updated faster. Hence given the encoded brain/behavioral state ~v t in a training session,

we can learn the parameters adaptively using (3)–(6). To enable parameter adaptation and

learning, a training session is often used in which the encoded state is measured or inferred. In

our motor BMI example, the encoded brain state is the intended velocity and can be either

observed or inferred behaviorally using a supervised training session in which subjects per-

form instructed BMI movements (e.g., [17, 21–23, 28, 29, 55, 56]) as we describe in the Numer-

ical Simulations section. In applications such as motor BMIs, there is typically a second

decoder that takes the estimated parameters from (3)–(6) to decode the brain state, e.g., the

kinematics (Fig 1; see Appendix B in S1 Text). However, this brain state decoder does not

affect the parameter decoder [2, 22, 23, 28]. We discuss the simulation details later in the

section.

Overview of the two objectives for the calibration algorithm. We define ψ� as the

unknown true value of the parameters ψ to be learned. Under mild conditions given in Appen-

dix C in S1 Text, which are satisfied in our problem setup, ψt|t in (6) is an asymptotically unbi-

ased estimator (limt! 1 E[ψt|t] = ψ�). There are two objectives that the calibration algorithm

can be designed for. First, we can minimize the convergence time—defined as the time it

takes for the difference (ψ�−E[ψt|t]) to converge to 0—subject to an upper-bound constraint

on the steady-state error covariance of the estimated parameters. Second, we can minimize

the steady-state error covariance of the estimated parameters, i.e., the Euclidean 2-norm

kCov[ψt|t]k, while keeping the convergence time below a desired upper-bound. We derive the

calibration algorithm for each of these objectives and provide them in Theorems 1 and 2.

Calibration algorithm: Analytical functions to predict the effect of learning rate on

parameter error and convergence time. Regardless of the objective, to derive the calibration

algorithm we first need to write the error dynamics in terms of the learning rate s. We denote

the estimation error by gt = ψ�−ψt|t. We denote the estimation error covariance at time t by

S�tjt ¼ E½gtg0t� ¼ Cov½ψtjt� since ψt|t is asymptotically unbiased by Appendix C in S1 Text. We

denote the limit of S�tjt in time, which is the steady-state error covariance, by S�
þ

. Our goal is to

express the steady-state error covariance S�
þ

and the convergence time of E[gt] as functions of

the learning rate s.
To find the steady-state error covariance S�

þ
as a function of s, we first derive a recursive

equation to compute S�tjt � Stjt from (3)–(6) as a function of the learning rate. By solving this

recursive equation and taking the limit as t!1 with some approximations, we express S�
þ

as

a function of the learning rate s. Similarly, by finding a recursive equation for E[gt] as a func-

tion of s and solving it using an approximation, we express the convergence time of E[gt] as a

function of the learning rate s. To make the derivation rigorous, we assume that the encoded

behavioral state vt during the training session (i.e., the experimental session in which parame-

ters are being learned adaptively) is periodic with period T. This holds in many cases, for

example in motor BMIs in which the training session involves making periodic center-out-

and-back movements [22, 23, 28]. We will show later that even in cases where the behavioral

Learning rate calibration algorithm for adaptive estimation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006168 May 29, 2018 8 / 34

https://doi.org/10.1371/journal.pcbi.1006168


state is not periodic, our derivations of the steady-state error covariance as a function of the

learning rate allow for accurate calibration to achieve the desired objectives. The derivations

are lengthy and are thus provided in Appendix D in S1 Text. Also a detailed explanation of

why the periodicity assumption is used in rigorous derivations, and why the approach still

extends to non-periodic cases is provided in Appendix E in S1 Text. Below we present the con-

clusions of the derivations in the following theorem. This theorem is the basis for the calibra-

tion algorithm in the case of adaptive KF for continuous neural signal modalities.

Theorem 1. Assume that the encoded state vt in (1) is periodic with period T. We define
Have ¼

1

T

PT
t¼1

~v t~v 0tZ
� 1 and write its eigenvalue decomposition as Have = U diag(h1, . . ., hn)U0

with (0< hi� hi+ 1). We also define

km ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

ms2 þ 4hms
p

� hms
2hm

ðm ¼ 1; :::; nÞ:

The steady-state error covariance, S�
þ

, can be expressed as a function of the learning rate s as

S�
þ
¼ U

k2
1
þsk1

2k1þs

. .
.

k2
nþskn
2knþs

2

6
6
6
6
6
4

3

7
7
7
7
7
5

U0; ð7Þ

where k2
mþskm
2kmþs ¼

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
ms2þ4hms

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
h2
mþ

4hm
s

p is monotonically increasing with respect to s.

The convergence dynamics of the expected error E[gt] can be expressed as a function of the
learning rate s as

E½gt� ¼ U

k1

k1þs

. .
.

kn
knþs

2

6
6
6
6
6
4

3

7
7
7
7
7
5

U0

0

B
B
B
B
B
@

1

C
C
C
C
C
A

� E½gt� 1�; ð8Þ

where km
kmþs ¼ 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
ms2þ4hms

p
� hms

2
is monotonically decreasing with respect to s.

From (8), the behavior of the expectation of the estimation error E[gt] across time is domi-
nated by the largest diagonal term,

k1

k1þs, whose inverse we define as the convergence rate.

Since U is the unitary matrix of the eigenvalue decomposition of Have, which is not related

to s, U is independent of the learning rate s and the diagonal terms of S�
þ

are strictly increasing

functions of s. This is intuitively sound since a higher learning rate results in a larger error

covariance at steady state. Also, the inverse of convergence rate in (8) is monotonically

decreasing with respect to s. This monotonically decreasing relationship is also intuitively

sound: a faster convergence rate requires a larger learning rate. These relationships clearly

show the trade-off between the steady-state error covariance S�
þ

and the convergence time. All

these properties will be confirmed in the Results section. Finally note that computing Have

does not require complete knowledge of ~v t but simply the expectation (average) of a function

of ~v t (e.g., simply knowing what the supervised training trajectories look like on average rather

than exactly knowing the trajectories.)

Now that we have an analytical expression for the steady-state error covariance and the con-

vergence rate as functions of the learning rate s ((7) and (8), respectively), all we need to do is
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to find the inverse of these functions to solve for the optimal learning rate s from a given

upper-bound on S�
þ

or on the convergence time.

Calibration algorithm: The inverse functions to compute the learning rate. We now

derive the inverse functions of Eqs (7) and (8) to compute the optimal learning rate s for

each of the two objectives in the calibration algorithm. To derive the inverse function for com-

puting the learning rate corresponding to a given steady-state error covariance, we formulate

the optimization problem as that of calculating the largest learning rate s that satisfies

kS�
þ
k¼ lim t!1 kCov½ψtjt�k� Vbd, where Vbd is the desired upper-bound on the steady-state

error covariance. We want the largest learning rate that satisfies this relationship because

the convergence time is a decreasing function of the learning rate and hence will benefit

from larger rates. The key step in solving this inequality is observing that the 2-norm

kS�
þ
k¼ lim t!1 kCov½ψtjt�k is the largest singular value of S�

þ
, which is also the largest eigen-

value of S�
þ

due to its positive definite property. Since the eigenvalues of S�
þ

are analytic func-

tions of the learning rate in Theorem 1, we can solve the inequality analytically. The details of

this derivation are shown in Appendix F in S1 Text.

For the learning rate optimization to satisfy a given convergence time upper-bound, the

goal is to calculate the smallest learning rate s that makes
kE½gt �k

kE½g0 �k
� Erest within the given time

Cbd, where Cbd is the upper-bound of the convergence time and Erest is the relative estimation

error (e.g., 5%) at which point we consider the parameters to have reached steady state. We

want the smallest learning rate that satisfies the convergence time constraint because the

steady-state error decreases with smaller learning rates. The key in solving this inequality is

noting that kE[gt]k converges exponentially with the inverse convergence rate defined in The-

orem 1. So
kE½gt �k

kE½g0 �k
can be written as a function of the learning rate s explicitly. The derivation

details are in Appendix F in S1 Text.

