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An efficient method for the C-C bond formation via water soluble Na2PdCl4/sSPhos
mediated Suzuki-Miyaura cross-coupling reaction of DNA-conjugated aryl iodide with (het)
aryl boronic acids has been developed. This reaction proceeds at 37°C in water and
acetonitrile (4:1) system. We also demonstrated that numerous aromatic and
heteroaromatic boronic acids of different electronic natures, and harboring various
functional groups, were highly compatible providing the desired coupling products in
good to excellent yields. This DNA-compatible Suzuki-Miyaura cross-coupling reaction
has strong potential to construct DNA-Encoded Libraries (DELs) in the context of drug
discovery.
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INTRODUCTION

DNA-Encoded Library (DEL) technology is based on the concept from Brenner and Lerner (Brenner
and Lerner 1992) and it is commonly used in the pharmaceutical industry to identify novel chemical
matter that binds and modulates specific protein targets (Melkko et al., 2004; Melkko et al., 2007;
Clark et al., 2009; Kleiner et al., 2011; Franzini et al., 2014; Salamon et al., 2016; Goodnow et al., 2017;
Favalli et al., 2018; Neri and Lerner 2018; Ottl et al., 2019; Yuen et al., 2019; Zhao et al., 2019; Kunig
et al., 2021; Shi et al., 2021). During the past decade, the use of DEL technology provided a great
opportunity to identify drug-like compounds that can bind selectively to a variety of target proteins
(Deng et al., 2012; Gentile et al., 2012; Disch et al., 2013; Samain et al., 2015; Seigal et al., 2015; Harris
et al., 2016; Belyanskaya et al., 2017; Dawadi et al., 2020; Chamakuri et al., 2021). More recently, a
number of different powerful applications leveraging the DEL technology have been proposed
(Huang et al., 2022; Sunkari et al., 2022; Zhao et al., 2022). To expand the chemical space of these
DNA-Encoded Libraries, a greater variety of DNA-Compatible reactions is required. Althoughmuch
progress has beenmade in this direction (Potowski et al., 2021; Nie et al., 2022; Shen et al., 2022; Yang
et al., 2022), the availability of efficient synthetic methods for the synthesis of DELs remains an
important challenge.

A DEL is a complex mixture composed of a large number of drug-like molecules in which
each molecule is conjugated to a unique and specific DNA-oligomer that encodes its chemical
structure. Due to the presence of DNA barcodes, and due to the process of generating a DEL
that involves alternation of chemical and molecular steps (e.g., split-and-pool strategy), any
chemical modification has to be performed in the presence of DNA. This implicates that
chemical reaction conditions must be mild and compatible with aqueous conditions. Although
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progress has been made in this direction, the availability of
efficient methods for the synthesis of DELs remains an
important challenge.

During the last few years, the interest in DNA-compatible
transition metal catalyzed cross-coupling reactions has
increased, and especially for C-C bond formation using Pd-
catalyzed Suzuki-Miyaura cross-coupling reaction (Miyaura and
Suzuki 1995; Bellina et al., 2004; Martin and Buchwald 2008). Due
to mild reaction conditions, commercial availability of coupling
partners and high chemo-selectivity, the Suzuki–Miyaura cross-
coupling reaction is now the second most utilized reaction in the
field of medicinal chemistry (Brown and Bostrom 2016), after the
amide bond formation reaction. While methods for the Suzuki-
Miyaura cross-coupling reaction were reported in the context of
DNA-Encoded Library synthesis (Scheme 1) (Omumi et al., 2011;
Deng et al., 2015; Ding andClark 2015; Litovchick et al., 2015; Ding
et al., 2016a; Ding et al., 2016b; Li and Huang 2018; Nicholas et al.,
2019; Xu et al., 2019; Qu et al., 2020; Favalli et al., 2021), there is a
great need to further develop this reaction.

