
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Computers in Biology and Medicine 149 (2022) 106070

Available online 1 September 2022
0010-4825/© 2022 Elsevier Ltd. All rights reserved.

A comprehensive review of COVID-19 detection techniques: From 
laboratory systems to wearable devices 

Khalid Alyafei a, Rashid Ahmed a,b, Farhan Fuad Abir c, Muhammad E.H. Chowdhury c,*, 
Khalid Kamal Naji d,** 

a Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, 2713, Qatar 
b Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, 10250, AJK, Pakistan 
c Department of Electrical Engineering, Qatar University, Doha, 2713, Qatar 
d College of Engineering, Qatar University, Doha, 2713, Qatar   

A R T I C L E  I N F O   

Keywords: 
Asymptomatic 
COVID-19 
Screening 
Wearable systems 
Machine learning 

A B S T R A C T   

Screening of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among symptomatic and asymp-
tomatic patients offers unique opportunities for curtailing the transmission of novel coronavirus disease 2019, 
commonly known as COVID-19. Molecular diagnostic techniques, namely reverse transcription loop-mediated 
isothermal amplification (RT-LAMP), reverse transcription-polymerase chain reaction (RT-PCR), and immuno-
assays, have been frequently used to identify COVID-19 infection. Although these techniques are robust and 
accurate, mass testing of potentially infected individuals has shown difficulty due to the resources, manpower, 
and costs it entails. Moreover, as these techniques are typically used to test symptomatic patients, healthcare 
systems have failed to screen asymptomatic patients, whereas the spread of COVID-19 by these asymptomatic 
individuals has turned into a crucial problem. Besides, respiratory infections or cardiovascular conditions 
generally demonstrate changes in physiological parameters, namely body temperature, blood pressure, and 
breathing rate, which signifies the onset of diseases. Such vitals monitoring systems have shown promising re-
sults employing artificial intelligence (AI). Therefore, the potential use of wearable devices for monitoring 
asymptomatic COVID-19 individuals has recently been explored. This work summarizes the efforts that have 
been made in the domains from laboratory-based testing to asymptomatic patient monitoring via wearable 
systems.   

1. Introduction 

Since the first detection, the novel coronavirus disease 2019, other-
wise known as COVID-19 has posed a dire threat worldwide, infecting 
over 500 million people so far, with 6.19 million causalities, up until 
April 17, 2022 [1]. Healthcare facilities have been overwhelmed by the 
sudden rise of COVID-19 patients, who need proper isolations to prevent 
the virus from spreading to healthy people. However, due to the high 
air-born transmissibility of COVID-19, along with its asymptomatic viral 
shedding, the healthcare systems have faced unprecedented challenges. 
Nevertheless, healthcare professionals have tried their best to manage 
the crises with limited facilities. Overall, providing quarantine and 
essential healthcare facilities to a large number of infected individuals 
has become one of the major challenges. Hence, extensive research has 

been carried out to tackle the challenges, especially with the emergence 
of new variants. 

COVID-19 is currently detected using the reverse transcription- 
polymerase chain reaction (RT-PCR), which can detect the severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogen in 
patients 3 days after infection [2]. However, RT-PCR-based detection is 
challenged by its limited capacity in that it depends upon a laboratory to 
test the samples [3]. Besides, RT-PCR tests are rarely able to identify 
pre-symptomatic patients and have difficulties identifying early-stage 
patients due to the sensitivity challenges of the ribonucleic acid (RNA) 
copy number [4]. Another reliable detection method is reverse tran-
scription loop-mediated isothermal amplification (RT-LAMP). Yan et al. 
developed an RT-LAMP assay that targeted the S gene and ORF1a gene 
with a 100% detection sensitivity and specificity for 130 clinical samples 
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in just about 30 min [5]. However, processing the samples requires 
costly reagents and laboratory equipment. On the other hand, clustered 
regularly interspaced short palindromic repeats (CRISPR) and 
CRISPR-associated (CAS) systems can detect the pathogen within 50 min 
[6]; however, the reduced sensitivity of this assay has been a major 
hindrance in the mass-scale application. The other detection methods, 
such as immunoassay and biosensor-based identification, have also 
faced severe issues due to low throughput, inaccessibility, and limited 
scope in analyzing large populations at once [7,8]. 

Due to the infectious nature, early identification of COVID-19 
infection can help to reduce transmission and provide the patients 
with the right treatment to avoid further complications. Thus, inex-
pensive, faster, and more accessible mass screening methods are ur-
gently required to identify COVID-19 patients in real-time to prevent the 
transmission of the virus. An intelligent identification and monitoring 
system using wearable devices for earlier identification of asymptomatic 
COVID-19 infection is considered a top-tier solution for containing the 
transmission. Numerous well-developed commercial wearable devices 
are now available, namely the Apple Watch [9], Fitbit [10], Zephyr 
BioHarness [11], WHOOP Strap [12], BioButton [13], Garmin [14], and 
smart ring [15]. Most of these have the functionality to measure heart 
rhythm rate, sleeping hours, steps, temperature, pure body temperature, 
and arterial oxygen saturation [16]. Therefore, using these devices to 
design an intelligent monitoring and detection system can be a 
cost-effective and faster solution for screening asymptomatic COVID-19 
patients. 

The primary objective of this work is to provide a comprehensive 

overview of different COVID-19 detection systems and their effective-
ness in different scenarios. In this review, we start with a history of 
SARS-CoV-2 and then discuss contemporary molecular biology detec-
tion techniques used for screening symptomatic COVID-19 patients, 
focusing on their analysis strategies as well as their pros and cons. We 
also reviewed currently available intelligent detection and monitoring 
systems for early detection of asymptomatic COVID-19 patients using 
real-time vital data captured by wearable devices. This work is aimed to 
assist the researchers in exploring different COVID-19 screening 
methods and gaining a better understanding of the prospects and chal-
lenges as well. 

2. Origin of SARS-CoV-2 

The first case of SARS-CoV-2 was reported in Wuhan, Hubei Prov-
ince, China, in December 2019 [17], and it took a few weeks for 
SARS-CoV-2 to reach most countries of the world due to travel and 
community interactions [18]. Initially, a sudden outbreak of pneumonia 
in Wuhan was documented in the World Health Organization (WHO) 
China office in December 2019 [19]. The cause of the disease was an 
unknown and unidentified pathogen among 44 patients, 11 of whom 
were in severe condition on January 5, 2020. Five days later, on 10 
January, the WHO announced the first guideline for the new coronavirus 
[20,21]. 

The novel strain of the coronavirus was named SARS-CoV-2 in 
February 2020 based on phylogenetic test criteria [22]. The sequencing 
of the genome of this virus showed that the SARS-CoV-2 has 

Fig. 1. Transmission of coronavirus by crossing the species barrier [26].  
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approximately 30,000 bases [23,24] and belongs to Nidovirales in the 
family Coronaviridae. Furthermore, based on phylogenetic clustering, 
coronaviruses have been classified into alpha, beta, gamma, and 
delta-coronaviruses [25]. It was established that alpha and 
beta-coronaviruses mainly infect mammals, including humans, while 
gamma and delta-coronaviruses infect birds (Fig. 1) [26]. Moreover, the 
family of coronaviruses, such as Severe Acute Respiratory Syndrome 
Coronavirus (SARS-CoV) and the Middle East Respiratory Syndrome 
Coronavirus (MERS-CoV) can cross the species barrier and lead to 
serious human diseases [26]. Hence, it has been considered the most 
likely scenario for SARS-CoV-2 as well. 