We provide the conclusions of the above derivations resulting in the inverse functions for

both objectives in the following theorem:

Theorem 2 Calibration objective 1 to constrain steady-state error: Assume that the time-step
(i.e., sampling time) in (8) is Δ seconds and h1 is the smallest eigenvalue of Have defined in Theo-
rem 1. The optimal learning rate to achieve an upper-bound Vbd on the steady-state error covari-
ance while allowing for the fastest convergence time is given by

s ¼
4h1

1

V2
bd
� h2

1

with
1

V2
bd
> h2

1
:

ð9Þ

Calibration objective 2 to constrain convergence time: Define Ctime ¼
1

4h1
� ðErestÞ

D
Cbd , which is

independent of the learning rate s. The optimal learning rate to achieve an upper-bound Cbd on
the convergence time, defined to be the time-point at which the relative parameter error is Erest, is
given by

s ¼
Ctime

4h2
1

� ð
1

Ctime
� 4h1Þ

2
: ð10Þ

To summarize, if the objective is to bound the steady-state error covariance, then the user

will select the upper-bound Vbd, calculate Have defined in Theorem 1, and apply (9) to find the

optimal learning rate s. If the objective is to bound the convergence time, the user will select

the upper-bound Cbd, what percentage of error at convergence time they are willing to tolerate

Erest, calculate Have, and use (10) to find the optimal learning rate s.
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Concurrent estimation of the noise variance Z. So far we have assumed that the observa-

tion noise variance, Z, in (1) is known (for example through offline learning). However, this

variance may need to be estimated online just like the encoding parameters ψ. We can address

this scenario by using our knowledge of the range of possible Z’s, i.e., (Zmin and Zmax) and use

the calibration algorithm to compute the learning rate for both Zmin and Zmax. Then for the

first calibration objective, we can select the smaller of the two s’s corresponding to Zmin and

Zmax. This smaller s gives the most conservative choice to assure a given upper-bound for the

steady-state error covariance. Similarly, for the second calibration objective, we can select the

larger of the two s’s to assure a given upper-bound on the convergence time. This method is

valid since the learning rate is a monotonic function of Z. We can see this by noting that Have

in Theorem 1 is monotonic with respect to Z, and so are its eigenvalues (h1, . . ., hn). From (9)

and (10), the learning rate s is also a monotonic function of h1. Together, these imply that the

learning rate is a monotonic function of Z.

Finally, to adaptively estimate Z in real time, we can use the covariance matching technique

[71]. Denoting qt ¼ yt � ~v 0tψtjt� 1, we can estimate Z adaptively by adding the following equa-

tion to the recursions in (3)–(6):

Ztjt ¼
1

L � 1

Xt

j¼t� Lþ1

ðqj � �qÞ2 �
1

L

Xt

j¼t� Lþ1

~v 0jSjjj� 1~v j; ð11Þ

where �q ¼ 1

L

Pt
j¼t� Lþ1

qj is the sample mean, and L is the number of samples used in estimating

Z. Here (11) is derived using the covariance matching technique. The derivation detail can

be found in [71]. Since (11) only uses the prediction mean ψt|t−1 and the prediction covariance

St|t−1, we use (11) right after the prediction step of the KF. This means that we run the KF by

first calculating the predictions using (3) and (4), then estimating Zt|t using (11), and finally

substituting Zt|t for Z in (5) and (6) to get the updated parameters ψt|t.

The calibration algorithm for discrete-valued spikes

We now follow the same formulation used for continuous-valued signals, such as LFP or

ECoG, to derive the calibration algorithm for the discrete-valued spiking activity. The deriva-

tion follows similar steps but, due to the nonlinearity in the observation model, has some dif-

ferences that we point out. Given the nonlinearities, in this case, the calibration algorithm can

be derived for the main first objective, i.e., to keep the steady-state error covariance below a

desired upper-bound while minimizing convergence time (Fig 2; see Discussions).

Adaptive PPF. The spiking activity can be modeled as a time-series of 0’s and 1’s, repre-

senting the lack or presence of spikes in consecutive time-steps, respectively. This discrete-

time binary time-series can be modeled as a point process [31, 32, 48, 72–76]. A point process

is specified by its instantaneous rate function. Prior work have used generalized linear models

(GLM) to model the firing rate as a log-linear function of the encoded state vt [36, 49, 51, 72,

74, 75], e.g., the intended velocity in a motor BMI [28, 29]. Denoting the binary spike event of

neuron c at time t by Nc
t , and the time-step by Δ as before, the point process likelihood function

is given by [72, 75]

pðNc
t jvtÞ ¼ ðl

c
ðvtÞDÞ

Nc
t e� lcðvtÞD: ð12Þ

The above equation constitutes the neural encoding model for discrete spiking activity; here

λc(�) is the firing rate of neuron c and is taken as

l
c
ðvtÞ ¼ exp ðbc

þ ðαcÞ
0vtÞ; ð13Þ
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where ϕc = [βc, (αc)0]0 are the encoding model parameters to be learned. Note that the normali-

zation constant in (12) is approximately 1 because the time-bin Δ in the discrete-time point

process for spikes is taken to be small enough to at most contain one spike as shown in [75].

Thus for a small Δ, the probability of having 2 or more spikes, i.e., pðNc
t � 2Þ, is negligibly

small and can be ignored. So Nc
t can only be either 0 or 1 and the normalization constant for 0

or 1 spikes is exactly 1. The details of this approximation can be found in [75].

For spikes, a PPF can estimate the parameters using data in a training session in which the

encoded state can be either observed or inferred [28, 36, 72, 75, 77]. For example, adaptive PPF

has been used to track neural plasticity in the rat hippocampus [31, 32, 77]. For motor BMIs, a

closed-loop adaptive PPF has been developed to learn ϕc using an optimal feedback-control

model to infer the intended velocity, resulting in fast and robust parameter convergence [28,

29]. As in the adaptive KF case, the adaptive PPF assumes that all neurons are conditionally

independent so every ϕc can be updated separately [28, 36, 77] (see Discussions). From now

on, we remove the superscript c for convenience. Denote the true unknown value of ϕ by ϕ�.
We model our uncertainty about ϕ in time as a random-walk [28]

�t ¼ �t� 1 þ qt; ð14Þ

where qt is a white Gaussian noise with covariance matrix Q = rIn(r> 0) and r is the learning

rate here. Note that similar to the case of KF, qt is simply used to model our uncertainty at

time t about the unknown parameter ϕ and thus is not representing a biophysical noise. Con-

sequently, the covariance parameter r is not a biophysical parameter to be learned but is a

design choice that controls how fast neural encoding model parameters ϕ are learned. Thus r
serves as the learning rate as shown in detail in Appendix A in S1 Text. Similar to the KF, the

PPF has already been shown to be successful in estimating unknown fixed parameters in neu-

rotechnologies [28, 29].

Given the observation model in (12) and the prior model in (14), adaptive PPF is derived

using the Laplace approximation, which assumes that the posterior density is Gaussian.

Denoting the posterior and prediction means by ϕt|t and ϕt|t−1, and their covariances by Qt|t

and Qt|t−1, respectively, the adaptive PPF—derived using the Laplace Gaussian approximation

to the posterior density—is given by the following recursions [28]

�tjt� 1 ¼ �t� 1jt� 1 ð15Þ

Qtjt� 1 ¼ Qt� 1jt� 1 þQ ð16Þ

Q� 1

tjt ¼ Q� 1

tjt� 1
þ ~v t~v

0

tlðtj�tjt� 1ÞD ð17Þ

�tjt ¼ �tjt� 1 þQtjt~v t½Nt � lðtj�tjt� 1ÞD� ð18Þ

Similar to (6) in the KF, Qt|t determines the relative weight of the neural observation Nt com-

pared with the previous parameter estimate in updating the current parameter estimate and

thus determines how fast ϕt|t is learned in (18). Because Qt|t is governed by r, which is in our

control, we refer to r as the learning rate for the PPF. As r increases, parameters are updated

faster. Details are provided in Appendix A in S1 Text. Here lðtj�tjt� 1Þ ¼ exp ð~v 0t�tjt� 1Þ and as

before ~v t ¼ ½1; v0t�
0
, where vt is the encoded behavioral/brain state (e.g., rat position in a

maze or intended velocity in BMI), which is either observed or inferred. In studying the hippo-

campal place cell plasticity, for example, rat position can be observed. In motor BMIs, the

intended velocity can be inferred using a supervised training session in which subjects perform
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instructed BMI movements [22, 23, 28, 29] as we present in the Numerical Simulations section.

