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In this article, we investigate composite media which present both a local resonance and a periodic structure.
We numerically and experimentally consider the case of a very academic and simplified system that is a
quasi-one dimensional split ring resonator medium. We modify its periodicity to shift the position of the
Bragg bandgap relative to the local resonance one. We observe that for a well-chosen lattice constant, the
local resonance frequency matches the Bragg frequency thus opening a single bandgap which is at the same
time very wide and strongly attenuating. We explain this interesting phenomenon by the dispersive nature
of the unit cell of the medium, using an analogy with the concept of white light cavities. Our results provide
new ways to design wide and efficient bandgap materials.

T
here exist in nature numerous materials that prevent light from propagating, leading to various and some-
times amazing visual effects such as iridescence. Some of them, the so-called natural photonic structures, can
be observed in the fauna, the flora or even in inorganic materials like opals1,2. Their properties are now

understood to originate from their nanostructure that often presents periodic modulations. Their man-made
counterparts, composite materials known as photonic/phononic crystals, present as well a wavelength-scaled
periodic modulation of their optical3, elastic4,5 or acoustic6,7 properties. Analogous to atomic lattices8, they exhibit
bandgaps9–11 within which the propagation of waves is prohibited. These bandgaps can originate from Mie
resonances12 or from the structure. In the latter case, the associated gaps are named Bragg bandgaps, and they
can be simply and schematically explained for a 1D structure by using the common Kronnig-Penney model of a
periodic rectangular potential wells (V) chain (Fig. 1(a)). This schematic potential model, although appoximate,
can fit all kind of scatterers like atoms (solid state physics) or index modulations (photonic crystals). When an
incident wave propagates along the potential chain, it undergoes multiple scattering from the potential barriers,
leading to interference effects between the different paths followed by the wave. For a frequency
fB~v=2a a^lB=2ð Þ, where v is the velocity of the wave in the medium and a is the lattice constant, those
interferences are destructive, preventing the wave from propagating forward. At an interface, the medium acts
like a mirror for waves and only an evanescent tail is allowed to penetrate. This Bragg bandgap is created with a
midgap frequency fB set by the periodicity. In the case of periodic structures made out of strictly non resonant
scatterers, the bandgap attenuation increases with the strength V of the potential barrier8 or equivalently the
materials impedance mismatch in classical physics3, while its bandwidth decreases accordingly. Because the Bragg
bandgap results from interference effects only, it is not affected by local modifications of the medium, which is of
interest when one wants to control the flow of waves. Indeed, one can locally break the translational symmetry in
photonic/phononic structures by introducing point13 or line defects14 whose resonances fall within the bandgap,
which enables the waves to be either trapped or guided within the defects spatial extension roughly given by one
period of the medium3.

Another kind of natural materials constitutes a very good mirror for electromagnetic waves: metals. They
possess free electrons which reply in antiphase to an incoming electromagnetic wave, hence cancelling the latter
on very short distances. In other words, metals present a negative permittivity and consequently a high reflectiv-
ity, below their characteristic plasma frequency vp. To mimic this property but at macroscopic scales, some
composite materials generally made out of subwavelength resonant inclusions have initially been proposed by
Pendry15,16. Those so called metamaterials are organized at very subwavelength scales and are, consequently, often
studied under an effective medium approximation. They have been mostly exploited for their high refractive
indices17–19 which can be used for far-field subwavelength imaging or focusing purposes20–24 or for their negative
effective properties25–30. As metals, metamaterials reflect waves within these negative effective property bands,
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which can hence be termed bandgaps. We have proved using a
microscopic approach based on the transfer matrix formalism31 that
the physics of locally resonant metamaterials presenting no near field
interactions is solely driven by a Fano interference effect between the
local resonance of the unit cell and the continuum of plane waves
propagating in the medium32. The interferences occur because an
incident wave impinging on a resonating unit cell can follow two
paths, the non-scattered one and resonant one (Fig. 1(b)). If the unit
cell resonates at f0, an incident plane wave at f . f0 results in a
resonance response of the resonator in anti-phase(w 5 2p) with
the continuum exactly like a mechanical mass-spring that cannot
follow a too fast excitation. For a monopolar resonator, this results
in destructive interferences that give birth to a bandgap while cas-
cading the resonators. This mechanism involves the coupling
between the incident plane wave and a local resonance so that the
bandgap of such materials can be interpreted as a hybridization
bandgap33–36. Its position is solely given by the unit cell resonance
frequency f0 which allows very subwavelength organizations as long
as no near field interaction occurs directly between the unit cells. The
gap extension and efficiency depend on the quality factor of the
resonant unit cell and on the density of resonators. We have shown
that in the limit of no near field coupling, the hybridization bandgap
is understood to result from interferences. Consequenlty, analogous
to photonic/phononic crystals, we have recently demonstrated that it
is possible to locally modify such metamaterials to design very sub-
wavelength components such as waveguides or cavities32. These com-
ponents can be created in spatially disordered metamaterials as well37