The rapid spread of COVID-19 has affected people all over the world, 
with the number of people infected by the novel coronavirus increasing 
daily. After the genomic sequencing of SARS-CoV-2 [27], the WHO 
declared the disease as “the first 21st-century pandemic” on March 11, 
2020 due to its rapid global infection level [17,18]. On 13 January, 
Thailand reported the first case outside China [28], and by the end of the 
month, the WHO had reported 7818 global in 18 countries, with 170 
casualties in China [18]. In less than six months from the first detection, 
SARS-CoV-2 went from being an unknown pathogen to becoming 
prevalent in practically all countries worldwide. Some of these countries 
suffered a second wave, and many countries, including India, Russia, 
Brazil, and several African nations are still on their third wave [29–31]. 
On February 11, 2020, WHO named the etiologic agent of the disease 
SARS-CoV-2 [32], which is in the same family of coronaviruses as was 
reported for MERS in 2012 and the earlier strain of SARS in 2003. The 
number of causalities from COVID-19 appeared much higher than with 
earlier coronaviruses due to its fast spread and pathogenicity [29]. The 
primary reason for the large-scale prevalence of SARS-CoV-2 trans-
mission is due to the transmission of active viral particles from asymp-
tomatic patients, who act as a reservoir for the dispersal of this disease 
on an exponential scale [33]. 

3. Laboratory-based detection methods 

The detection of symptomatic COVID-19 patients was carried out 
with different molecular biology techniques but the use of RT-PCR 
remained on top priority in clinics and labs since the emergence of 
this disease. Other laboratory-based SARS-CoV-2 detection approaches 
were useful too for their high accuracy in the detection of COVID-19 
patients, however, based on the available resources and testing time, 
all other methods except RT-PCR have been hardly used for mass testing. 

3.1. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 

Reverse transcription-polymerase chain reaction (RT-PCR) is the 
most popular molecular-based technique to detect SARS-CoV-2 RNA in 
samples from patients with compatible signs and symptoms (dry cough, 
fatigue, fever, lymphopenia, pneumonia, myalgia, dyspnea, sneezing, 
and chills) [34]. This technique can detect a few copies of RNA from 
clinical and/or environmental samples as it is highly sensitive and has 
been proven to be effective for pathogen detection [35]. Due to better 
sensitivity and accuracy, RT-PCR is a well-established assay for detect-
ing SARS-CoV-2. Different testing laboratories designed and developed 
this test, and there have been several modifications (Table 1) [36], many 
of which have been approved by the WHO for the laboratory testing of 
samples from suspected COVID-19 patients. 

RT-PCR became the benchmark for the diagnosis of COVID-19 pa-
tients, enabling researchers to identify COVID-19-positive patients who 
had been recently discharged from hospitals [37]. However, there have 
been controversies about the chemicals, procedures, and analytical 
techniques used in RT-PCR assays that have given rise to doubts over the 
accuracy and reliability of using RT-PCR to test for SARS-CoV-2. RT-PCR 
assay shows a cycle threshold amplification curve value which manifests 
that RNA is amplified (detectable indicator) and this is referred to as the 
quantitative cycle (Ct) [34,35]. A Ct value ranging between 25 and 28 is 

considered suitable and a Ct value greater than 32 is not considered 
accurate in terms of the nonspecific amplification of the target RNA. A 
clinical sample that has a relatively lower Ct value shows a higher 
RNA/DNA copy number and it is thus considered positive, demon-
strating that there is an inverse correlation between the Ct value and the 
DNA/RNA copy number in the template of a given sample. The Ct value 
of the RT-PCR reaction varies considerably based on the type of speci-
mens, quality of the sample, the protocol followed by a technician, and 
the thermal cycler brand or model itself [36]. 

It is worth explaining here that RT-PCR-based testing fails to detect 
RNA from the collected samples from patients that have well-known 
COVID-19 symptoms. Sometimes, a person can be SARS-CoV-2 posi-
tive by RT-PCR-based test albeit he/she does not depict any COVID-19 
symptoms. This means RT-PCR results can be false positive or false 
negative [38]. In such circumstances, two consecutive negative test re-
sults are required to declare that person is not infected with the virus. 
The accuracy and reliability of the results depend upon several factors 
and especially on the expertise of the lab technician and the quality of 
reagents (RT-PCR kits) used in the reaction. As far as the quality of 
different RT-PCR is concerned, a study was carried out by Puck et al. to 
validate the usefulness of reagents of different company RT-PCR assay 
kits. The team evaluated the analytical performance of qRT-PCR kits 
purchased from seven different companies, including KH Medical, BGI, 
Seegene, R-Biopharm AG, Altona Diagnostics, CerTest Biotec, and 
Primer Design, to demonstrate their effectiveness [39]. They showed 
that all the kits used in this study are reliable enough to be used by 
experienced diagnostic laboratories for the daily diagnosis of COVID-19 
patients. 

3.2. Reverse Transcriptase-Loop Mediated Amplification (RT-LAMP) 

The RT-PCR reaction-based detection of SARS-CoV-2 is compara-
tively accurate and highly sensitive, but the prolonged testing time (~2 
h) means that there is a need for a similar analytical platform for the 

Table 1 
RT-qPCR assays commonly used for COVID-19 diagnosis.  

Institute Target Primer/Probe# Reference 

Charite E E_Sarbeco_F Corman et al. (2020)  
E_Sarbeco_R  
E_Sarbeco_P1 

RdRp RdRp_SARSr-F  
RdRp_SARSr-R  
RdRp_SARSr-P1  
RdRp_SARSr-P2 

HKU N HKU-N-F Chu et al. (2020)  
HKU-N-R  
HKU-N-P 

Nsp14 HKU-ORF1-F  
HKU-ORF1-R  
HKU-ORF1-P 

China CDC N CCDC-N-F China CDC (2020)  
CCDC-N-R  
CCDC-N-P 

nsp10 CCDC-ORF1-F  
CCDC-ORF1-R  
CCDC-ORF1-P 

US CDC N 2019-nCoV_N1–F CDC, 2020  
2019-nCoV_N1-R  
2019-nCoV_N1–P 

N 2019-nCoV_N2–F  
2019-nCoV_N2-R  
2019-nCoV_N2–P 

N 2019-nCoV_N3–F  
2019-nCoV_N3-R  
2019-nCoV_N3–P 

Human RNase P RP-F  
RP-R  
RP-P 

#: Primer/Probe sequences not included. Adapted from Vogels et al. [36]. 
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mass-scale monitoring of COVID-19-positive and negative cases [40]. It 
could hereby be replaced by reverse transcriptase loop-mediated 
isothermal amplification (RT-LAMP) reaction testing, which can 
amplify RNA/DNA in a very short time [41,42]. Owing to its robustness 
and accuracy, this technique is largely used for the detection of patho-
gens, especially viruses, bacteria, or malaria [43–45]. The difference 
between the RT-LAMP reaction and RT-PCR is that it occurs at a uniform 
temperature and requires 4–6 primers, giving it high accuracy and 
improved efficacy [42]. The reaction is usually performed at 60–65 ◦C 
by adding four primers [41] and through the subsequent addition of 
two-loop primers, the reaction time can be further reduced to half [46]. 
The use of WarmStart RTx in the RT-LAMP reaction allows reverse 
transcription in a single step-reaction [47]. Since RNA-CoV-2 is a 30 kb 
[48] long reverse transcription virus, using a single reverse transcription 
(RT) and LAMP reaction tremendously reduces the reaction time. In 
addition, the reaction can be performed using unpurified RNA, which 
also contributes to the fast processing of samples and the detection of the 
virus [47]. 

Due to the high accuracy and fast turnout, the RT-LAMP reaction has 
been used by many researchers for testing the clinical samples from 
suspected individuals. For instance, Huang et al. detected SARs-CoV-2 
using RT-LAMP by considering that it requires a constant temperature 
(65 ◦C) and can be completed in only 20 min. The team found that RT- 
LAMP can detect 80 copies of viral RNA and the results can be visualized 
by a simple color-change confirming viral RNA amplification in the re-
action [47]. In addition, Thi et al. developed an RT-LAMP assay without 
using a prior RNA isolation step from clinical samples and assay results 
showed high specificity (99.50%); however, very reduced sensitivity 
(86% for Ct < 30) compared to RT-PCR [49]. Jiang et al. also recom-
mended the use of RT-LAMP by performing a rapid RT-LAMP reaction, 
concluding that this assay could considerably increase laboratory testing 
capacities by processing twice the clinical samples compared to 
qRT-PCR. Thus, this reaction can potentially replace RT-PCR in critical 
situations, especially when sample quantity is very high and there is a 
need to reduce the cost of the assay as it does not require a costly 
thermocycler [50]. 