We now derive a calibration algorithm for the learning rate r in the adaptive PPF (15)–(18).

The calibration algorithm minimizes the estimated parameter convergence time of E[ϕt|t]!ϕ�

under a given upper-bound constraint on the steady-state error covariancekCov[ϕ� − ϕt|t]k.

Calibration algorithm: Analytical function and inverse function. Learning rate calibra-

tion for spikes can again be posed as an optimization problem. We denote the error vector by

et = ϕ� − ϕt|t and the error covariance by Cov½et� ¼ Q�tjt. We can show that ϕt|t, which is PPF’s

estimate of the parameters, is asymptotically unbiased (limt!1 E[ϕt|t] = ϕ�) under some

mild conditions (Appendix G in S1 Text). We define the steady-state error covariance as

Q�
þ
¼ lim t!1Q�tjt. Thus the goal of the optimization problem is to select the optimal learning

rate r that minimizes the convergence time of E[et]!0 while keeping the 2-norm of the

steady-state error covariance Q�
þ

smaller than the user-defined upper-bound.

We derive the calibration algorithm similar to the case of continuous signals. We first find a

recursive equation for Qtjt � Q�tjt using (15)–(18). We then solve this equation and take the

limit t!1 with some approximations to write the steady-state error covariance Q�
þ

as an

analytic function of the learning rate r. For rigorousness in derivations, for now we assume

that the behavioral state in the training set, e.g., the intended velocity {vt}, is periodic with

period T. As we also mentioned in the case of continuous signals, this assumption is reasonable

in many applications such as motor BMI. However, we will show in the Results section that

the calibration algorithm still works even when this assumption is violated. Also in Appendix

E in S1 Text we show why the approach also extends to non-periodic cases. The derivation

detail is presented in Appendix H in S1 Text. The derivation shows that the steady-state error

covariance Q�
þ

can be written as a function of the learning rate r as follows:

Theorem 3. Assume the encoded state vt in (12) is periodic with period T. We write the eigen-
value decomposition of Mave ¼

1

T

PT
t¼1

~v t~v 0tlðtj�
�
ÞD as U diag(a1, . . ., an)U0 with (0 < ai� ai+ 1)

and we denote

bm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

mr2 þ 4amr
p

� amr
2am

ðm ¼ 1; :::; nÞ:

The steady-state error covariance, Q�
þ

, can be expressed as a function of the learning rate r as

Q�
þ
¼ U

b2
1
þb1r

2b1þr

. .
.

b2
nþbnr
2bnþr

2

6
6
6
6
6
4

3

7
7
7
7
7
5

U0: ð19Þ

Compared with the steady-state error covariance S�
þ

for continuous signals in (7), the

steady-state error covariance for spikes Q�
þ

in (19) has exactly the same form when replacing hi

with ai and s with r. Hence to compute the optimal learning rate r from (19), we can again

apply (9) while replacing hi with ai and s with r. Note that Mave includes the firing rate λ(t|ϕ�),
which is related to the unknown true parameter ϕ�. Since λ(t|ϕ�)Δ in Mave has the same role as

Z−1 in Have for KF, and since (19) has the same form as (7), the learning rate r is a monotonic

function of λ(t|ϕ�)Δ similar to the case of Z for KF. Thus we use our knowledge of the mini-

mum and maximum possible firing rates to calculate the extreme values of the learning rate r
from (9), and select the minimum of the two r’s as the most conservative value to keep the

steady-state error covariance under the given bound Vbd.
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Calibration algorithm for non-periodic state evolution

For both discrete and continuous signals, we considered a periodic behavioral state (e.g.,

intended velocity) in the training data for the derivations to satisfy the mild conditions in

Appendix C in S1 Text. However, the derivation of (7), (8) and (19) are based on Have and

Mave for the continuous and discrete signals, respectively, which are simply the average values

of functions of the state {vt}. So the core information needed in the calibration algorithm is not

the state periodicity, but its expected value, which we can compute empirically for any state

evolution. As detailed in Appendix E in S1 Text, the periodicity of vt is simply required to

ensure that the mean of the prediction covariance St+ 1|t is well-defined at steady state. If we

ignore some mathematical rigorousness and instead assume that St+ 1|t has bounded steady-

state moments (which is a relatively mild requirement), then this calibration algorithm can be

generalized to the case with non-periodic vt directly. That is precisely why, as we show using

simulations in the Results section, the calibration algorithm works even in the case of random

evolution for the states {vt} in the training experiment. Periodicity is simply required to guar-

antee the existence of the mean of St+ 1|t at steady state (instead of assuming this existence) in

the derivations, as detailed in Appendix E in S1 Text.

Numerical simulations

To validate the calibration algorithm, we run extensive closed-loop numerical simulations.

We show that the calibration algorithm allows for fast and precise learning of encoding

model parameters, and subsequently for a desired transient and steady-state behavior of the

decoders (Fig 1). While the calibration algorithm can be applied to learn encoding models

and decoders for any brain state, as a concrete example, we use a motor BMI to validate the

algorithm.

In motor BMIs, the relevant brain state is the intended movement. The BMI needs to learn

an encoding model that relates the neural activity to the subject’s intended movement. We

simulate a closed-loop BMI within a center-out-and-back reaching task with 8 targets. In this

task, the subject needs to take a cursor on a computer screen to one of 8 peripheral targets, and

then return it to the center to initiate another trial [29, 56]. To simulate how subjects generate

a pattern of neural activity to control the cursor, we use an optimal feedback-control (OFC)

model of the BMI that has been devised and validated in prior experiments [28, 29, 48, 49] and

is inspired by the OFC models of the natural sensorimotor system [78–80]. We then simulate

the spiking activity as a point process using the nonlinear encoding model in (12) and simulate

the ECoG/LFP log-powers as a Gaussian process linearly dependent on the brain state [55]

using the linear encoding model in (1). We test the calibration algorithm for adaptive learning

of the ECoG/LFP and the spike model parameters. We assess the ability of the calibration algo-

rithm to enable fast and accurate learning of the encoding models, and to lead to a desired

transient and steady-state performance of the decoder.

To simulate the intended movement, we use the OFC model. We assume that movement

evolves according to a linear dynamical model [28, 29, 48, 49]

xtþ1 ¼ Axt þ But þ wt; ð20Þ

where xt ¼ ½d
0

t; v0t�
0
is the kinematic state at time t, with dt and vt being the position and veloc-

ity vectors in the two-dimensional space, respectively. Here ut is the control signal that the

brain decides on to move the cursor and wt is white Gaussian noise with covariance matrix

W. Also, A and B are coefficient matrices that are often fitted to subjects’ manual movements
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[22, 23, 28, 29, 56, 80]. Similar to prior work [28, 29, 48, 49], we write (20) as

d1ðt þ 1Þ

d2ðt þ 1Þ

v1ðt þ 1Þ

v2ðt þ 1Þ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼

1 0 D 0

0 1 0 D

0 0 a 0

0 0 0 a

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

d1ðtÞ

d2ðtÞ

v1ðtÞ

v2ðtÞ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

þ

0 0

0 0

1 0

0 1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

u1ðtÞ

u2ðtÞ

" #

þ

0

0

w1ðtÞ

w2ðtÞ

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; ð21Þ

where Δ is the time-step and α is selected according to our prior non-human primate data [28,

29].