because the hybridization bandgap originates from the resonance
only and not from the periodicity.

From this brief review of composite materials, one naturally won-
ders what happens for materials presenting both a periodicity and a
subwavelength resonant unit cell. It is known35,38–42, that those sys-

tems present, as expected, both bandgaps in their spectrum around f0

and fB. These can be independently shifted by changing either the
frequency of the constitutive unit cell or the periodicity a and an
overlap between the Bragg and hybridization bandgaps has been
experimentally observed in phononic crystals made out of nylon
rods39. Those bandgap materials are often studied in terms of their
dispersion relation and group velocity. More precisely, while the
Bragg bandgap presents a positive group velocity, the hybridization
bandgap has a negative one, a signature of the materials negative
effective properties35,39,43.

Here we go beyond these works by studying the interaction mech-
anism between the local and the Bragg resonances. To do so we
investigate a hybrid photonic crystal/metamaterial where f0 and fB

perfectly match (Fig. 1(c)) by adjusting the lattice constant to
a0^l0=2, where l0 is the resonance wavelength associated with f0.
Those systems have been studied in solid state physics and named
resonant Bragg reflectors, for instance with Bragg spaced multiple
quantum wells44,45 and more recently a plasmonic equivalent has
been proposed46. Yet those latter works are based on a quantum
approach in which excitons embedded in a periodic potential well
lattice44,45 or plasmonic resonances embedded in a dielectric med-
ium46 radiate a Lorentzian-shaped linewidth. In this framework, it
has been theoretically proved that they can give rise, depending on
the number of periods, either to a superradiant mode or to a photonic
bandgap. In this paper, we demonstrate an experimental realization
of resonant Bragg reflector in the microwave domain which allows
us, contrary those previous works44–46, to probe locally the electro-
magnetic field in the composite medium. This allows us to leave out
the quantum formalism used in these references and to give a very
simple explanation through a classical wave approach. We stress here
that in the systems studied in this paper, both Bragg and hybridiza-
tion effects arise from the same element that is the resonator: this is

Figure 1 | (a) Bragg interferences through a one dimensional potential wells chain of periodicity a. Red and blue arrows stand for waves interfering

destructively.(b) Hybridization interferences through one dimensional resonators (f0) chain with periodicity d = l. Inset shows the destructive

interference mechanism between the direct and resonating paths for one resonator. (c) Hybrid Bragg/Hybridization chain of resonators (f0) separated by a

periodicity a0 5 l0/2. Both Bragg scattering (green arrows) and resonance (red arrows) take part to the resulting evanescent forward wave (green).
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why it can be called a resonant Bragg structure. It should not be
mistaken with another way of mixing Bragg and resonances that
has also been widely studied in solid state physics and which consists
in filling a pre-existent periodic structure from which the Bragg
interferences arise with a polarizable medium, giving raise to so
called Braggoritons47,48.