3.3. CRISPR-Cas system 

Clustered regularly interspaced short palindromic repeats (CRISPR) 
is a promising technology for gene editing and is used for trimming, 
cutting, replacing, or adding DNA sequences. Due to their functionality, 
CRISPR/Cas proteins are also termed “molecular scissors” [51]. In 
recent years, CRISPR and its associated proteins, especially Cas12a and 
Cas13 have been applied for diagnostics purposes for their ability to 
recognize specific nucleic acid sequences. The proteins used in CRISPR 
are combined with fluorophore quencher DNA samples which generate a 
signal amplification once Cas13 and Cas12a bind to the target sequences 

during the process, guided by RNA (GRNA) sequences. For instance, in 
one study, Cas12a or Cas13 was used to predict the sequence of 
COVID-19, and then the reporter molecule was cleaved to confirm that 
the samples were contaminated with the virus [52]. CRISPR technology 
is used for the detection of SARS-CoV-2 RNA when this technology is 
combined with other approaches such as recombinase polymerase 
amplification (RPA), RT-LAMP, and RT-PCR reaction. During the reac-
tion, the Cas12 protein cuts the DNA into two strands. Furthermore, 
Cas12a along with crRNA binds with the target sequences and cleaves 
the DNA into single-sanded DNA (ssDNA) [53]. For instance, Huang 
et al. used the RT-PCR/CRISPR-Cas12a fluorescence diagnostics method 
which completed the detection of viral RNA in three steps, namely RNA 
extraction, target amplification, and fluorescent sensing – termed the 
CRISPR-FDS method (Fig. 2) [54]. This method was found immensely 
useful in terms of its sensitivity as it can detect five copies of RNA and 
can be completed within 50 min. Chiu et al. used another highly sensi-
tive, robust, and mobile CRISPR-Cas12 technique for detecting SARS 
CoV-2. The reaction includes the RT-LAMP amplification of the target 
SARS-CoV-2 RNA within 20–30 min for the samples collected in the form 
of respiratory swabs. The reaction involved cleavage of target sequences 
by Cas12 initially for 10 min and then RT is performed at 62 ◦C with the 
use of the human RNase-P gene, N genes, and E gene [55]. 

One of the uniqueness of CRISPR-based RNA diagnostic techniques is 
that this platform has solved the sensitivity challenges faced by other 
molecular biology techniques. For example, CRISPR/Cas 13a platform 
developed by Zhang et al. displayed one million-fold improved sensi-
tivity resulting in solving the issues of detection of Zika virus (ZIKV) or 
dengue virus from very low quality at a level of 1 pc per microliter [56]. 
Zhang et al. used SHERLOCK and the CRISPR-Cas13 method for 
detecting the RNA extracted from SARS-CoV-2 and found that this 
method can detect 10–100 copies of RNA per microliter. Furthermore, it 
was established that this approach is easy to use, highly sensitive, and 
robust, as it needs 1 h to complete [57]. 

3.4. Immunoassays for Point of Care testing (POCT) 

POCT refers to the antigen and antibody-based detection of SARS- 
CoV-2 [58,59]. The SARS-CoV-2 antigen is present when a person is 
infected, and antigen-based detection is less sensitive compared to 
immunoassay techniques [60]. On the other hand, the antibody-based 
detection of SARS- CoV-2 relies on the immune response and is a 
much better method for detecting infection [61]. However, like other 
molecular biology techniques, it is also susceptible to false negatives. 
The screening of antibodies mainly involves the detection of Immuno-
globulin M (IgM) and Immunoglobulin G (IgG). Once SARS-CoV-2 enters 
the body, it multiplies over one week; after a lapse of 1–3 weeks or more 
[62], the immune system responds to the viral antigens and starts 
generating adequate amounts of IgG antibodies. The IgG concentration 

Fig. 2. CRISPR-based diagnostic system using fluorescence for the detection of SARS-CoV-2. (a) Schematic chart of a CRISPR-FDS assay to detect SARS-CoV-2 RNA; 
(b) SARS-CoV-2 genomic map of COVID-19 CRISPR-FDS targeted sequences [54]. 
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in the serum is much higher than that of IgM after a SARS-CoV-2 
infection [63]. Studies have proved that immunoassays are very effec-
tive methods that rely on antibody production and serve as alternative 
options for detecting SARS-CoV-2 at different phases of viral infection 
[64]. 

Based on various identification methodologies, immunoassays are 
categorized into chemiluminescence (enzyme-associated immunosor-
bent assay), immunosorbent enzyme assay (ELISA), and colloidal gold/ 
immunofluorescence (lateral immunoassay, LFA). Lateral immunoas-
says can be performed with a very short turnaround of 10–15 min, 
making them time and cost-efficient. On the other hand, the chem-
iluminescence and ELISA techniques are more specific and sensitive, 
although they are time-consuming as these require complex protocols 
for detecting SARS-CoV-2 [65,66]. 

3.4.1. Lateral flow-based tests 
Benjamin D. Grant et al. used a half-strip lateral flow assay method 

that was developed for POCT SARS-CoV-2 antigen detection [67] with a 
detection limit of 0.65 ng mL− 1 recombinant antigen. The pH, antigen 
concentration, and various other lateral flow immunoassay strip pa-
rameters were optimized by Wen et al., producing specific and stable 
detection results for SARS-CoV-2 IgG and IgM antibodies [68]. In com-
parison to the RT-PCR results, the identification of IgM was 100% and 
93.3% specific. Examining clinical samples, Zhenhua Chen et al. used 
the fluorescent reporter of lanthanide-doped polystyrene nanoparticles 
(LNPs) and detected anti-SARs-CoV-2 IgG. The results were consistent 
with those of RT-PCR [69]. Fig. 3 illustrates the assays of the above-
mentioned studies. 

LFA has been widely used to detect COVID-19 as it uses low-cost 
equipment and has fewer constraints in terms of environmental re-
quirements. It can be carried in a small package and used for on-spot 
testing, which expands its usability. However, any contaminant can 
sabotage the results since the samples are tested without any interme-
diate processing. It is, therefore, necessary that reagent formulations are 
adjusted to strengthen the anti-interference abilities to optimize the 
processing of band materials so that the filtering ability of the interfering 
substances can be improved. 

3.4.2. The enzyme-linked immunosorbent assay (ELISA)-based tests 
The ELISA microfluidic sandwich system for SARS-CoV-2 antibodies 

was proposed by Siddhartha Tripathi and Ami Agrawal, who separated 
plasma from blood using a T-shaped microchannel on a microfluidic 
chip [70]. SARS-CoV-2 ELISA plasma was used to detect the virus. The 
testing involved the isolation of about 10 μL of plasma from whole 
human blood within approximately 3 min. Meanwhile, Xudong Fan’s 
group developed an ELISA microfluidic method to measure SARS-CoV-2 
quantitatively using serum IgG and antigen-S viral protein. In this study, 
a 12-channel capillary sensor array was used with the ELISA reactor, and 
the microfluidic chip was operated using an automated system [71,72]. 
The detection limits were tested with humanized chimeric SARS-CoV-2 
antibodies, with 2 ng mL− 1 a limit of detection (LOD). 

A capillary flow assay (MCFA) platform was developed by Sthitodhi 
Ghosh et al. using an MCFA chip, an optical sensor, and a smartphone. 
This platform enables ELISA detection based on chemiluminescence. 
The system has an on-chip capillary pump and the sample is driven 
amidst the channels and detection areas by capillary force [73]. The 
ELISA method can identify the SARS-CoV-2 pathogen quantitatively and 
shows better performance compared to the LFA procedure. Moreover, it 
has lower requirements for detection environment than the detection 
methods using nucleic acid. Due to the complex operating steps, how-
ever, many researchers have managed to achieve only parts of ELISA’s 
operation or chemiluminescence using microfluidic methods. Further-
more, few have achieved POCT with ELISA or chemiluminescence as a 
fully automated process. 