The OFC model assumes that the brain quantifies the task goal within a cost function and

decides on its control commands by minimizing this cost. For the center-out movement task,

the cost function can be quantified as [28, 29, 48, 49, 78, 80]

J ¼
X1

t¼1

kdt � d� k2 þ wvkvt k
2 þ wrkut k

2; ð22Þ

where d� is the target position, and wv and wr are weights selected to fit the profile of manual

movements. For the linear dynamics in (20) and the quadratic cost in (22), the optimal control

command is given by the well-known infinite horizon linear quadratic Gaussian (LQG) solu-

tion as [28, 29, 48, 49, 81]

ut ¼ � Lðxt � x�Þ; ð23Þ

where x� = [d�0, 00]0 is the target for position and velocity (as the subject needs to reach the tar-

get position and stop there). Here L is the gain matrix, which can be found recursively and off-

line by solving the discrete-time Riccati equation [81]. By substituting (23) in (20), we can

compute the intended kinematics of the subject in response to visual feedback of the current

decoded cursor kinematics xt in our simulations [28]. Details are provided in our prior work

[28, 38, 48]. Note that we use a single OFC model to simulate the brain strategy throughout all

closed-loop numerical simulations—i.e., both during training experiments in which parame-

ters are being learned in parallel to the kinematics being decoded (Fig 1), or after training is

complete and during pure decoding experiments when the learned parameters are fixed and

the learned decoder is used to move the cursor. Indeed prior work have suggested that the

brain strategy in closed-loop control largely remains consistent, e.g., regardless of whether

parameters are being adapted or not (e.g., [22, 23, 26, 28, 29, 49, 82, 83]).

The subject’s intended velocity vt is in turn encoded in neural activity. We first test the per-

formance of the calibration algorithm for continuous ECoG/LFP recordings. We then test this

performance for discrete spike recordings.

For the continuous signals, we simulate 30 LFP/ECoG features whose baseline powers and

preferred directions in (1) are randomly selected in [1, 6] dB and [0, 2π], respectively. The

modulation depth, kηk, in each channel is randomly-selected in [7, 10] and the noise variances

are randomly-selected in [320, 380]. The initial value, ψ0|0, and the true value, ψ�, of each chan-

nel are selected randomly and independently. The eight targets are around a circle with radius

0.3. Each trial including the forward and the back movement for a selected target in the center-

out-and-back task takes 2 secs. During the training experiment, the subject reaches the targets

in the counter-clockwise order repeatedly. To assess whether the calibration algorithm can

analytically compute the steady-state error covariance and convergence time for a given learn-

ing rate accurately, we simulate 3000 trials under each learning rate considered.
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For spikes, we simulate 30 neurons. Here since the state vt is the intended velocity, we can

also interpret (13) as a modified cosine-tuning model [75, 84] by writing it as

l
c
ðvtÞ ¼ exp ðbc

þ kαc kkvt k cos ðyt � y
c
ÞÞ; ð24Þ

where θt is the direction of vt, θc is the preferred direction of the neuron (or direction of αc =

kαck[cos θc, sin θc]0), and finally kαck is the modulation depth. For each neuron, we select the

baseline firing rate randomly between [4, 10] Hz and the maximum firing rate randomly

between [40, 80] Hz. We select each neuron’s preferred direction in (24) randomly between [0,

2π]. The task setup is equivalent to the continuous signal case. We simulate 1000 trials for each

learning rate considered.

We also examine the effect of the calibration algorithm on kinematic decoding. For contin-

uous signals, we use a KF kinematic decoder as in prior work (e.g., [22, 23, 55]). For the dis-

crete spike signals, we use a PPF kinematic decoder as in prior work (e.g., in real-time BMIs

[28, 29]). Kinematic decoder details have also been provided in Appendix B in S1 Text for

convenience.

Results

We first investigate whether the calibration algorithm can analytically approximate two quan-

tities well: the steady-state error covariance and the convergence time of the encoding model

parameters as a function of the learning rate. We do so by running multiple closed-loop BMI

simulations with different learning rates. These Monte-Carlo simulations allow us to compute

the true value of the two quantities. We then compare these true values with the analytically-

computed values from the calibration algorithm. We find that, for both continuous and dis-

crete signals, the calibration algorithm accurately computes its desired quantity (i.e, either the

error covariance or the convergence time) for any type of behavioral state trajectory in the

training data (i.e., periodic or not). Thus the calibration algorithm can find the optimal learn-

ing rate for a desired trade-off between the parameter convergence time and error covariance.

We also show how the inverse function can be used to compute the learning rate for a desired

trade-off. Moreover, we examine how the calibration algorithm—and consequently the

learned encoding model—affects decoding performance. We show that, by finding the optimal

learning rate, the calibration algorithm results in fast and accurate decoding. In particular,

compared to the optimal rate, larger learning rates could result in inaccurate steady-state

decoding performance and smaller learning rates result in slow convergence of the decoding

performance.

The calibration algorithm computes the convergence time and error

covariance accurately with continuous signals

We first assess the accuracy of the analytically-computed error covariance and convergence

time by the calibration algorithm. As described in detail in Numerical Simulation section, we

run a closed-loop BMI simulation in which the subject performs a center-out-and-back task to

eight targets in counter-clockwise order. We simulate 30 LFP/ECoG features.

We define the convergence time as the time when the estimated parameters reach within

5% of their true values, i.e., kψt|t − ψ�k�0.05 × kψ0|0 − ψ�k (so Erest = 0.05; as defined before

ψt|t, ψ�, and ψ0|0 are the current parameter estimate, the true parameter value, and the initial

parameter estimate, respectively.) Fig 3A shows the true and the analytically-computed error

covariance and convergence time as a function of the learning rate, across a wide range of

learning rates. The analytically-computed values are close to the true values. From Fig 3A, the

average normalized root-mean-squared errors (RMSE) between the true and the analytically-
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computed values for the convergence time and the steady-state error covariance are 3.6% and

1.6%, respectively (where normalization is done by dividing by the range of possible conver-

gence time and covariance values). Fig 3A shows that as the learning rate s increases, the error

covariance increases and the convergence time decreases. Also, the error covariance is

inversely related to the convergence time. These trends also demonstrate the fundamental

trade-off between steady-state error covariance and convergence time.

In the above analysis, we considered estimating the encoding model parameters ψt|t in (6).

As derived in (11), when the noise variance Z in (1) is unknown, we can also estimate this vari-

ance in real time and simultaneously with the parameters. We thus repeated our closed-loop

BMI simulations, this time simultaneously estimating the noise variance Zt|t to show that it

converges to the true value regardless of the learning rate s. Fig 3B shows that Zt|t converges to

the true value with all tested learning rates, which cover a large range (5 × 10−7 to 5 × 10−3).

Moreover, even when estimating both ψt|t and the noise variance Zt|t jointly, the analytically-

computed error covariance is still close to the true one (normalized RMSE is 4.5%). Overall,

the analytically-computed error covariance is robust to the uncertainty in Zt|t because Zt|t con-

verges to the true value at steady state regardless of the learning rate (Fig 3B).

Fig 3. The calibration algorithm accurately computes the steady-state error covariance and convergence time as a function of learning rate for

continuous signals. (A) The analytically-computed and the true error covariance and convergence time of the encoding model parameters (baseline,

ηx, and ηy in (1)) for different learning rates s, across a wide range of s. The top left panel shows the relation between the three quantities. The other

three panels are projections of this plot to three planes, showing each of the three pair-wise relationships. All axes are in log scale. True quantities are

computed from BMI simulations with periodic center-out-and-back training datasets. The analytically-computed values are obtained by the calibration

algorithm according to Eqs (7) and (8). The analytically-computed and true values match tightly across a wide range of learning rates, showing that the

calibration algorithm can accurately compute the learning rate for a desired trade-off between steady-state error and convergence time. (B) Adaptive

estimation of the unknown observation noise variance using (11) under different learning rates s. The bottom three panels are zoomed-in versions of

the top panels to show the transient behavior of the estimated noise variance, which converges to its true value in all cases.

https://doi.org/10.1371/journal.pcbi.1006168.g003
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Use of the inverse function to compute the learning rate

Here we show how the inverse functions in Theorem 2 can be used to select the learning rate.