We first use the formalism developed in32 and investigate the
theoretical two dimensional case of a linear array of split rings placed
in a single mode waveguide. We observe that for specific periodicities
the hybridization and Bragg bandgaps mix into a single one which
presents at the same time a very large attenuation and a very large
bandwidth. We experimentally verify this property using a quasi-one
dimensional composite medium consisting of split-ring resonators
coupled with a transmission line. By mapping the near field of the
medium, we prove that the very wide and strongly attenuating band-
gap obtained results from Bragg scattering off the resonant unit cells
of the medium. We finally interpret this result as a consequence of
the dispersive nature of the unit cell, in analogy with the concept of
White Light Cavities (WLC)49,50.

Results
Numerical results. We start our study by simplifying the problem as
much as possible and to do so we consider a quasi-1D system
consisting of a linear chain of ‘‘atoms’’ enclosed in a single mode
waveguide. The ‘‘atoms’’ are split ring resonators (SRR) which are
illuminated by a transverse magnetic field and whose dimensions,
noted in Fig. 2(a), are L 5 0.12 m, e 5 0.01 m and eg 5 0.001 m.
Those resonators are placed in a waveguide made out of perfect
electric conductor walls whose height is much smaller than half a
wavelength, hence ensuring that it is single mode. We simulate with
a finite element method a single SRR placed in the center of
this waveguide which is several wavelengths long. Its complex
transmission T is plotted in Fig. 2(b). In our previously published
microscopic theory32 based on the transfer matrix formalism31, we
proved that the transmission of a single resonator is sufficient to
numerically calculate the dispersion relation k(a, f) of an infinite
1D chain of resonators (Fig. 2(c)). This can be done using the
following formula as long as the near field interactions between the
unit cells are negligible, which is the case here for any period a, as
demonstrated in32:

k a,fð Þ~ 1
a

arccos < 1
T fð Þ e{j2pfa=c

� �� �
ð1Þ

where T(f) is the complex transmission coefficient, f is the frequency,
a is the periodicity of the infinite chain and c is the speed of light
(Fig. 2(c)). The real part of k obtained in (1) gives the propagating
modes of the system, while its imaginary part corresponds to the
attenuation, which in this lossless system relates only to the
bandgaps. This is the quantity that is of interest for our study. To
understand how the lattice constant influences the dispersion
relation of a locally resonant quasi-1D metamaterial, we compute k
for a set of lattice constants a using (1). We display its imaginary part
as a function of the frequency and the periodicity (Fig. 2(d)). From
Fig. 2(d), we clearly observe that the dispersion displays a very
different behavior depending on the periodicity. The bandgaps
correspond to the yellow-orange colored parts of the map while
the purely propagative parts of the spectrum are the black ones.
For most periodicities, the system presents two bandgaps. The first
one starts at f0, is very asymmetric with a strong attenuation, it
corresponds to the hybridization bandgap33–35. The second one
appears at positions which depend on a (white lines), its shape is
symmetric and its attenuation is limited, it is related to Bragg
scattering3. However, we note some interesting periodicities where
the spectrum displays a single bandgap (red dashed lines) that is
much broader than the simple Bragg and hybridization bandgaps.
It corresponds to the points where the Bragg frequencies match the
local resonance one. This bandgap is very interesting since it is at the
same time very broad and attenuates strongly the waves, which is
unusual if compared to Bragg bandgaps of non-resonant scatterers. It
is expected to happen for the specific periodicities a0 5 nl0/2 (where
n is an integer and l0 is the wavelength in the empty waveguide) but
we observe a slight shift from this theoretical value due to the finite
quality factor of one resonator. We expect the theoretical value to be
reached for very high Q resonators. We note that as expected
intuitively, far from the resonance f0, the classical Bragg scattering
is not affected since the resonators act like non-dispersive scatterers.
To experimentally observe and investigate the very interesting
properties of the hybrid Bragg/hybridization bandgap enlightened
by the simulation results, we realize an experiment that mimics as
much as possible this simplified theoretical system.