3.5. Biosensor-based detection 

Besides the above methods, rapid and sensitive techniques for 
identifying SARS-CoV-2 as an alternative to POCT systems are also 
required [58]. Recently, the potential of miniature biosensors as analytic 
platforms has been demonstrated based on their unique characteristics 
including sensitivity, reliability, and rapid diagnoses [74]. A biosensor 
can determine the presence of an intruder object and can provide 
feedback upon detection, generally, in form of an optical or electrical 
signal. The main three components of a biosensor are a bioreceptor, a 

Fig. 3. Lateral flow assays. (a) Structure and detection process of the LFIA strip [68]. (c) Design of developed assay by Chen et al. [69].  
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transducer, and a signal amplifier or analyzer. The continued advance-
ments in the field of nanoscience have improved sample-to-response 
time for devices with a greater signal-to-noise ratio. Biosensor-based 
pathogen detection techniques have shown promise for COVID-19 
detection and can be a viable alternative to the current sensors in 
wearable devices [75]. 

3.5.1. Plasmonic biosensors 
Plasmonic biosensors are significant and crucial POCT tools based on 

Localized Surface Plasmon Resonance (LSPR) [76]. In combination with 
the surface functionalization procedures, plasmonic nanostructures can 
enable fast and real-time reagent identification even in ultra-low con-
centrations. In the field of materials science, developments have now 
enabled nanomaterials with tunable plasmonic properties and sensitiv-
ities to be precisely controlled [77]. Sophisticated nano-fabrication 
methodologies have opened opportunities for engineering nanometric 
arrays on different substrates as plasmonic detecting equipment [78]. 
Moitra et al. presented a gold-nanoparticles (AuNPs) colorimetric test 
that was tailored to caps of Thiol-modified oligonucleotides (ASOs). This 
allows the N gene (nucleocapsid phosphoprotein) to be specifically and 
quickly (within 10 min) detected in samples infected by SARS-CoV-2 by 
spectral resonance changes [79]. Interestingly, RNaseH was also inte-
grated by the authors to split the RNA-DNA hybrid strand into a 
noticeable naked-eye test that plays a significant role in bordering 
among AuNPs. Qiu et al. used the combinational mechanisms of plas-
monic photothermal and LSPR sensing through functionalization with 
complementary DNA receptors [80]. Based on earlier investigations, 
Murugan et al. presented a plasmonic biosensor technique based on 
fiber-optic absorbance for using directly on saliva to provide a 1-stage 
wash-free monitoring platform for SARS-CoV-2 [81]. The authors 
considered two different types of biosensors as a conceptual idea to 
identify the SARS-CoV-2 N protein within 15 min, which can meet the 
current urgent demand for quick and low-cost diagnosis. Funari et al. 
devised an LSPR-based microfluidic chip to identify SARS-CoV-2 anti-
bodies [82]. During the antibody-antigen attachment, the highest 
resonant wavelength shift from the gold nano spikes is encountered. 
With the limit of detection of around 0.08 ng mL− 1, the result can be 
obtained within 30 min (per 0.5 pM), making it easier, cheaper, and 
faster to carry out a quantitative SARS-CoV-2 diagnosis. 

3.5.2. Electromechanical biosensors 
Due to the ease of miniaturization, low cost, and simplicity, elec-

tromechanical biosensors have recently attracted attention. Generally, a 
customized electrode is used in such sensors to act as the receptor or 
transducer for precise and real-time monitoring of the target. With the 
presence of the analyte of interest, a signal is generated in the sensing 
electrode [83]. Tripathy et al. proposed an electrodeposited AuNP-based 
electrical biosensor for detecting COVID-19 [84]. 

Researchers have recently also investigated alternative electro-
chemical solutions that further enhance the detection capacity and pave 
the way for reductions in operation or overall costs. Md. Ali and others 
created a 3D reduced graphene oxide electrode using an advanced 3D 
printing method and integrated it as an electrochemical sensor with a 
microflow device [85]. The viral antigens used to detect sensitive anti-
bodies specific to SARS-CoV-2 through such 3D electrodes have a 
detection limit as low as 2.8-10− 15 M. To achieve a miniature electro-
chemical sensor, Fabiani et al. applied magnet beads to a black carbon 
electrode [86]. The external magnetic field could offer benefits thanks to 
these magnetic beads - removing the wash step while preserving supe-
rior characteristics such as valid and accurate detection and promoting 
the pre-concentration process, etc. Two other studies have recently also 
introduced an electrochemical sensor substratum because of the benefits 
of low cost and ease of handling and disposal. Using printed electrode 
patterns on paper, the electric chemicals device proposed by Yakoh et al. 
can identify the antibodies of SARS-CoV-2 in 30 min [87]. The 
paper-based sensor is a potential POCT platform with acceptable 

sensitivity and specificity and particularly has a uniquely disposable, 
portable, and cost-effective nature. Moreover, Alafeef et al. proposed a 
device for nucleic acid testing by immobilizing the samples on a 
paper-based platform [88]. By meticulously designing the essential 
sensing materials, namely gold nanoparticles, the sensor improves 
sensitivity and output signals by 5 min. The sensor can also identify the 
targets within 585.4 μL− 1 to 5854 μL− 1 copies per μL range with an 
initial infected validation (copies per μL)− 1, revealing its capacity to 
prove the progression of SARS-CoV-2 infection. A convenient data 
transmission system to facilitate fast results for end-users and at-home 
diagnostics is another key point for this detection mode. The 
smartphone-based detection of SARS-CoV-2 RNA was shown to be 
feasible by Zhao et al. [89]. Such a “plug-and-play” technique would 
provide end-users with a portable channel to easily evaluate the test 
results. Moreover, a recent study used mass graphene electrodes and 
combined a wireless module with the electrochemistry platform to 
rapidly identify COVID-19 [90]. This system is called SARS-CoV-2 
RapidPlex and its low-cost detection along with high sensitivity makes 
it a potential home-testing system. 

4. Non-laboratory-based detection methods 

The understanding of the exact epidemiology of the disease and its 
subsequent impact on humans is realized through the current SARS- 
CoV-2 outbreak [91]. To gain complete control over this disease, it is 
crucial to achieve the early detection of viral infection [92]. The third 
wave of the COVID-19 pandemic has brought some unprecedented 
challenges hindering the timely data collection and dissemination, 
thereby hampering the efforts of public health planners and clinical 
managerial teams. Data from asymptomatic COVID-19 patients can be 
used for subclinical presentations and the planning of immediate steps 
before the symptoms manifest. It will also help in the accurate estima-
tion of disease occurrence and the management of risk mitigation stra-
tegies, quarantine timing, and testing resources. To aid the screening of 
COVID-19 patients, the following asymptomatic detection methods have 
been used globally. 

4.1. Smartwatch and wearable device-based COVID-19 detection 

During the COVID-19 pandemic, hospital systems around the globe 
faced severe limitations in laboratory testing materials. It was very hard 
to cope with the laboratory testing of the enormous patient volume in 
the most populated areas during the outbreak of the first two waves of 
COVID-19. Moreover, some tests are highly sensitive and take a signif-
icant amount of time to process. In this scenario, the consumer-wearable 
devices, namely smartwatches and fitness trackers provided the perfect 
opportunity to monitor the baseline health parameters and detect any 
significant deviation to alert about a possible infection [16,93–95]. 
Among such wearable devices, smartwatches and activity trackers have 
become very common for daily use in developed and developing coun-
tries, which can characterize the resting heart rate (RHR) [96] and sleep 
[97] baselines of each user and thus, can monitor any fluctuations in 
these parameters [98]. 

Mishra et al. designed an elaborated study on a cohort of around 
5300 volunteers [99]. They were registered in their study via a mobile 
app named MyPHD, which was developed by the team as well. Among 
this large cohort, there were several types of commercially available 
smartwatches (Fitbit, Apple Watch, Garmin, and others) users. The app 
synced health data, namely heart rate, steps count, and sleep duration, 
from their smartwatch and the users were prompted to provide any in-
formation about their symptoms, symptom onset date, diagnosis date, 
along with demographic information. Among the users, Fitbit consti-
tuted the highest percentage, and hence, they led their analysis based on 
32 COVID-19 positive Fitbit users and found a correlation with the 
health data fluctuations with COVID-19 infection. They also evaluated 
the possibility of using such a system for possible COVID-19 infection 
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even before the symptom onset. They also used the data to develop a 
real-time alerting system based on their statistical algorithm. In their 
presymptomatic COVID-19 detection experiment, 63% of the COVID-19 
positive cases were detected using their algorithm before the onset of 
symptoms. Although the method is in the early stages, their findings 
suggest that continuous health monitoring using wearable devices on a 
large scale might be utilized for real-time COVID-19 detection, often in 
the pre-symptomatic stage [99]. Fig. 4a illustrates one of the detection 
methods by the team employing the relation between heart rate and step 
count of the users. 