In our example, we require the 95% confidence bound of the estimated encoding model

parameters (i.e., ±2 standard deviations of error) to be within 10% of their average value. Thus

this constraint provides the desired upper-bound on the steady-state error covariance Vbd. In

general, Vbd can be selected in any manner desired by the user. Once Vbd is specified, we use

(9) and find the optimal value of the learning rate as s1 = 5.6 × 10−5. Hence the calibration algo-

rithm dictates that the learning rate should be smaller than s1 to satisfy the desired error

covariance upper-bound.

Let’s now suppose that we want to ensure that the convergence time is within a given range.

In our example, we require the estimation error to converge within 7 minutes, where conver-

gence is defined as reaching within 5% of the true value (Erest = 0.05). This constraint sets the

upper-bound on the convergence time to be Cbd = 7min = 420 sec. The calibration algorithm

using (10) dictates that the learning rate needs to be larger than 4.75 × 10−5.

Taken together, for the above constraints for error covariance and convergence time, any

learning rate 4.75 × 10−5 < s< 5.6 × 10−5 is admissible. For conciseness and as an illustrative

example, we select the learning rate s = 5 × 10−5, which satisfies both criteria above. In the next

section, we examine the effect of this learning rate on the estimated model parameters over

time, i.e., on the adaptation profiles (Fig 4).

Parameter adaptation profiles confirm the accuracy of the calibration

algorithm

We also examined the evolution of the estimated encoding model parameters ψt|t in time,

which we refer to as the parameter adaptation profiles. Plotting the adaptation profile provides

a direct way of investigating the influence of the learning rate on the estimated encoding

model. We plot the adaptation profiles for the optimal learning rate in our example above, i.e.,

s = 5 × 10−5. We also show these profiles for a smaller and a larger learning rate (Fig 4). We

used these adaptation profiles to further assess the accuracy of the calibration algorithm.

The adaptation profiles confirm the accuracy of the calibration algorithm as expected from

Fig 3A. We used (7) to find the steady-state error covariance for each learning rate in Fig 4 and

consequently to compute the 95% confidence bounds for the parameter estimates (which are

equal to ±2 square-root of the analytically-computed error covariance). We then empirically

found the percentage of time during which the steady-state parameter estimates were within

this 95% bound. If the covariance matrix is accurately computed by the calibration algorithm,

then this percentage should be close to 95%. We found that about 96% of the time, the steady-

state estimated parameters lie within the 95% confidence bound calculated by the calibration

algorithm for all learning rates. Finally, we also simulated the case where the parameters may

shift from day to day (see Discussions) to see the application of the calibration algorithm in

this case. We confirmed, as shown in S1 Fig, that the same KF with a learning rate calculated

from the calibration algorithm (Fig 4B) can track the parameters and satisfy the criteria on

steady-state error and convergence time on both days.

The calibration algorithm generalizes to different state evolution profiles

In the algorithm derivation and for rigorousness to ensure the existence of the mean of

the prediction covariance St+ 1|t at steady state (instead of simply assuming this existence;

Appendix E in S1 Text), we assume that the evolution of behavioral state {vt}, e.g., the trajec-

tory, is periodic in the training data. However, in computing the error covariance and the
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Fig 4. Parameter adaptation profiles confirm the accuracy of the calibration algorithm with continuous signals. (A–C) show sample adaptation

profiles of the model parameters ψt|t for different learning rates s in ascending order. For each learning rate, the estimated parameters are within the

analytically-computed 95% confidence bounds by the calibration algorithm about 96% of the time, demonstrating the accuracy of the calibration

algorithm.

https://doi.org/10.1371/journal.pcbi.1006168.g004
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convergence time, the only aspect of vt needed by the calibration algorithm is not periodicity,

but an average of a function of vt over time, which is Have. Indeed, if we assume St+ 1|t has

bounded steady-state moments, then our derivation directly applies to the general non-peri-

odic case (Appendix E in S1 Text, S2 Fig). To show that the calibration algorithm also

extends to the case of non-periodic state evolutions, we run a closed-loop BMI simulation with

a non-periodic trajectory. In this simulation, in each trial, one of eight targets is instructed ran-

domly according to a uniform distribution over the targets. So the trajectory is no longer peri-

odic (in contrast to when the targets are instructed one by one and in counter-clockwise

order). The comparison between the true error covariance and convergence time and their val-

ues computed analytically by the calibration algorithm are shown in Fig 5A, across a wide

range of learning rates. The analytically-computed values are still close to the true values,

with an average normalized RMSE of 2.1% and 7.4% for the steady-state error covariance

and the convergence time, respectively. Similarly, when the noise variance Z needs to be esti-

mated, its estimate Zt|t from (11) still converges to the true value for all learning rates (Fig 5B).

Even when estimating Zt|t simultaneously with parameters, the calibration algorithm can

approximate the error covariance well (normalized RMSE is 2.6%). Taken together, these

results demonstrate that the calibration algorithm can generalize to a wide range of problems

since the training state-evolution when adapting the encoding models could have a general

form.

Fig 5. The calibration algorithm generalizes to training datasets with non-periodic state trajectories. Figure convention is the same as Fig 3. Here

the true quantities are computed in closed-loop BMI simulations with a non-periodic trajectory generated by selecting targets randomly and uniformly.

The analytically-computed error covariance and convergence times given by the calibration algorithm closely match their true values across a wide

range of the learning rate s, showing that the calibration algorithm extends across training datasets with different state-evolution trajectories.

https://doi.org/10.1371/journal.pcbi.1006168.g005
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The calibration algorithm for discrete spiking activity

We also validate the calibration algorithm for discrete-valued spiking observations. We run

multiple closed-loop BMI simulations with either a periodic or a non-periodic trajectory. The

simulation setting is the same as that for continuous signals and given in Numerical Simula-

tion section. Fig 6 shows that the analytically-computed error covariance is close to its true

value across a wide range of learning rates with any type of trajectory (i.e., periodic or not).

The average normalized RMSE between the true and the analytically-computed error covari-

ance is around 5% with either periodic or non-periodic trajectory. This result shows that the

calibration algorithm can also accurately compute the learning rate effect for a nonlinear point

process model of spiking activity. The result also verifies the generality of the calibration algo-

rithm to different state evolution profiles during adaptation, as was the case for continuous

signals.

In the case of spikes, the inverse function can again be used to select the learning rate for a

given upper-bound on the steady-state error covariance. For example, we can require the error

covariance to be within 7% of the average values for all parameters, which provides the value

of Vbd. Again, Vbd can be selected as desired by the user. Once Vbd is specified, we use the

inverse function using Theorem 3 and Eq (9) and find that the corresponding optimal learning

rate r is 10−7.

We also confirm the accuracy of the calibration algorithm using the parameter adaptation

profiles. We plot three realizations of the estimated point process parameters, ϕt|t, under

Fig 6. The calibration algorithm accurately computes the steady-state error covariance for discrete spiking activity. (A) The analytically-computed

and the true steady-state error covariance as a function of the learning rate r. True values are found from closed-loop BMI simulations with a periodic

center-out-and-back trajectory. The calibration algorithm analytically computes the covariance based on (19). The calibration algorithm closely

approximates the steady-state error covariance as demonstrated by the closeness of the analytically-computed and true curves across a wide range of r.
(B) Figure convention is the same as (A) except that all true values are computed in closed-loop BMI simulations with a non-periodic trajectory

generated by selecting one of the eight targets randomly and uniformly in each trial. The calibration algorithm can again closely approximate the

steady-state error covariance, demonstrating the generalizability of the approach to training datasets with varying state-evolution trajectories.

https://doi.org/10.1371/journal.pcbi.1006168.g006
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different learning rates r to examine whether the 95% confidence bounds computed by the cal-

ibration algorithm are accurate (Fig 7; similar analysis to the case of continuous signals). Note

that the confidence bounds are given by twice the square-root of the analytically-computed

covariance matrix. We use the optimal learning rate computed for our example above, i.e.,

r = 10−7, and a smaller and a larger learning rate in Fig 7. We find that at steady state, the esti-

mated parameters are within the 95% confidence bound about 96% of time. This shows the

accuracy of the analytically-computed confidence bound (if this bound is correct, about 95%

of the time the estimates should be within confidence bounds). This result is consistent with

the good match between the true and analytically-computed covariances in Fig 6.