In 2011, Omumi et al. reported first Suzuki-Miyaura cross-
coupling reaction in the presence of DNA (C8-Ar-G-modified
oligonucleotides) using aryl boronic acids employing Pd(OAc)2

and a hydrophilic phosphine ligand, 3-tri (3-sulfonatophenyl)
phosphine trisodium (TPPTS) (Omumi et al., 2011). In 2014,
Ding et al. reported first Suzuki-Miyaura cross-coupling
reaction using Pd(PPh3)4 under aqueous conditions in the
context of DEL (Ding and Clark 2015). Later, the same
group reported the reaction for less reactive DNA-conjugated
aryl chlorides using a combination of phosphinous acid/Pd
catalyst and the sSPhos ligand at 80°C (Ding et al., 2016a).
Compared with Pd(PPh3)4, this catalyst system is better for the
coupling of pyrimidinyl chloride and unreactive aryl chloride
with challenging heteroaryl boronates. In 2015, two reports
published the construction of 334 and 34.7 million-
membered DELs synthesized in three cycles, in which they
introduced boronic acid/ester building blocks by Suzuki
cross-coupling in the second and the third cycle respectively
(Deng et al., 2015; Litovchick et al., 2015). In 2016, Ding et al.
reported the construction of 3.5 million-membered DEL in
three cycles, in which they introduced Suzuki-Miyaura cross-
coupling reaction in the second cycle (Ding et al., 2016b). Li
et al. developed a robust Suzuki-Miyaura reaction protocol
employing a water-soluble Pd-precatalyst for the coupling of
DNA-linked aryl halides with a wide range of boronic acids/

TABLE 1 | Optimization of Suzuki-Miyaura Cross-Coupling Reactiona.

S.No Pd catalyst (20 eq) Ligand (40 eq) Base Solvent Yield%

1 Pd(OAc)2 N-XantPhos K2CO3 (300 eq) DMF:H2O (4:1) 0%
2 Pd(OAc)2 TPPTS K2CO3 (500 eq) H2O:DMA (1:1) 0%
3 sSPhos-Pd-G2 – CsOH (400 eq) H2O:DMA:Dioxane 0%
4 Pd(Ph3)4 – Na2CO3 (40 eq) H2O:DMA:ACN 41%
5 Na2PdCl4 N-XantPhos K2CO3 (300 eq) H2O:ACN (4:1) 61%
6 Na2PdCl4 sSPhos K2CO3 (300 eq) H2O:ACN (4:1) 67%
7 Na2PdCl4 X-Phos K2CO3 (300 eq) H2O:ACN (4:1) 54%
8 Na2PdCl4 XantPhos K2CO3 (300 eq) H2O:ACN (4:1) 55%
9 Na2PdCl4 sSPhos Na2CO3 (300 eq) H2O:ACN (4:1) 50%
10 Na2PdCl4 sSPhos Cs2CO3 (300 eq) H2O:ACN (4:1) 45%
11 Na2PdCl4 sSPhos K3PO4 (300 eq) H2O:ACN (4:1) 41%
12 Na2PdCl4 sSPhos CsOH (300 eq) H2O:ACN (4:1) 48%
13 Na2PdCl4 sSPhos KOH (300 eq) H2O:ACN (4:1) 62%
14 Na2PdCl4 sSPhos K2CO3 (300 eq) H2O:ACN (4:1) 81%b