Experimental results. We want to study a quasi-1D medium made
out of split rings which resembles the one studied before and hence
we opt for samples printed on an epoxy substrate sitting on a ground
plane. The single mode waveguide is experimentally realized by a 50
V microstrip transmission line (length 250 mm, width 3 mm) which
is near field coupled to SRRs (L 5 4.4 mm, eg 5 1 mm, e 5 0.9 mm).

Figure 2 | Simulated split ring resonator within PEC waveguide (a) and corresponding transmission coefficient (b). Infinite chain of the same SRR unit

cell with variable periodicity a (c) and corresponding dispersion relation as a function of a and the frequency (d).
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The coupling occurs because the magnetic field lines created by the
transmission line cross the SRR in the out-of-plane dimension,
providing the good symmetry for the SRR to be excited. The
strength of the coupling C can be tuned by adjusting the distance
between the line and the resonators. We choose the latter (d 5

0.5 mm) so that the SRRs couple much faster to the line than to
free space, hence mitigating radiation losses. Thus, the relaxation
of the SRRs occurs mostly through the microstrip. We stress here
that the split rings have no direct capacitive or inductive interaction
since they are distant enough. This setup ressembles Coupled
Resonator Optical Waveguides (CROWS)51,52 except for the fact
that the resonators are not very high Q ones and are coupled
through a transmission line rather than evanescently. The
transmission line is terminated on both sides with SMA type 50 V
connectors, and we measure its transmission coefficient S12 by
connecting it to a network analyzer. We first measure the
transmission of a sample which contains a single SRR (Fig. 3(a))
and find a resonance frequency f0 5 7.31 GHz that depends on the
geometrical dimensions of the SRR. This resonance presents a rather
symmetric profile because the set-up enables a symmetric coupling
between the SRRs and the incident wave. We stress here that the
strength of the asymmetry of the Fano coupling depends on the
geometry of the system32.

We then experimentally study one dimensional chains of N^20
SRRs depending on the periodicity. We fabricate and measure nine
samples differing only by the lattice constant. We display here the
results for five of them (a 5 8 mm, a 5 10.3 mm, a 5 11.1 mm, a 5

11.7 mm and a 5 15 mm). For all samples except for the middle one
(Fig. 3(b)–(c)–(e)–(f)), we clearly observe two bandgaps. This is
expected since the systems present both a local resonance through
the SRR and a periodicity. The hybridization bandgap (in orange) is
asymmetric and remains around the resonance frequency f0 while
varying the lattice constant, consistent with our expectations. The
second bandgap (in green) is relatively symmetric and is significantly
shifted with the periodicity. It corresponds to the expected Bragg

bandgap. Those two bandgaps arise from completely different phe-
nomena and display different characteristics, mostly in terms of
dispersion and group velocity39,43.

From Fig. 3(b)–(c)–(d), we see that the efficiency of the Bragg
bandgap varies with the periodicity. This can be explained by the
fact that the efficiency depends on the scattering cross section of the
resonators, which is a dispersive quantity that decreases as we drift
from f0. We now focus on the third sample (Fig. 3(d)). It is the hybrid
photonic crystal/metamaterial one, for which the Bragg frequency
matches f0. Instead of the two bandgaps from hybridization and
Bragg interferences, respectively asymmetric and symmetric, we
observe a single almost symmetric, broad and very efficient bandgap.
It presents a bandwidth at 23 dB of around 1.2 GHz, that is, 17% of
the central frequency. This experimentally confirms the behavior
observed in the simulation (Fig. 2(d)). In contrast with the numerical
simulation, this bandgap presents an almost symmetric shape that
arises from the likely symmetric transmission coefficient of a single
SRR. To understand the underlying physics of this specific broad and
efficient bandgap, we perform further experiments on the sample of
Fig 3(d).