Finally, even though the convergence time cannot be analytically obtained in the case of

spike observations, it is still significantly affected by the learning rate r. For a small learning

rate (r = 10−9), the parameter estimate ϕt|t does not converge to its true value even in 2000 sec.

In comparison, this convergence time is only about 200 sec for an intermediate learning rate

(r = 10−7). Hence to allow for fast convergence, it is critical to select the maximum possible

learning rate that satisfies a desired upper-bound constraint on error covariance. This was the

basis for the calibration algorithm.

The effect of learning rate on decoding

The selection of the optimal learning rate is critical not only for fast and accurate estimation of

the encoding model, but also for accurate decoding of the brain state. Here we show that the

selection of the appropriate learning rate by the calibration algorithm can improve both the

Fig 7. Parameter adaptation profiles confirm the accuracy of the calibration algorithm with discrete spiking activity. (A)–(C) show sample

adaptation profiles of model parameters ϕt|t in a closed-loop BMI simulation under different learning rates r in ascending order. Increasing the learning

rate increases the error covariance. Also, about 96% of the time, the parameter estimates at steady state are within the 95% confidence bounds computed

by the calibration algorithm; this demonstrates that the calibration algorithm can closely approximate the error covariance and consequently the

confidence bounds.

https://doi.org/10.1371/journal.pcbi.1006168.g007
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transient and the steady-state operation of decoders. We simulate closed-loop BMI decoding

under various learning rates. Since the optimal trajectory for reaching a target in a center-out

task should be close to a straight line connecting the center to the target, as the measure of

decoding accuracy we use the RMSE between the decoded trajectory and these straight lines

[22, 23, 28, 29, 56] (the error is the perpendicular distance of the decoded position to the

straight line at each time).

To study the effect of the learning rate on steady-state BMI decoding, we adaptively esti-

mate the encoding model parameters under different learning rates. We fix the estimated

parameters after varying amounts of adaptation time. We then use the obtained fixed models

to run the closed-loop BMI simulations without adaptation. We run these simulations both for

continuous LFP/ECoG observations decoded with a KF kinematic decoder, and for discrete

spike observations decoded with a PPF kinematic decoder (Figs 8 and 9, respectively).

By comparing the small and medium learning rates, we find that a small learning rate

results in a slow rate of convergence for the decoder performance, without improving the

steady-state performance (two-sided t-test P> 0.36; Figs 8 and 9). Moreover, large learning

rates result in poor and unstable steady-state decoding due to inaccurate estimation of the

model parameters. This is evident by observing that for large learning rates, BMI decoding

RMSE widely oscillates as a function of time at which adaptation stops for both continuous

Fig 8. Learning rate calibration affects both the transient and the steady-state performance of closed-loop BMI decoders with continuous neural

activity. (A) The evolution of the decoded trajectory as the adaptation time is increased under different learning rates s. Note that the decoder is fixed

after a given adaptation time is completed (as noted on each row). The fixed decoder is then used to generate the displayed trajectories. Each color

corresponds to one learning rate. Decoding performance is unstable when the learning rate is large (s = 5 × 10−1) even at steady state; this means that

depending on exactly when we stop the adaptation and fix the decoder, performance widely oscillates due to the large steady-state model parameter

error. (B) RMSE of the decoded trajectory under different learning rates for different adaptation times. RMSE is computed for a fixed decoder that was

obtained by stopping the adaptation at various times (different colors). RMSE converges faster as the learning rate is increased (s = 5 × 10−5 to 5 × 10−3,

for example). However, if the learning rate is selected too large (s = 5 × 10−1), RMSE oscillates depending on when adaptation is stopped, without

converging to a stable number. These results show that appropriately calibrating the learning rate is important not only for encoding model estimation

but also for a desired trade-off between convergence time and steady-state RMSE in decoding.

https://doi.org/10.1371/journal.pcbi.1006168.g008
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ECoG/LFP observations and discrete spike observations (Figs 8B and 9B, respectively). This

result shows that due to the large steady-state error, steady-state parameter estimates change

widely depending on exactly when we stop the adaptation. Thus the decoder does not converge

to a stable performance. Taken together, optimally selecting the learning rate to achieve a

desired level of steady-state parameter error covariance is also important for fast convergence

and accuracy of decoding.

It is interesting to note that due to feedback-correction in closed-loop BMI, the decoder can

tolerate a larger steady-state parameter error than we would typically allow if our only goal is

to track the encoding model parameters. This is evident by noting, for example, that using a

learning rate of s = 5 × 10−3 for continuous signals results in a relatively large steady-state

parameter error as shown in Fig 4 (The 95% confidence bound is about ±30% of the modula-

tion depth). However, for the purpose of BMI decoding, this learning rate results in no loss of

performance at steady state compared to smaller learning rates, and allows for a faster conver-

gence time (Fig 8). Hence the user-defined upper-bound on the steady-state error covariance

is dependent on the application and the goal of adaptation. For closed-loop decoding, a larger

error covariance could be tolerated, and as a result, a faster convergence time can be achieved.

In contrast, if the goal is to accurately track the evolution of encoding models over time, for

example to study learning and plasticity, a lower steady-state error covariance should be tar-

geted. Regardless of the desired upper-bound on the error covariance, the calibration

Fig 9. Learning rate calibration affects both the transient and the steady-state performance of closed-loop BMI decoders with discrete spiking

activity. Figure conventions are the same as Fig 8. (A) The evolution of the decoded trajectory across time under different learning rates r. Each color

corresponds to one learning rate. As in Fig 8, the decoder is fixed after a given adaptation time is completed (as noted on each row). The fixed decoder

is then used to generate the displayed trajectories. The decoding performance is unstable when the learning rate is large (r = 10−3), i.e., the performance

widely oscillates. (B) RMSE of the decoded trajectory under different learning rates for different adaptation times. RMSE is computed for a fixed

decoder that was obtained by stopping the adaptation at various times (different colors). RMSE converges faster as the learning rate is increased

(r = 10−7 to 10−5, for example). However, if the learning rate is selected too large (r = 10−3), RMSE oscillates without converging to a stable number.

These results again demonstrate the importance of calibrating the learning rate for fast convergence and accuracy of decoding.

https://doi.org/10.1371/journal.pcbi.1006168.g009

Learning rate calibration algorithm for adaptive estimation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006168 May 29, 2018 24 / 34

https://doi.org/10.1371/journal.pcbi.1006168.g009
https://doi.org/10.1371/journal.pcbi.1006168


algorithm can closely approximate the corresponding learning rate that satisfies this upper-

bound while allowing for the fastest possible convergence.

Discussion

Developing invasive closed-loop neurotechnologies to treat various neurological disorders

requires adaptively learning accurate encoding models that relate the recorded activity—

whether in the form of spikes, LFP, or ECoG—to the underlying brain state. Fast and accurate

adaptive learning of encoding models is critically affected by the choice of the learning rate

[37], which introduces a fundamental trade-off between the steady-state error and the conver-

gence time of the estimated model parameters. Despite the importance of the learning rate,

currently a principled approach for its calibration is lacking. Here, we developed a principled

analytical calibration algorithm for optimal selection of the learning rate in adaptive methods.