15 Na2PdCl4 sSPhos K2CO3 (600 eq) H2O:ACN (4:1) 94%c

16 Na2PdCl4 sSPhos K2CO3 (1500 eq) H2O:ACN (4:1) 80%
17 Na2PdCl4 sSPhos K2CO3 (300 eq) H2O:ACN (4:1) 69%d

18 Na2PdCl4 sSPhos K2CO3 (600 eq) H2O:ACN (1:1) 91%
19 Na2PdCl4 sSPhos K2CO3 (600 eq) H2O:DMSO (4:1) 73%c

21 Na2PdCl4 sSPhos K2CO3 (600 eq) H2O:DMF (4:1) 72%c

21 Na2PdCl4 sSPhos K2CO3 (600 eq) H2O:DMA (4:1) 76%c

22 Na2PdCl4 sSPhos K2CO3 (600 eq) H2O:Dioxane (4:1) 89%c

23 Na2PdCl4 sSPhos K2CO3 (600 eq) H2O:THF (4:1) 75%c

aReaction Conditions: 1 equiv of 1a (1 mM in Borate Buffer pH 9.5, 250 mM), 200 equiv of boronic acid (200 mM in ACN/H2O, 1:1), 20 equiv Na2PdCl4, 40 equiv sSPhos (10 mM in H2O),
300 equiv K2CO3, H2O:ACN (4:1), 37oC for 24 h.
bReaction time 28 h.
c600 equiv K2CO3.
d10 equiv Na2PdCl4, 20 equiv sSPhos (5 mM in H2O).
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esters including heteroaryl boronates (Li and Huang 2018).
Additionally, Nicholas et al. reported an alternative
Pd(OAc)2 catalyzed DNA-compatible reaction with aromatic,
heteroaromatic, and vinyl boronic acids at 60°C (Nicholas et al.,
2019). Recently, Xu et al. also reported Suzuki-Miyaura cross-
coupling reaction on-DNA with aryl fluorosulfonates as
electrophiles at room temperature (Xu et al., 2019). Very
recently Qu et al. developed a Pd-mediated Suzuki-Miyaura
cross-coupling of DNA-conjugated aryl bromides with
potassium Boc-protected aminomethyltrifluoroborate at 95°C
(Qu et al., 2020). Most recently Favalli et al. reported the Suzuki-
Miyaura cross-coupling reaction of DNA-conjugated aryl
iodides with (het)aryl boronic acids at 70°C using Pd(OAc)2
and TPPTS (Favalli et al., 2021).

Despite these few reports that are mostly using high
temperature conditions, there is a need to develop this reaction
at relatively low temperature to avoid DNA degradation. It is well
established that DNA is highly stable in physiological conditions
(37°C or at lower temperature). Importantly, among those studies,
only one study reported Suzuki-Miyaura cross-coupling reaction
on-DNA, at room temperature, using a non-readily available
coupling partner (aryl fluorosulfonate) (Xu et al., 2019). Here,
we introduced a DNA friendly method performed at room
temperature using water soluble Na2PdCl4/ sSPhos mediated
Suzuki-Miyaura cross-coupling reaction. For that purpose,
DNA-conjugated aryl iodide was used with over fifty boronic
acids that are readily available and full DNA integrity was
confirmed by mass spectrometry.

SCHEME 1 | On-DNA Suzuki-Miyaura Cross-Coupling Reaction Development.
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RESULTS AND DISCUSSION

The Suzuki-Miyaura cross-coupling of DNA-conjugated aryl
iodide 1a with phenyl boronic acid 2a in 4:1 water and
acetonitrile system was first examined to optimize reaction
conditions for synthesizing the DNA-conjugated biaryl product 3a.
Previously, Pd(OAc)2/N-XantPhos catalysts that led to excellent yield
in the cross-coupling of (hetero)aryl halides with boronic acids was
examined (Wang et al., 2015). However, it did not result in the
formation of 3a at 37°C after 24 h (Table 1, entry 1). Previously
reported reaction conditions (Favalli et al., 2021, Li and Huang, 2018,
Ding and Clark, 2015) were tested for this coupling reaction at 37°C
(Table 1, entry 2-4), Pd(OAc)2 and sSPhos-Pd-G2 did not furnish the
desired product, whereas Pd(PPh3)4 gave 41% yield at 37°C.
Interestingly, when water soluble Pd catalyst Na2PdCl4 (20
equiv), N-XantPhos ligand (40 equiv) and K2CO3 were used,

the product yield was 61% (Table 1, entry 5). On the other hand,
when N-XantPhos was replaced with sSPhos, the desired
product could be isolated with a 67% yield under the same
conditions. (Table 1, entry 6). These results clearly indicate that
the water soluble Pd catalyst might have a dramatic influence on
this coupling reaction. This speculation was corroborated by the
observation that Na2PdCl4 gave the good yield, while
Pd(OAc)2and sSPhos-Pd-G2 gave no product formation.
Noteworthy, when sSPhos was replaced with X-Phos and
XantPhos, a decrease in yield was observed (Table 1,
entries 7–8).