From now on, we focus on the sample whose period a is almost the
value a0 that opens the single bandgap. In order to better understand
the nature of this special sample, we seek for the field distribution
above the line and the resonators. To that end, we map the magnetic
near field above the sample by means of a very small hand-made loop
probe placed 1 mm above it and mounted on a 2D translation stage.
For each spatial position, we measure the S12 coefficient between the
incident field that feeds the transmission line and the loop with a
network analyzer. The microstrip transmission line is terminated by
a 50 V load to avoid any reflection at the end of the line. The log-
arithmic map of the H-field (Fig. 4(a)) is given for three frequencies
within the single bandgap (dashed lines in Fig. 3(d)). On each scan,
we clearly see two regions where the transmitted field is maximal.
The first one corresponds to the transmission line and the second one
to the SRR array (see photo). On the latter, the field is maximal above

Figure 3 | Photos of the samples and normalized logarithmic transmission through the transmission line for a single SRR (a), a chain of N^20 SRRs with

periodicity a 5 8 mm (b), 10.3 mm (c) 11.1 mm (d), 11.7 mm (e) and 15 mm (f). Bragg bandgap (green), Hybridization bandgap (orange), mixed

bandgap (red).

www.nature.com/scientificreports
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each SRR, thus confirming their resonant behavior. As a signature of
the bandgap, we observe a clear decrease of the field along the line
from the input feed point (x 5 0) to the output point (x 5 L). The
faster decrease occurs naturally for f0, where the bandgap is the most
efficient (Fig. 4(b)).

Discussion
We further show an enlargement of the map on a couple of SRRs and
its corresponding part of the transmission line at f0 in Fig. 5(a). We
note that the SRR and the transmission line are both excited.
Interestingly, the maximum of the field above the microstrip is
shifted from the SRR and occurs somewhere between the two reso-
nators. The profiles of the H-field above the SRR (black) and trans-
mission line (red) (Fig. 5(b)) show that the field above the TL seems
to be trapped within two SRRs, as it would be in a cavity made out of
two potential barriers, except that in our case, the potential V is
dispersive due to the resonant behavior of the SRR. This result
enables us to explain the physics of this interesting phenomenon
while comparing it to the concept of WLC50. It is well known that
cavities present resonant frequencies that depend on their length.
The resonance occurs for frequencies that lead to a round trip that
ensures a 2p phase accumulation within the cavity. The cavity band-
width, that is the frequency domain around the resonance on which
the constructive interferences occur, is limited by the strength of the
potential V of the walls of the cavity. Indeed, the higher V, the higher
the number of round trips of the waves in the cavity and thus the
larger the number of wave periods interfering. This makes the inter-
ference condition very sensitive to any phase difference between the
multiply scattered waves and hence leads to a smaller bandwidth, or
equivalently to a higher Q-factor. The concept of WLC has been
proposed a few years ago to overcome this limitation49,50. It enables
the bandwidth of the cavity to be significantly increased. This can be
achieved by filling the latter with an appropriate dispersive medium