We designed the calibration algorithm for two possible user-specified adaptation objectives,

either to keep the parameter estimation error covariance smaller than a desired value while

minimizing convergence time, or to keep the parameter convergence time faster than a given

value while minimizing error. We also derived the calibration algorithm both for discrete-val-

ued spikes modeled as point processes nonlinearly dependent on the brain state, and for con-

tinuous-valued neural recordings, such as LFP and ECoG, modeled as Gaussian processes

linearly dependent on the brain state. We showed that the calibration algorithm allows for fast

and accurate learning of encoding model parameters (Figs 4 and 7), and enables fast conver-

gence of decoding performance and accurate steady-state decoding (Figs 8 and 9). We also

demonstrated that larger learning rates make the encoding model and the decoding perfor-

mance inaccurate, and smaller learning rates delay their convergence. The calibration algo-

rithm provides an analytical approach to predict the effect of the learning rate in advance, and

thus to select its optimal value prior to real-time adaptation in closed-loop neurotechnologies.

To derive the calibration algorithm, we introduced a formulation based on the fundamental

trade-off that the learning rate dictates between the steady-state error and the convergence

time of the estimated parameters. Calibrating the learning rate analytically requires deriving

two functions that describe how the learning rate affects the convergence time and the steady-

state error covariance, respectively. However, currently no explicit functions exist for these

two relationships for Bayesian filters, such as the Kalman filter or the point process filter. We

showed that the two functions can be analytically derived (Eqs (7), (8) and (19)) and can accu-

rately predict the effect of the learning rate (Figs 3 and 6). We obtained the calibration algo-

rithm by deriving two inverse functions that solve for the learning rate based on a given

upper-bound of the error covariance (Eq (9)) or the convergence time (Eq (10)), respectively.

To allow for rigorous derivations in finding tractable analytical solutions for the learning

rate, we performed the derivations for the case in which the behavioral state in the training

experiment evolved periodically over time. This is the case in many applications; for example,

in motor BMIs, models are often learned during a training session in which subjects perform a

periodic center-out-and-back movement. However, we found that the calibration algorithm

only depended on an average value of the behavioral state rather than on its periodic character-

istics. Indeed, we showed that with a simplifying assumption, the derivation extends to the

general non-periodic case (Appendix E in S1 Text, S2 Fig); moreover, using extensive numeri-

cal simulations, we demonstrated that the calibration algorithm can accurately predict the

effect of the learning rate on parameter error and convergence time for a general behavioral

state evolution in the training experiments (Figs 5 and 6B). The match between the analytical

prediction of the calibration algorithm and the simulation results suggest the generalizability

of the calibration algorithm across various behavioral state evolutions.
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We derived the calibration algorithm for Bayesian adaptive filters, i.e., KF for continuous-

valued activity and PPF for discrete-valued spikes. Here the KF and PPF were used to adap-

tively learn the neural encoding model parameters, which were assumed to be unknown

but essentially fixed within the time-scales of parameter learning. This scenario is largely the

case that arises in neurotechnologies for learning encoding models/decoders for two reasons.

First, in neurotechnologies, such as BMIs, the parameters of the encoding models are initially

unknown because they need to be learned in real time during closed-loop operation (cannot

be learned offline and a-priori before actually using the BMI). Second, even though these

parameters are unknown, they are largely fixed at least within relevant time-scales of parame-

ter learning (e.g., minutes) in BMIs (and even typically within time-scales of BMI operation in

a day, e.g., hours; see for example [17–19, 21–24, 26, 28, 29, 49–51, 57–64]). Even in scenarios

where these parameters may change over time for example due to plasticity or task learning,

the time-scale of parameter variation will be substantially slower than the time-scale of param-

eter estimation/learning in the KF or PPF. For example, as we show here and as observed in

prior experiments through trial and error, with a well-calibrated adaptive algorithm the

parameters can typically be learned within several minutes (e.g., [22–29]). In contrast, the

time-scale of changes in encoding model parameters is typically on the order of days [18, 19,

56]. So even in the case that parameters may be changing, for the purpose of selecting the

learning rate in the adaptive algorithm, they can be considered as essentially constant. We also

showed that the calibration algorithm combined with the Bayesian adaptive filter can be used

on an as-needed basis to re-learn parameters in case they shift over these relevant longer time-

scales, e.g., from day to day. Finally, while Bayesian adaptive filters such as the KF and PPF can

be used to track time-varying parameters, they can also be used to estimate fixed but unknown

parameters as shown both in neurotechnologies and in other applications such as climate

modeling, control of fluid dynamics, and robotics [28, 29, 65–69], and confirmed in our deri-

vations and simulations here.

In deriving the calibration algorithm, we assumed that recorded signals (whether continu-

ous or discrete) are conditionally independent over channels and in time, similar to prior

work [17, 22, 23, 26–29, 49, 54–58, 61, 72]. This assumption enables the derivation of tractable

real-time decoders (i.e., KF and PPF), adaptive algorithms, and in our case the analytical cali-

bration algorithm, for both linear and nonlinear observation models (Eqs (1) and (12)) for

continuous neural signals and binary spike events, respectively. While conditional dependen-

cies could exist in general, prior experiments have shown that algorithms derived with these

conditional independence assumptions work well for neural data analysis [17, 22, 23, 26–29,

49, 54–58, 61, 72]. Finally, given the high dimensionality of neural recordings obtained in cur-

rent neurotechnologies, modeling correlations between channels would introduce a large

number of unknown neural parameters that need to be learned in real time. This real-time

learning becomes computationally quite expensive, and would require more data (and thus

longer time in real-time applications) for parameters to be learned without overfitting. Thus

the conditional independence assumption makes the parameter learning algorithms and set-

ups amenable for real-time applications by reducing the number of model parameters and

complexity.

The selected learning rate in the calibration algorithm depends on the user-specified upper-

bound on the error covariance or convergence time. The values of these upper-bounds could

be chosen by the user based on the goal of adaptation. If the adaptation goal is to accurately

estimate the encoding model parameters (e.g., to study learning), then the acceptable error

upper-bound may be selected to be small. In such a case, the calibration algorithm would select

a small learning rate. However, we showed that if the goal of calibration is to enable accurate

decoding in a closed-loop BMI, then larger errors in the estimated parameters may be
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tolerated. This is due to feedback-correction in BMIs, which can compensate for the parameter

estimation error (Figs 8 and 9). The calibration algorithm would then select larger learning

rates to improve how fast decoding performance converges to high values. However, even in

this case, there is a limit to how large the learning rate can be. A learning rate that is too large

will result in unstable and inaccurate performance of the decoder (Figs 8 and 9). This result

shows the importance of the calibration algorithm regardless of the goal of adaptation.

The calibration algorithm may also serve as a tool to help examine the interaction between

model adaptation and neural adaptation. In closed-loop neurotechnologies, neural representa-

tions can change over time resulting in neural adaptation, e.g., due to learning over multiple

days. For example, in motor BMIs, the brain can change its encoding of movement (e.g., the

directional tuning of neurons) to improve neuroprosthetic control [17–19, 56, 85]. Neural and

model adaptation result in a “two-learner system” and can interact [56]. It is important to

study whether model adaptation interferes with neural adaptation in these closed-loop sys-

tems, and if so whether this interference depends on how fast models are adapted. By accu-

rately adjusting the convergence time and hence the speed of model adaptation, the calibration

algorithm may provide a useful tool in studying such interference in careful experiments.

Moreover, if neural adaptation is significantly affected by the speed of model adaptation, the

calibration algorithm could help carefully adjust this speed for a desired neural adaptation out-

come. It is also important to examine this interference problem theoretically [86].