Another work from Bogu et al. used a long short-term memory 
(LSTM)-based autoencoder to improve the anomalous RHR detection 
[100]. Their model detected 23 out of 25 COVID-19 infected subjects 
using smartwatch data where 14 of them were detected even before the 
symptom onset. On the same smartwatch dataset, Abir et al. employed 
LSTM-based variational autoencoder (VAE) architecture for anomalous 
RHR detection that improved the detection up to 25 out of 25 COVID-19 
infected subjects [101]. Moreover, their model detected the possible 
COVID-19 infection in the presymptomatic phase for 20 out of 25 

subjects. 
Although these studies presented enormous promise for continuous 

monitoring, they are yet to be ready for real-world deployment. Mishra 
et al. collected smartwatch data, from a large cohort; however, only 25 
COVID-19 subjects’ data were available for the studies of Bogu et al. and 
Abir et al. [99–101]. Hence, more collaborative efforts among different 
research groups and smartwatch manufacturers are required in this re-
gard to collect global data from different demography that will make 
such models effective in the real-world scenario. 

Body temperature can be another important physical parameter to 
monitor for possible COVID-19 infection. In a study, Richardson et al. 
showed that an elevated body temperature above 37.8 ◦C was recorded 
among 12% of COVID-19 positive individuals and 31% of hospitalized 
patients [103]. Chung et al. proposed a wrist-worn wearable device 
named HEARThermo, which monitored body surface temperature along 
with the heart rate. In most cases, the body surface temperature 
measured at terminal organs is not equal to the actual body temperature 
[104]. Hence, evaluating these two physical parameters, if the data 
seemed anomalous, the device would notify the user to take further 

Fig. 4. Different physiological changes due to COVID-19 infection. (a) Deviation in the ratio of heart rate and steps before the onset of the COVID-19 symptoms 
(marked by the red dotted vertical line). The violet dotted vertical line denotes the COVID-19 diagnosis date and the red marker and star on the graph indicate the 
anomalous data and the first instance of the anomaly, respectively [99]. (b) Correlation of different symptoms with COVID-19 infection among 3811 untested, 54 
COVID-19-positive, and 279 COVID-19-negative subjects. The asterisk denotes significant differences in symptoms (p-value < 0.05) [102]. 

K. Alyafei et al.                                                                                                                                                                                                                                 



Computers in Biology and Medicine 149 (2022) 106070

8

thermal measurements using the thermometer. The device was given to 
63 college students, 75 suspected patients, and 149 medical pro-
fessionals. All these subjects’ data showed good test-retest reliability. 
Such a result suggests that the continuous monitoring of body temper-
ature and heart rate via a wrist-worn device can be a viable option for 
point-of-care and early detection of SARS-CoV-2 infection. 

Radin et al. explored the prospects of wearable devices for detecting 
influenza-like diseases at a mass level [105]. Quer et al. created a pro-
spective app-based research platform, called DETECT (Digital Engage-
ment and Tracking for Early Control and Treatment), wherein 
individuals could share their sensor data, self-reported symptoms, di-
agnoses, and electronic health records to improve the ability to identify 
and track individual- and population-level viral illnesses, including 
COVID-19 [102]. 30,529 participants were enrolled between 25 March 
and June 7, 2020, of whom 3811 reported symptoms. In this study, 
COVID-19 positive subjects were diagnosed via laboratory testing to 
ensure their infection. Fig. 4b depicts the correlations of different 
symptoms with the SARS-CoV-2 infection among positively tested, 
negatively tested, and untested subjects. According to Fig. 4b, fever 
chills or swelling, fatigue, breathing difficulty, decrease in smell, cough, 
and body ache are shown significantly higher in COVID-19 positive 
subjects compared to others. The combined evaluation of the 
self-reported symptom survey and wearable device data showed an area 
under the curve (AUC) of 0.80 with the interquartile range (IQR) of 
0.73–0.86) for COVID-19 infection among the symptomatic patients. 
Moreover, the combination of both data showed particularly better 
detection (p-value < 0.01) than the symptom-based model where AUC 
was 0.71 with IQR of 0.63–0.79. 

In another study within the quarantine facilities of Hong Kong, Wong 
et al. showed the usability of wearable biosensors for early screening of 
COVID-19 by monitoring several health parameters [106]. They pro-
posed a randomized controlled trial on asymptomatic individuals 
ranging from 200 to 1000 who were in close contact with COVID-19 
positive individuals. The volunteers were randomly divided into two 
groups for standard strategy and remote monitoring (intervention 
group) during the two-week quarantine. Both groups had symptoms and 
fever monitoring protocols; however, the latter group had biosensors on 
the arms for continuous monitoring of health parameters, namely blood 
pressure, respiration rate, activities, oxygen saturation, heart rate, and 
skin temperature. A mobile app named Biovitals Sentinel was used to 
sync the sensor data into a cloud database, where it was processed by an 
analytics engine. The result of this study reiterated that using wearable 
biosensors to continuously monitor multi-dimensional parameters and 
using machine learning-based analysis gives a holistic picture of a per-
son’s physiological changes due to COVID-19 infection. Moreover, the 
continuous monitoring system showed earlier infection detection 
compared to intermittent testing only. 

The abovementioned studies have explored the potential to extract 
subtle physiological changes with COVID-19 infection using wearables. 
This new avenue of using smartwatches and wearables to track under-
lying health conditions is particularly valuable for infectious diseases 
like COVID-19. Moreover, some studies have shown promising results 
towards detecting the infection even before any physical symptoms have 
added multifold utility to such systems, namely continuous monitoring 
and contact-tracing. 

4.2. Radiography-based COVID-19 detection 

RT-PCR, the primary diagnostic tool for detecting COVID-19, has a 
high false alarm rate due to the damage through the viral mutations and 
the contamination of samples [107]. Hence, multiple groups have sug-
gested the radiology based approach as a secondary diagnostic tool for 
COVID-19 [108,109]. Moreover, since the outbreak of COVID-19, a 
significant number of studies have shown the prospect of AI to detect the 
COVID-19 infection progression using chest X-rays and CT images with 
high accuracy. Mei et al. proposed an AI-based model to detect the 

COVID-19 infection using clinical history and chest CT scans [110]. The 
clinical history involved prior diseases, blood test results, symptoms, 
demographic information, exposure to COVID-19 infected individuals, 
and travel history. They also collected the CT scan images with the 
consent of the subjects. They developed a convolutional neural network 
(CNN) to extract and learn the normal and infection features from CT 
scans. Afterward, the extracted features along with the clinical data 
were classified into normal and infected classes using three different 
classifiers - multilayer perceptron (MLP), random forest, and support 
vector machine (SVM). Among the three classical machine learning 
classifiers, MLP showed the best performance and they proposed it in 
their final pipeline. Their final pipeline is illustrated in Fig. 5. 

They used RT-PCR test results as the ground truth for the study 
among 905 patients, of which 46.3% were positively tested. In a test set 
of 279 patients, the AI system had a sensitivity score equal to a senior 
thoracic radiologist and demonstrated an AUC of 0.92. Moreover, the AI- 
based system labeled 68% of the patients as COVID-19 positive, which 
was confirmed by the RT-PCR; however, the radiologist misclassified 
three patients due to the relatively early stage of infection and disease 
progression. Thus, an AI-based system showed potential for early 
COVID-19 detection based on a combined evaluation of clinical and 
radiology data. 

