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Abstract

The probability distributions for changes in transverse plane fingertip speed are Lévy distributed in human pole balancing.
Six subjects learned to balance a pole on their index finger over three sessions while sitting and standing. The Lévy or decay
exponent decreased as a function of learning, showing reduced decay in the probability for large speed steps and was
significantly smaller in the sitting condition. However, the probability distribution for changes in fingertip speed was
truncated so that the probability for large steps was reduced in this condition. These results show a learning-induced
tolerance for large speed step sizes and demonstrate that motor learning in continuous tasks may be characterized by
changing distributions that reflect sensorimotor skill acquisition.

Citation: Cluff T, Balasubramaniam R (2009) Motor Learning Characterized by Changing Lévy Distributions. PLoS ONE 4(6): e5998. doi:10.1371/
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Introduction

Traditionally, motor learning for continuous, goal-directed

movements has been difficult to characterize. Although

dynamical approaches argue motor learning results from the

evolution of potential landscapes [1], what has been elusive is

how to quantify and interpret the change behaviourally. On the

other hand, motor learning for discrete movements can be

classified on the basis of performance error, for example in end-

effector position relative to some salient target [2]. These studies

have a long-standing history in the literature and consequently,

have revealed much more about motor learning for discrete

tasks [3–6].

More recently, studies that examined learning for continuous

tasks have incorporated a technique from control systems theory –

the Kalman filter. The Kalman filter is a linear estimator that in

neural applications recursively determines the sensory conse-

quences of movement based on the intended motor command [7–

9]. The Kalman filter is optimal for linear systems because it

minimizes least-square estimation error [10,11]. Commonly used

computational approaches in motor control argue the Central

Nervous System (CNS) employs internal forward models in tasks

such as visuomotor pole balancing. Predictive control can be

favorable for the neural control of pole balancing because it can

help circumvent sensorimotor processing delays to produce low

latency movements required for maintaining pole stability [12].

Predictive mechanisms enable perturbations/threats to stability to

be anticipated and accordingly, corrections can be performed in

anticipation of these disturbances. More generally, predictive

mechanisms are thought to be implicated in minimizing body-state

estimate uncertainty; the continuous evolution of limb position in

response to motor inputs [12–15].

Contrary to the abovementioned mechanisms, pole dynamics

may be stabilized by stochastic properties characteristic of motor

control [16–18]. The findings of Cabrera and Milton demonstrate

that fingertip speed profiles in human pole balancing show power

law scaling. Power law scaling was also evident in the laminar

phases (time intervals) for successive corrective movements, which

demonstrated that corrective movements were intermittent in

human pole balancing. In confirmation of intermittent control,

behavioral data demonstrated that 98% of corrective movements

were shorter than our sensory processing delays. Numerical

analyses have since demonstrated that balance is facilitated in

time-delayed stochastic systems, provided the system is tuned near

a stability boundary. In this case, control could result from

stochastic processes that force the fingertip trajectory back and

forth across stability boundaries [17,18]. On the basis of efficiency,

intermittent or ‘bang-bang’ control might be favored to continuous

estimation in stochastic, time-delayed systems since the computa-

tional burden incurred by the CNS is minimized [19].

Systems characterized by on-off intermittency exhibit two

distinct phenomenological states. In the ‘‘off’’ state, dynamic

variables remain approximately constant over various time

intervals. Conversely, the ‘‘on’’ state is characterized by intermit-

tent bursting of the dynamical variable. Intermittency requires the

underlying system to possess an invariant subspace, whereby

provided the dynamical variable remains within the bounds of the

invariant space, it remains relatively quiescent. This bound is

manifest as a threshold, that when crossed, results in subsequent

bursting of the dynamical variable, ie., the system transitions from

the ‘‘off’’ to ‘‘on’’ state [20].

In this context, the stochastic process that characterizes fingertip

speed profiles is given by a symmetric Lévy process La (Ds, Dt)

given by [17]:
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La Ds,Dtð Þ~ 1

p

ð?
0

exp {cDtqað Þcos qDsð Þdq,

where Ds is the fingertip speed step size, Dt is the interval between

successive observations, c is the scaling factor (c.0) and a is the

Lévy index (0,a,2). The Lévy process is an unbounded,

unconstrained random walker. The unbounded, asymptotic

character of the Lévy distribution results in an infinitely variant

process, resulting in the absence of the first and second statistical

moments. It is characterized by both ‘slow’ and ‘fast’ components,

what are referred to as ‘rambling’ and ‘trembling’ in posture

research, respectively [21,22]. As mentioned, the slow and fast

regimes of the Lévy process are demarcated by a critical threshold;

when the dynamic variable of consideration is within the confines

of this threshold the process is in the slow (small amplitude

fluctuations) regime and consequently, is free to vary.

Previously, research demonstrated the probability for large

fingertip speed steps increased with learning in a human pole

balancing task [17], which the authors argued was indicative of

tolerance to stochastic processes. This consideration has important

ramifications for our understanding of motor learning. In the

event that the distribution broadens with learning, this corre-

sponds to a smaller decay in the probability for large step sizes.

Behaviorally, this is manifest as tolerance to stochastic processes:

the participant becomes more tolerant to large changes in fingertip

speed as proficiency in the pole balancing task increases. The

purposes of this study were two-fold: first, to determine whether

the decay exponent for the probability of a given step size, a,

changed with learning, and second, to determine whether a varied

in a sitting versus standing condition. We include the sit versus

stand contrast to highlight differences in control between two

conditions that differ markedly in the available biomechanical

degrees of freedom. We expected that the probability for large

changes in fingertip speed would be increased in the standing

condition.