To validate the calibration algorithm, we used a motor BMI as an example. The calibration

algorithm, however, can be applied to other closed-loop neurotechnologies that need to

decode various brain states, for example, interest score in closed-loop cortically-coupled com-

puter vision for image search [87] or mood in closed-loop DBS systems [88]. Also, while our

main goal was to derive the calibration algorithm for closed-loop neurotechnologies, this algo-

rithm can be used in other domains of signal processing. We derived the calibration algorithm

to select the learning rate and predict its effect on error and convergence time in Bayesian

adaptive filters. Prior work in other signal processing applications have focused vastly on the

non-Bayesian LMS or steepest-decent adaptive filters [37, 40]. However, LMS is only applica-

ble to linear observation models [37]. Moreover, steepest-decent filters that use non-linear cost

functions to specify the goal of adaptation cannot predict the effect of learning rate on error or

convergence time and thus only provide heuristics for learning rate selection [37]. Finally,

LMS or steepest-decent filters are not Bayesian filters, unlike the KF or the PPF (Eqs (3)–(6)

and (15)–(18)). Using a Bayesian filter for parameter adaptation has the advantage that it can

extend to nonlinear stochastic observation models (such as the point process model of spikes)

[28, 29, 36]. Here, we derived a learning rate calibration algorithm for Bayesian filters both

with continuous linear observation models (KF) and with discrete nonlinear observations

models (PPF). Importantly, we derived explicit analytical functions (9) and (10) to predict the

effect of the learning rate on steady-state error and convergence time for a Bayesian filter. This

allowed us to analytically compute an optimal value for the learning rate to achieve a desired

user-specified performance metric.

Our main contribution is the derivation of a novel analytical calibration algorithm for both

nonlinear point process and linear Gaussian encoding models (Eqs (1) and (12)); this calibra-

tion algorithm optimally selects the learning rate based on the trade-off between convergence

time and steady-state error covariance. In deriving closed-form expressions for the calibration

algorithm, we needed to analytically compute the steady-state error covariance in both the

PPF and the KF. Note that, even in the case of the KF, this analytical computation cannot be

achieved through the general steady-state analysis of the KF. First, the steady-state analysis of

the KF does not formulate a tradeoff between the steady-state error covariance and conver-

gence time, and thus does not provide a calibration algorithm. Second, in order to derive the
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calibration algorithm, we need to derive novel analytical closed-form expressions for the

steady-state error covariance and convergence time in the KF (so that we can find the inverse

function to compute the optimal learning rate for a given covariance or convergence time). To

obtain these expressions, we need to find an analytical solution for a special form of the dis-

crete Riccati equation (DRE) [89]. While the DRE is solved numerically and recursively in the

general steady-state analysis of a KF, there exists no analytical solution with a closed-form

expression for a DRE in general. Obtaining such an analytical solution is critical for calculating

the optimal learning rate in (9) and (10). Therefore, unlike the steady-state analysis of KF, we

additionally had to derive the analytic solution of a special form of DRE first (Appendix J in S1

Text). Third, we also needed analytical expressions for the convergence time of the KF during

the transient phase, which again the steady-state analysis of the KF does not provide. Finally,

note that we also provide the calibration algorithm for the point process model of the binary

spike time-series and thus for the nonlinear PPF in addition to the linear KF.

Here our focus was on deriving an analytical calibration algorithm for both nonlinear point

process and linear Gaussian encoding models for spikes and continuous neural recordings,

respectively. Thus to validate our analytical approach, we used extensive closed-loop Monte-

Carlo simulations. These simulations allowed us to examine the generalizability of the calibra-

tion algorithm across different neural signal modalities. The closed-loop simulations closely

conformed to our prior non-human primate experiments [28, 29]. Prior studies have shown

that these closed-loop simulations can mimic the observed experimental effects and thus pro-

vide a useful validation testbed for algorithms [28, 38, 48, 90]. Moreover, the calibration algo-

rithm adjusted the learning rate of adaptive PPF and adaptive KF decoders, which have been

shown to be successful for real-time BMI training and control using spikes or LFP in non-

human primate and human experiments both in our work and other studies [17, 21–30, 55].

However, prior experiments, including ours, selected the learning rates empirically in these

decoders. Given that the calibration algorithm is run prior to experiments, and based on the

success of adaptive PPF and KF in prior animal and human experiments, we expect our cali-

bration algorithm to be seamlessly incorporated in BMIs regardless of the neural signal modal-

ity. The calibration algorithm allows the optimal learning rate to be computed prior to

running the adaptation experiments to achieve a predictable speed and accuracy in adaptive

learning. Implementing the calibration algorithm in animal models of adaptive BMIs using

both spikes and LFP is the topic of our future investigation.

Finally, the calibration algorithm has the potential to be generalized to Bayesian filters

beyond the KF and PPF, e.g., the unscented Kalman filter [42], an adaptive filter with a bino-

mial distribution as the observation model [44], or hybrid spike-LFP filters [91]. The deriva-

tions of Eqs (7) and (8) in theorems 1 and 3 are based on the recursive equation for estimation

error dynamics, which is derived from the desired Bayesian filter. This implies that for other

observation models different from a linear model with Gaussian noise in KF or a nonlinear

point process model in PPF, once we write down their corresponding Bayesian adaptive filters

[92], we can derive the calibration algorithms by writing the corresponding recursive error

equations. Thus this calibration algorithm has the potential to be generalized and applied to

other types of signals with various stochastic models. This will be a topic of our future

investigation.

Supporting information

S1 Fig. The calibration algorithm along with the recursive Bayesian decoder can be used

on an as-needed basis to re-learn encoding models as parameters shift over time. Simula-

tion of a BMI system in which parameters are estimated at the beginning of each day and fixed
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for the rest of the day. This is the setup used in the vast majority of BMI systems because

encoding model parameters are either largely time-invariant or change much slower compared

with the relevant time-scales of parameter adaptive learning (e.g., minutes) in BMIs and even

the time-scale of BMI operation in a day (e.g., hours) (see Discussion). Figure convention is

the same as in Fig 4. Here we show the example of the KF whose learning rate is selected using

the calibration algorithm to satisfy user-specified criteria on steady-state error and conver-

gence time as described in Results and shown in Fig 4B. As the task is the same on both days

and since Have is simply an expectation (average) of a function of ~v t and does not need knowl-

edge of ~v t values, we used the same Have based on the same average quantity to compute the

optimal learning rate on both days. The calibration algorithm satisfies the user-specified crite-

ria on parameter estimates on day 1. We then assume that on day 2 parameters have shifted.

On day 2, parameters can again be estimated using the same Kalman filter whose learning rate

is selected with the calibration algorithm. Similar to day 1, on day 2 the requirements on

steady-state error and convergence time are again satisfied.

(TIF)

S2 Fig. Sketch of the derivation of the calibration algorithm. The derivation of the calibra-

tion algorithm with a periodic encoded state vt during the training session follows the blue

arrows. If we assume that the prediction covariance St+1|t has bounded steady-state moments,

then the proof generalizes to the non-periodic vt as shown by the red arrows (see Appendix E

in S1 Text and Fig 5). Similarly for the PPF, if we assume that the prediction covariance Qt+1|t

has bounded steady-state moments, then the proof generalizes to the non-periodic vt (Fig 6B)

and the mean of Qt+1|t at steady state can be approximated using Mave in Theorem 3 to find the

optimal learning rate. Here DRE refers to the discrete Riccati equation.

(TIF)

S1 Text. All appendixes (A–J).

(PDF)

Author Contributions

Conceptualization: Maryam M. Shanechi.

Formal analysis: Han-Lin Hsieh.

Funding acquisition: Maryam M. Shanechi.

Investigation: Maryam M. Shanechi.

Methodology: Han-Lin Hsieh, Maryam M. Shanechi.

Project administration: Maryam M. Shanechi.

Resources: Maryam M. Shanechi.

Software: Han-Lin Hsieh.

Supervision: Maryam M. Shanechi.

Validation: Han-Lin Hsieh, Maryam M. Shanechi.

Visualization: Han-Lin Hsieh, Maryam M. Shanechi.

Writing – original draft: Han-Lin Hsieh, Maryam M. Shanechi.

Writing – review & editing: Han-Lin Hsieh, Maryam M. Shanechi.

Learning rate calibration algorithm for adaptive estimation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006168 May 29, 2018 29 / 34

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006168.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006168.s003
https://doi.org/10.1371/journal.pcbi.1006168


References
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