Likewise, Bai et al. established and evaluated an AI-based framework 
for distinguishing COVID-19 infection from pneumonia induced by 
other pathogens through chest CT [112]. The study included chest CT 
images of 521 patients from 10 hospitals along with their RT-PCR re-
sults. Moreover, 665 pneumonia patients’ chest CTs were collected from 
three medical centers ranging between 2017 and 2019. A deep neural 
network, EfficientNet B4, was used to distinguish the COVID-19 infec-
tion from other pneumonia infections. The lung portion was segmented 
before the input to the model. The study involved 1186 patients’ data, 
resulting in 132,583 CT slices and separated in a 7:2:1 ratio as 
train-validation-test sets. Afterward, they performed separate testing in 
another hospital. Six radiologists participated in the study to identify 
COVID-19 infection in the CT images. The AI-based model resulted in 
96% accuracy, 95% sensitivity, 96% specificity, and an AUC of 0.95. 
This study shows the potential of an AI-assisted system for differenti-
ating COVID-19-induced infection from other forms of pneumonia. 
Moreover, Qiblawey et al. proposed another AI-based pipeline for 
COVID-19 recognition and severity grading from the CT volumes of 
1110 subjects (Fig. 6) [111]. The presented system detected COVID-19 
detection performance with 98.72% specificity and 99.64% sensitivity. 
The system also classified four levels of infection severity, namely mild, 
moderate, severe, and critical, with 98.3%, 71.2%, 77.8%, and 100% 
sensitivity, respectively. 

Ozturk et al. used an altered version of DarkNet on 114 COVID-19 
chest X-rays for two types of classification schemes - binary classifica-
tion between normal and COVID-19 infected subjects and multi-class 
classification among normal, COVID-19 infected, and non-COVID-19 
infected pneumonia patients. The modified model achieved a sensi-
tivity of 90.65% and 85.35% for the binary and multi-class schemes, 
respectively [113]. Apostolopoulos et al. presented their study on the 
chest X-rays of 224 COVID-19 patients using MobileNetV2 as the clas-
sifier, which achieved a sensitivity of 98.7% [114]. Wang et al. proposed 
a CNN-based architecture named COVID-Net, which was specifically 
tuned for COVID-19 identification. The study was carried out on 358 
COVID-19 chest X-rays and the model showed an accuracy of 91% 
[115]. 

A common problem in AI-based image classification is the scarcity of 
reliable data. To circumvent this problem, AI-based data generation 
techniques, specifically, Generative Adversarial Networks (GANs) have 
recently shown tremendous development in almost all domains. These 
networks produce realistic data from small samples to create a 
comparatively large dataset. In this regard, Waheed et al. presented an 
Auxiliary Classifier Generative Adversarial Network (ACGAN) network 
to augment synthetic images from publicly available COVID-19 chest X- 
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rays [116]. Chowdhury et al. experimented with several CNN-based 
pre-trained networks, namely CheXNet, DenseNet201, MobileNetV2, 
ResNet101, ResNet18, and SqueezeNet on a dataset of 423 chest X-ray 
images for binary and multi-class classifications. Among the models, 
DenseNet201 demonstrated the best sensitivity of 99.7% and 97.9% in 
binary and multi-class classifications, respectively [117]. Yamac et al. 
used a combination of CheXNet and Convolution Support Estimation 
Network (CSEN) for classifying bacterial pneumonia, viral pneumonia, 
or normal [118]. In the combined network, the CheXNet was the feature 
extractor and CSEN was the classifier. The combined network was used 
on QaTa-COV19, a benchmark dataset of 462 COVID-19 chest X-ray 
images, which resulted in a sensitivity of 98%. Fan et al. proposed 
Multi-Kernel-Size Spatial-Channel Attention Network, an 
attention-based COVID-19 detection system [119]. It was used on 1000 
chest X-ray images from an equal number of COVID-19 and 
non-COVID-19 patients, which reached a sensitivity of 98.1% and 
specificity of 98.3%. Degerli et al. experimented on several CNN-based 
encoder-decoder networks to get a COVID-19 infection map [120]. 
They compiled 2951 chest X-ray images with ground truth annotation. 
Among the encoder-decoder networks, the highest F1 score was 85.81% 
for segmenting the infection locations. Anas et al. also presented an 
AI-based pipeline for detecting and quantifying the infection progres-
sion of COVID-19 based on chest X-ray images [121]. The input images 
were passed through two parallel CNN-based encoder-decoder networks 
for generating two binary segmentation masks (Fig. 7). The generated 
infection masks, superimposed on the chest X-rays were used to evaluate 
COVID-19 infection progression (the system is deployed at qatacov.live). 

Among these two radiography-based techniques, despite the superior 
performance of CT, this method is costly and time consuming compared 

to chest X-ray. Moreover, it is not often available in the remote places. 
On the other hand, X-ray imaging is not only cheaper and faster, but also 
operate on a smaller amount of radiation compared to CT [122]. 

These AI-enabled radiography-based detection methods detect the 
SARS-CoV-2 infection directly from the lungs area. Despite having the 
potential of using chest X-ray and computed tomography (CT) for 
identifying the infected regions, these two systems may fail to detect 
COVID-19 at an early stage because of the limited infection progression 
[123]. Hence, this method is more suitable to determine the infection 
progression over the diagnosis of the infection itself. Moreover, for a 
highly infectious disease like COVID-19, fast detection of infection 
presence and its severity identification is of high priority. However, in 
such a scenario, fast diagnosis by expert radiologists is sometimes not 
possible due to the high volume of patients and lower number of experts, 
which increases the utility of such AI-assisted diagnosis. 

Machine learning model interpretability has become a major concern 
as ML algorithms are getting popularity in computer-aided diagnosis. To 
achieve the trust of the clinicians, it is important to know that the deep 
learning models are not just a black box rather the model performance 
should be explainable and the model should learn from the relevant 
areas from the X-ray and CT scan images. Different variants of class 
activation maps (CAM) were used in recent studies to show the inter-
pretability of deep learning algorithms. Rahman et al. [124] using 
Score-CAM-based heat maps showed that the Gamma-enhanced 
segmented lung can detect COVID-19 reliably compared to the full 
Chest X-ray (CXR) image as the model can learn from irrelevant areas in 
full CXR images while for segmented lung X-ray images, the model can 
learn only from the relevant areas as shown in Fig. 8. 

Similarly, Wang et al. [125] showed Grad-CAM-based heat maps for 

Fig. 5. AI-based COVID-19 detection pipeline using a combination of radiology and symptom data [110].  

Fig. 6. AI-based COVID-19 detection pipeline using CT images using multiple encoder-decoder networks [111].  
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mild, moderate, severe, and critical patients to show the lung areas 
where the model is taking the decision in severity grading. Fig. 9 clearly 
shows that the proposed model mainly focused on the lesion regions of 
CT images to make decisions regarding moderate, severe, or critical 
patients. 

4.3. COVID-19 detection using cough and breathing sounds 

Recent works have shown how the respiratory sounds (e.g., coughs, 
breathing and voice) of patients who tested positive for COVID-19 in 
hospitals differ from the sounds of healthy people. Huang et al. used lung 
auscultation data recorded by digital stethoscope for the diagnosis of 
COVID-19 [126]. The coughing sound was collected from 48 COVID-19 
infected subjects as well as from other individuals with pathological 

Fig. 7. Schematic representation of the COVID-19 detection and infection quantification method [121].  

Fig. 8. Score-CAM visualization for properly classified COVID-19 X-ray images using the different enhancement techniques: CXR (top row), Score-CAM heat map on 
original CXR (middle row), and segmented lungs CXR (bottom row). Note: Gamma correction technique was the best performing image pre-processing technique 
reported in Ref. [124]. 
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coughs. An ensemble of CNN models was used to differentiate COVID-19 
from the other type of coughs. Moreover, to determine the health con-
dition of the hospitalized COVID-19 infected subjects, their speech re-
cordings were examined by automated systems to determine their 
infection status. This demonstrates that it is possible to identify an 
infected individual based on their respiratory signals, such as breathing 
and cough sounds [127]. 