After identifying Na2PdCl4/sSPhos as the best catalyst, we
examined different bases. This base screening revealed that
Na2CO3, Cs2CO3, K3PO4, and CsOH gave poor yields, while
KOH gave a comparable yield to K2CO3 (Table 1, entries 9–13).
Next, using K2CO3 and by increasing the reaction time to 28 h,

SCHEME2 | Suzuki-Miyaura cross-coupling reaction of aryl boronic acids with 1aa. aReaction Conditions: 1 equiv of 1a (1 mM in H2O), 200 equiv of
aryl boronic acid (200 mM in ACN/H2O, 1:1), 20 equiv Na2PdCl4, 40 equiv sSPhos (10 mM in DMA), K2CO3, H2O:ACN (4:1), 37oC for 28 h; bH2O:1,4-dioxane (4:1).
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the yield increased to 81% (Table 1, entry 14). Doubling the
amount of base (600 equiv) also increased the product yield and
reached 94% (Table 1, entry 15). However, a further increase of
the amount of base (1,500 equiv) led to a decrease in the product
yield. Attempt to reduce the catalyst loading did not reach
complete conversion anymore (Table 1, entries 16-17). When
the percentage of solvent mixture was altered to be 1:1 (water and
acetonitrile), a slight decrease of the yield was observed (Table 1,
entry 18). Further solvent screening revealed that DMSO, DMF,
DMA and THF gave lower yields, and 1,4-dioxane solvent gave a
comparable yield (Table 1, entries 19–23).

Therefore, we concluded that the optimal condition is: 20 equiv
of Pd catalyst, 40 equiv of ligand as the catalyst system and K2CO3

(600 equiv) as the base, 4:1 water and acetonitrile, at 37°C for 28 h.
We next explored the substrate scope using the present optimized

protocol and the results are summarized in Scheme 2. As expected, a
number of aryl boronic acids bearing electron-rich, electron-deficient
groups and functional groups at the para-position worked well,
providing coupling products 3a-3p with 86–94% yields.
Remarkably, some ortho- and meta-substituted aryl boronic acids
were also applicable, leading to the formation of 3q-3w products with
good yields. Sterically hindered 2,6-disubstituted phenyl boronic acids
3x and 3z afforded good to excellent conversion except 3ypossibly due
to bulky methoxy groups. Furthermore, 3,4-disubstituted, 3,5-
disubstituted, 2,4-disubstituted and 2,5-disubstituted aryl boronic

acids with electron-rich, electron-deficient groups also gave
excellent yields (3aa-3aj). Additionally, coupling reaction of 2-
naphthyl, 9-anthracenyl, fluorene-2-boronic acids proceeded
smoothly to deliver the coupling products 3ak-3am respectively.

Finally, after successful implementation of this protocol for the
coupling of DNA-conjugated aryl iodide (1a) with aryl boronic acids,
we next focused on the coupling of 1a with heteroaryl boronic acids.
The results are summarized in Scheme 3. Thus, thiophene, furan,
pyridyl and pyrimidyl boronic acids yielded the respective products
(5a-5h) with good to excellent conversion (63–89%). The versatility of
this methodology was further demonstrated by coupling 1a with
fused heterocycles such as benzothiophene, indole, N-methyl indole,
indazole, benzofuran and dibenzofuran boronic acids to give the
respective coupling products (5i-5n) in moderate to excellent yields
(51–95%). Furthermore, the coupling of DNA-conjugated aryl
bromide with phenyl boronic acid is also compatible with the
Suzuki-Miyaura reaction (41%). However, the coupling of DNA-
conjugated aryl chloride with phenyl boronic acid yielded only 3%.

CONCLUSION

In summary, we have developed an efficient method for the
coupling of aryl iodide conjugated on double-stranded DNA with
(het)aryl boronic acids via water soluble Na2PdCl4/sSPhos

SCHEME 3 | Suzuki-Miyaura cross-coupling reaction of heteroaryl boronic acids with 1aa. aReaction Conditions: 1 equiv of 1a (1 mM in H2O), 200 equiv of
heteroaryl boronic acid (200 mM in ACN/H2O, 1:1), 20 equiv Na2PdCl4, 40 equiv sSPhos (10 mM in DMA), K2CO3, H2O:ACN (4:1), 37°C for 28 h; bH2O:1,4-dioxane.
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mediated Suzuki-Miyaura cross-coupling reaction. This reaction
proceeds at 37°C in water and acetonitrile (4:1) system. These
results demonstrate the scope of the Suzuki-Miyaura cross-
coupling reaction for on-DNA substrates. The present protocol
displays broad substrate scope and tolerates the functionality that
would be very useful for construction of DNA-encoded libraries.
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