or by using chirped gratings. Owing to their dispersive nature, both
systems bring an extra phase when the wave travels in the cavity
which maintains the constructive interference condition way beyond
the purely geometric resonance of normal cavities when the
frequency of the travelling wave is shifted off the resonance. In ana-
logy with cavities, photonic crystals based on high potential barriers
present bandgaps which are very efficient, but are accordingly nar-
row. In our system, the spectrum exhibits a single a much broader
bandgap compared to the Bragg bandgap that would be opened in an
equivalently efficient but non resonant system. That means that the
destructive interference between the directly transmitted wave and
the wave transmitted after a round trip travel (Fig. 1(a)) can be
extended to a large part of the spectrum, far beyond the geometric
Bragg condition. Indeed, equivalently to WLC, an extra phase is
brought by the resonators which present a dispersive response.
The total phase W of a round trip travel includes the travelling phase
Wprop in the non-dispersive medium and the phase resulting from
twice the reflection off the resonators, which is 2*Wr where Wr is the
phase of the reflection coefficient R of one resonator. Upon each
reflection the wave is solely coming from the resonator, and hence
it displays the same phase shift as the latter around the resonance,
that is that it goes from 0 to 2p around the resonance, which com-
pensates for the propagating phase as shown in Fig. 5(d). Naturally,
the lower the Q-factor of the resonator, the larger the frequency range
where this effect occurs. The physics underlying the concept of WLC
is hence exactly the same that explains the properties of locally res-
onant metamaterials organized at the Bragg period. The latter can be
seen as simple Bragg bandgaps with dispersive scatterers. The differ-
ence lies in the fact that in our case the compensating dispersion is
brought by the scattering walls and not by filling the cavity with a
dispersive medium or by using chirped gratings and that a destruct-
ive (bandgap) and not constructive (cavity) interference condition is
maintained. It is worth noting that the concept studied here permits a

Figure 4 | (a) Photo of the sample a 5 a0 along with the corresponding map of logarithmic H-field for f2 5 6.93 GHz (up), f0 5 7.31 GHz (middle) and

f1 5 7.69 GHz (down). (b) profiles of the logarithmic decay of the H-field along the transmission line for the three frequencies.
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new type of WLC to be designed as well. Indeed, using simply two
resonators instead of a linear array as here results in a Fabry-Perot
with dispersive mirrors.

Finally we want to point out that this approach is valid as long as
the resonators present no near field coupling, which should be the
case for any resonator constituting of a metamaterial when consider-
ing periods around l0/2 involved here. It is clear for instance that
using lower Q-factor resonators will result in slightly less efficient yet
even much wider bandgaps. Even though we only considered the
simplest case of a one dimensional medium, the concepts in our
approach and the main results should be valid in 2D and 3D. Yet
the physics associated should be even more interesting since for those
dimensionalities both the unit cell symmetry of the medium and the
scattering cross-section of the resonators will play an important role
in the dispersive properties of the crystals.

Methods
The numerical results were obtained using the finite elements method software
Comsol Multiphysics. We simulated using the Transverse Magnetic solver only one
split ring resonator in a single mode perfect electric conductor waveguide. The
complex transmission coefficient of a single resonator corrected by the propagation
term was obtained by normalizing the response of a single resonator in a waveguide
by that of an empty waveguide. The complex propagation constant of an infinite
medium was then calculated using Equation 1 which was derived in the
Supplementary Information of32 using the transmission matrix approach.

Concerning the expriments, all the samples were printed on epoxy substrates using
standart circuit type lithography processes. SMA (SubMiniature version A) con-
nectors were soldered at each side of the samples in order to plug them to the network
analyzer or to an impedance matching load. The network analyser (Agilent N5230C
PNA) was set to its maximum number of points, 20000, and we used a reasonable

power output of 5 dBm. No averaging was used since the dynamic of the measure-
ments was very good, and the sweeping time was set to 20 ms. All the transmission
measurements were obtained by measuring the S parameters between the two ports of
the network analyser. The near-field measurements of the sample at the Bragg con-
dition were realized by matching it on one side using a 50 Ohms load while the other
side was connected to port 1 of the analyser. The port 2 of the analyser was connected
to a small magnetic near field probe, i.e., a 2 mm diameter loop realized using the core
of a SMA coaxial cable. We performed 40 by 200 measurements using this small
magnetic loop 1 mm on top of the sample measuring 5 cm by 20 cm. The maps of
Figures 4 and 5 are obtained by filtering spatially the data to remove the high fre-
quency spatial noise, and, oversampled in order to smooth it.
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