Imran et al. proposed a mobile app called AI4COVID-19, which 
audio-records 3 s of coughing and then automatically analyzes the re-
cordings to detect COVID-19 within 2 min using transfer learning [128]. 
The pipeline consisted of two stages: cough detection and collection, and 
COVID-19 diagnosis. In the cough detection engine, a user records 3 s of 
good quality cough sound, and the Mel spectrogram image of the wave is 
analyzed with a CNN. After the cough is detected, the system passes to 
the COVID-19 diagnosis to decide the result. It consists of three AI ap-
proaches, namely the classical machine learning multi-class classifier 
(CML-MC), deep transfer learning multi-class classifier (DTL-MC), and 
the deep transfer learning binary-class classifier. Some key limitations of 
the current AI4COVID-19 app are 1) limited training data, 2) limited 
data to generalize the model, and 3) the cough features of COVID-19 
may overlap with those of other diseases. In another study by Pal and 
Sankarasubbu, the authors investigated deep neural networks (DNNs) 
on a dataset containing 150 patients’ data of a total of 328 instances of 
coughing sounds, who were afflicted with asthma, bronchitis, 
COVID-19, or were healthy [129]. In the study, the trained DNN could 
distinguish the COVID-19 coughs from others with an accuracy of 
96.83%. These studies confirm that COVID-19 coughs have a unique 
pattern. Bagad et al. also found using a Resnet18 network that the model 
could identify COVID-19 cough sound with an 0.72 AUC score using 
COVID-19 confirmed coughing sounds from 3621 individuals recorded 
over the phone [130]. Laguarta, Hueto, and Subirana had an AUC of 
0.97 and a sensitivity of 98.5% with a pre-trained ResNet50 network for 
distinguishing COVID-19 cough sounds from the other types of cough 
using the samples collected from 4256 subjects and evaluated on 1064 
subjects [131]. 

Brown et al. collected both cough and breathing sounds, then 
investigated how such data can aid with COVID-19 diagnosis [132]. 
They provided handcrafted features for cough and breathing sounds, 
such as period, tempo, onset, duration, root mean square (RMS) of en-
ergy, zero-crossing, roll-off frequency, spectral centroid, Mel-frequency 
cepstrum (MFCC), and delta MFCC. Combined with deep transfer 
learning, VGGish, which is a convolution network designed to extract 

audio features automatically, achieved an 80% accuracy on average 
with 2-class classification problems using the cough and breathing data. 
A Cambridge University team shared a dataset of cough and breathing 
sound samples for 582 healthy individuals and 141 individuals with 
COVID-19 infection [133]. Among the COVID-19 infected subjects, 87 
were asymptomatic while 54 were symptomatic (had a dry or wet 
cough). A web/android mobile application was developed to collect a 
cough and breathing dataset and screen the patients for COVID-19 from 
the comfort of their own homes. The collected dataset includes data 
from 245 healthy, 78 asymptomatic, and 18 symptomatic COVID-19 
patients. Users can simply download a mobile application or use the 
application from any web browser without installation and enter their 
symptoms, record audio clips of their cough and breathing sounds, and 
upload the data anonymously. Chowdhury et al. developed two different 
screening pipelines based on the symptoms reported by the users, 
namely asymptomatic and symptomatic. Nine state-of-the-art deep 
learning algorithms were evaluated on the spectrogram generated from 
the breathing and cough sounds individually and in combination with 
the sounds of the Cambridge and collected dataset. The authors achieved 
an accuracy of 95.38% for symptomatic and 98.5% for asymptomatic 
COVID-19 patient detection using cough sounds. However, the detection 
accuracies for symptomatic and asymptomatic patients using breath 
sounds were 90.33% and 75.6%, respectively. A real-time deep 
learning-based backend server was deployed to convert the cough and 
breathing sounds to spectrograms and to apply the best-performing 
machine learning model to identify the COVID-19 patients. The result 
was then reported back to the test user on the web/mobile application 
(the system is deployed at https://qu-mlg.com/projects/qu-cough-sco 
pe). 

Although the AI-assisted COVID-19 infection detection methods 
based on cough sound show good performance, they are far from perfect 
as they were not verified for a larger population. Moreover, as a passive 
detection technique, these systems rely on the symptoms (cough), not 
the pathogen itself which is not the case for laboratory-based testing 
methods. Hence, they cannot be used as a standalone COVID-19 detec-
tion system; however, they can provide a free-of-cost screening method 
during an infectious disease outbreak like COVID-19. Based on the 
result, medical professionals can prescribe further screening. The utility 
of such a method is particularly promising during resource constraint 
scenarios. 

Fig. 9. Grad-CAM heat-map for Network visualization for the model interpretation [125].  
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4.4. COVID-19 symptom tracker 

The SARS-CoV-2 has shown novel behavior and infection patterns in 
human hosts compared to its predecessors from the same coronavirus 
family, namely MERS and SARS. Due to its novel nature and erratic 
symptoms, it took scientists several months to get a symptoms pattern 
for COVID-19. 

A group of scientists from diverse disciplines, united by the Coro-
navirus Pandemic Epidemiology (COPE) Consortium, developed a 
COVID-19 symptom tracker to help in detecting the disease and col-
lecting diverse data on numerous patient populations [134]. Moreover, 
Zoe Global Ltd., a nutritional science company, collaborated with aca-
demic researchers and launched a mobile app named COVID Symptom 
Study (initially named COVID Symptom Tracker) in March 2020 [135]. 
This app aimed to aid researchers to get an insight into the symptoms 
and designing protocols based on that. Moreover, the app was designed 
for surveying data from both the general population and the healthcare 
workers. Such work information, demographics, location, and prior 
health conditions are added to the database upon registration. More-
over, each user was notified about the research use of their data 
complying with the Health Insurance Portability and Accountability Act 
(HIPAA) and General Data Protection Regulation (GDPR). The users 
were prompted daily to enter their health conditions and possible 
symptom. From the initially reported data, 75% of the app users were 
female, and the age group varied from 18 to 90 years old, with an 
average of 41. In the UK, reported symptoms of the first 1.6 million 
users, the infected individuals experienced a wide range of symptoms 
[134], which helped the researchers and doctors get a clear picture of 
the symptom types and progression from this crowdsourced data [136]. 

Zens et al. also formulated a mobile application to evaluate the 
symptoms pattern of COVID-19 infection. The app was also a self- 
reporting tool and was downloaded by 22,327 individuals between 
April 8 and May 15, 2020. Similar to the app by Zoe Global Ltd., this app 
also recorded demographic information, namely the age, gender, and 
postal code of each user, along with relevant diseases and health con-
ditions. Users got daily reminders to provide an update about any 
symptom. In case of the onset of symptoms or COVID-19 testing, they 
were requested to provide details regarding their symptoms and di-
agnostics. This anonymous study included only participants over 18 
years old. From the self-reported data, the research team could derive a 
predictive value of a certain symptom among certain demography, 
which opened the possibility of developing effective screening systems. 
In a resource constraint scenario, the patients with symptoms with 
higher predictive values can be tested with higher priority, which pro-
vides a cost-effective solution. Based on their findings from the study, 
the loss of taste and smell is the prime indication of possible COVID-19 
infection, and people with diabetes are in a high-risk faction [137]. 

Soriano et al. designed an application called the Hospital Epidemics 
Tracker (HEpiTracker) to specifically identify and track symptoms in 
healthcare workers. For data collection purposes, healthcare workers 
from nine hospitals across five different regions of Spain participated in 
the study and used the HEpiTracker mobile application. They updated 
their body temperature daily along with any symptoms related to 
COVID-19. Moreover, any diagnostic details, namely PCR, and sero-
logical test results were recorded in the app as well. The study showed a 
promising result of such a symptom tracking system for monitoring 
COVID-19 among hospital workers [138]. 

5. Challenges and prospects of identifying asymptomatic 
COVID-19 patients and other diseases 

Nowadays, wearable monitoring technology is very accessible, and it 
offers good accuracy with a wide range of continuous (24/7) vital in-
formation monitoring. Smart wearable devices like smartwatches [9], 
and fitness wearables [10–13] are widely adopted to monitor different 
vital parameters, namely oxygen saturation, blood pressure, body 

temperature, heart rate, body mass index, sleep hours, and steps [139]. 
These parameters are highly correlated with the symptoms of asymp-
tomatic COVID-19 patients, which can be a promising way to identify 
and monitor these patients [134,140]. In the literature, several studies 
have been explored based on their usability in the continuous health 
monitoring and detection of SARS-CoV-2 infection based on cough 
sounds [128,141,142], body temperature [143], and heart rate [99]. 
However, studies have shown that asymptomatic COVID-19 patients 
might not exhibit abnormal vital signs, such as a fever or an abnormal 
heart rate. Thus, identifying COVID-19 patients based on only one var-
iable can be misleading. Therefore, multiple variables need to be 
considered for the detection of a disease like COVID-19 using such de-
vices. However, the mass deployment using wearable devices has been a 
major challenge in identifying COVID-19 patients using their vital in-
formation, particularly due to the lack of information regarding the 
usage of such wearable solutions among the local population. If these 
wearable devices were already used by a large proportion of the popu-
lation, it would be much easier to deploy such a solution to keep track of 
COVID-19 patients. 

Another major challenge for remote monitoring and identification 
systems using wearable devices is the processing of the data. Offline 
analysis of the collected data from a large number of patients is time- 
consuming and requires specialized expertise. For the real-time anal-
ysis of the data, the use of machine learning models can offer a vital and 
timely solution. Moreover, different wearable systems will make the 
process quite challenging as the data need to be integrated due to format 
and protocol variations. Mishra et al. performed an elaborate study on 
the detection of SARS-CoV-2 infection in patients, before the appearance 
of symptoms, through smart wearable health data [99]. 5262 partici-
pants were enrolled for continuous smartwatch sensor data monitoring, 
in particular heart rate and physical activity recording, using an 
in-house app named MyPHD. 32 Fitbit watch users eventually turned out 
to have a COVID-19 infection and 81% of them had visible variations in 
two proposed parameters, namely heart rate at rest and the ratio of heart 
rate and step count. Through a simple cumulative statistical anomaly 
detection model, it was estimated that almost 63% of COVID-19 patients 
could have been identified before they showed any symptoms. However, 
no machine learning model was utilized to detect asymptomatic 
COVID-19 patients, which would have increased the robustness of the 
model. Quer et al. performed a study on a much larger population of 30, 
529 participants using a smartphone application that, in addition to 
self-reported symptom data, monitors sensor data such as heart rate, 
sleep, and activity [102]. Among 3811 people with symptoms, 54 in-
dividuals were consequently found to be COVID-19 positive. The 
interesting outcome of a 9% increase in the AUC in identifying 
COVID-19 when combining sensor data with symptoms instead of 
symptoms alone further supports the potential of wearable health 
monitoring. Smarr et al. [143] further integrated temperature sensors 
and heart rate-related features on 50 COVID-19 patients and revealed 
that 38 of them could have been identified much earlier than when they 
started to show symptoms using these biomarkers. A similar study by 
Radin et al. [105] expanded the applicability of such physiological and 
activity data monitoring from wearables to influenza-like diseases. Bogu 
et al. [100] designed a wearable system to collect patients’ heart rate 
data during rest. They used a deep learning model to identify asymp-
tomatic COVID-19 patients. The variation in the visceral nervous system 
response, symbolized by heart rate variability (HRV), relates to the heart 
rate. This research demonstrated that COVID-19 patients can be iden-
tified before the clinical identification of infection. Hirten et al. [144] 
used information collected from wearable devices (Apple Watch) for the 
identification and prediction of COVID-19. This research work used 
several statistical models to identify and predict COVID-19 and its 
associated symptoms. It was reported that a notable change was 
observed in HRV for COVID-19 patients before the RT-PCR test was 
carried out. They found a significant deviation (p-value = 0.006) in the 
mean amplitude of the standard deviation of the interbeat interval of 
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normal sinus beats (SDNN) circadian pattern among subjects with (1.23 
ms, 95% CI: 1.94–3.11) and without (5.30 ms, 95% CI: 4.97–5.65) 
COVID-19 infection. 

A crowdsourcing-based epidemiologic study often does not represent 
the whole population, which makes the result non-generalized. This is 
also the case for smartphone-based applications for COVID-19 detection. 
Nevertheless, such an approach can be deployed rapidly in a large 
population during a novel disease outbreak. With the progression of the 
research as well as continued use by a large number of participants, such 
systems can overcome the distribution issue [134]. 

Likewise, AI-based systems also have limitations as well. Firstly, 
there can be subtle discrepancies among the CT images induced by 
different ethnicity, country, and even the CT instrument. Such discrep-
ancies in the dataset will sabotage a study aiming for generalized 
detection. Secondly, the baseline data contains dissimilarities in COVID- 
19 and other pneumonia patients. The reason behind such dissimilarities 
is attributed to the data collection as well as the disease types. In the case 
of COVID-19, initially, most datasets were collected in China from var-
ied age and gender groups. On the other hand, for other pneumonia 
patients, the majority of the data were collected in the United States and 
constituted the older population. Such differences in demography might 
cause bias in the model as well. Thirdly, as the results of such AI-based 
models have relied on radiologists, it can add certain human bias. The 
reason behind such bias is mostly due to the experiment design, where 
the same radiologist reviews the same image with and without the AI- 
based segmentation mask. However, this bias can be averted by adopt-
ing a prospective experiment. Fourthly, the CT images of COVID-19 
infection contain subtle differences from the other pneumonia infec-
tion mostly during the early stage. Due to the lack of the number of such 
CT images at that stage, the models relied on CT images for a wide range 
of COVID-19 progression. Such a dataset with diverse disease progres-
sion is hard to be useful for particularly detecting COVID-19 early 
despite representing the real-life testing scenarios. However, with the 
progression of the pandemic, such scarcity of data will eventually be 
resolved. Lastly, a notable number of other pneumonia cases after 
COVID-19 breakout did not go through Respiratory Pathogen Panel 
(RPP) testing, which leaves a suspicion about whether it progressed to 
COVID-19 or not. For this reason, several studies adopted a second re-
view scheme by another radiologist. However, selection bias can be 
induced in such a system. These factors can make AI-based systems 
unusable in a real-world scenario. However, with the recent collabora-
tion of researchers with larger and more diverse cohorts along with more 
meticulous experiment design, AI-based systems have the potential to 
get more reliable [112]. 

It is clear from the previous studies that despite the negative RT-PCR 
test, chest X-ray images and computed tomography (CT) contributed to 
the detection of SARS-CoV-2 infection and measuring the extent of the 
infection progression in the suspected patients [110]. Therefore, 
multi-modal screening techniques were shown to improve the screening 
accuracy and helped to reduce the risk of spreading this contagious 
disease. Therefore, an intelligent detection model based on robust ma-
chine learning algorithms can be a promising way to accurately identify 
asymptomatic COVID-19 patients using vital parameters from wearable 
devices. Thus, introducing smart monitoring devices for early COVID-19 
detection can help public health officials to provide more coherent 
follow-ups of the patients. 

6. Conclusions 

Screening of SARS-CoV-2 is currently performed with molecular cell- 
based POCT techniques, which are useful for performing testing of 
symptomatic patients at the individual level and with acceptable accu-
racy, precision, and robustness. Among these methods, while the RT- 
PCR testing is more reliable, it suffers from significant challenges in 
terms of giving false positive and false negative outcomes. The other 
molecular-based testing methods, including RT-LAMP, CRISPER/CAS 

system, immunoassays, and biosensors, have their benefits in terms of 
accuracy and reliability, but these also have limitations when mass-scale 
testing is required, such as during seasonally driven disease spikes. 
Therefore, developing such strategies which enable locating and iden-
tifying COVID-2 infected patients at a mass scale in an asymptomatic 
state can open a new venue for the management of patient health. 
Recent approaches for monitoring asymptomatic COVID-19 patients 
using smartwatches and mobile applications have shown promising re-
sults; hence, there is still a need for the development of AI-based systems 
for the mass-scale surveillance of suspected COVID-19 patients. This will 
eventually help public health officials to identify infected patients in the 
early stages to keep them in isolation and provide the necessary treat-
ments. The technique will help to manage and monitor the health of 
COVID-19 patients, both asymptomatic and symptomatic, which will 
help to manage the available facilities systematically. The method will 
also help to track and manage the COVID-19 patients’ health after their 
recovery by continuously monitoring their health parameters, and it will 
also be able to mitigate any post-recovery complications. 
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