Methods

Six healthy subjects (2 male, aged 26–28 years; 4 female, aged

23–27 years) participated in this research. The sample was a

convenience sample (subjects were members of the Sensorimotor

Neuroscience Laboratory). Procedures were performed in accor-

dance with the Declaration of Helsinki with subjects providing

written informed consent prior to experimentation. The protocol

was approved by the University of Ottawa institutional review

board. Subjects balanced a wooden dowel with length 62 cm,

diameter 0.635 cm and mass 50 g in two experimental conditions:

sitting and standing. Sitting trials were performed with subjects

seated comfortably in a chair at the subjects’ preferred seat height.

Subjects were required to perform pole balancing with their back

remaining in contact with the seat. In the standing condition,

subjects performed pole balancing with feet approximately

shoulder-width apart. Subjects were free to move the upper body.

However, subjects were not allowed to move their feet in the

standing condition. In the event that foot movement occurred,

these trials were discarded and excluded from subsequent analyses.

Motion capture was performed with 8 VICON MX-40+
infrared cameras sampled at 500 Hz (Denver, CO, USA). We

tracked pole motion in three-dimensions using two spherical

reflective markers (14 mm diameter) affixed to the top and bottom

of the pole with double-sided adhesive. Marker trajectories were

processed offline with the Workstation software and exported to

MATLABTM (Mathworks, Natick, MA) for subsequent analysis.

This study employed a learning protocol: subjects learned pole

balancing over a two week period. Data collection occurred on the

first day, followed by subsequent collection every fourth day.

Confounded learning effects that may have resulted from the

ordering of conditions were avoided by counterbalancing the

order of conditions across subjects. On days where data was not

collected subjects performed 30 min of practice (15 min per

condition), distributed according to their preference.

The Lévy process (a,1.2) requires 105–106 samples to be

distinguished reliably from the Gaussian process (0,a#2). With

our sampling rate (500 Hz), this corresponded to a minimum

balancing time of 200 s. Individual trials for each condition and

session were parsed into a single aggregate trial for each subject.

All data presented here were derived from de-trended, aggregate

fingertip speed profiles . than 56105 samples (1000 s). We

collated time-series data of the changes in fingertip speed (Ds). We

believe this is the more effective means of collating trials because it

minimizes artefact that might result from introducing particular

speed-steps- the effect of parsing would be accentuated by making

the aggregate trial with fingertip positions and two-point

differentiating to determine fingertip speed. Moreover, the effect

of parsing individual trials to form a single aggregate trial would be

minimized by the number of data points in relation to the number

of trials parsed to form the aggregate time-series (max 50 trials vs.

.500000 samples per aggregate time-series). Similar to Cabrera

and Milton [17], we examined the corrective movements that

occurred on time scales shorter than or to the same order as the

neural delay.

We computed the 2-D fingertip speed, s tð Þ:

s tð Þ: ~rr tzDtð Þ{~rr tð Þ
Dt

����
����,

where r! tð Þ corresponded to the transverse plane 2-D fingertip

position at time t;~rr tzDtð Þ was the fingertip position at time t+Dt;

and Dt represented the time step between successive observations.

:k k represented the vector norm. Therefore, s tð Þ was the

Euclidean fingertip speed. The de-trended speed Ds tð Þ was

computed as:

Ds tð Þ~s tzDtð Þ{s tð Þ,

where s tð Þ was the 2-D velocity norm at time t and s tzDtð Þ was

fingertip speed at t+Dt. It should be noted this expression

corresponds to the de-trended speed and not acceleration. This

expression removes any time dependent linear trend and is

therefore equivalent to the high-pass filtered speed [23].

We computed the probability of a given step size, P(Ds, Dt) by

plotting histograms with bin size set to 1 mm/s. To determine

whether the probability of a given step size was influenced by the

time between observations, Dt, we decimated Ds(t) on a

logarithmic scale by factors 1 to 1000. We plotted the probability

of return (i.e., the probability of zero change in fingertip speed

between observations), P(0, Dt), as a function of Dt. The power law

exponent a was computed from the relationship

P 0,Dtð Þ!Dt{a:

In other words, a was computed by regressing P(0, Dt) onto Dt on

a log-log scale. We contrasted the power law exponent (a) across

sessions (3) and conditions (2) using a 362 ANOVA with repeated-

measures. Post-hoc analysis was performed with Bonferonni

corrections. The significance level for statistical contrasts was

Motor Learning Distributions

PLoS ONE | www.plosone.org 2 June 2009 | Volume 4 | Issue 6 | e5998



0.05. As a measure of performance we quantified mean balancing

time and contrasted the dependent measure across sessions (3) and

conditions (2) using a 362 ANOVA with repeated-measures. The

balancing time tbal (in seconds) for individual trials was determined

from the number of samples as

tbal~
#samples

Fs
,

where Fs was the sampling frequency for data collection. Mean

balancing time tbal was defined as the arithmetic average of the

time spent pole balancing across trials for each session and

condition,

tbal~
1

N

XN

i~1

tbali ,

where N was the number of trials and t was the balancing time (in

seconds) for individual trials, respectively. Post-hoc analysis was

performed with Bonferonni corrections.

Results

Figure 1 shows representative data for the probability of a given

step size P(Ds, Dt) in sitting (top row) and standing conditions

(bottom row), as well as across sessions (1: left; 2: middle; 3: right

column) with decimated time-series. Figure 2 shows representative

data for Subject 1 in sitting and standing conditions for the three

experimental sessions (Session 1: Red; Session 2: Blue; Session 3:

Green). Both figures demonstrate the distribution broadened with

learning, rendering the probability of large step sizes P(Ds, Dt)

significantly greater with experience. Figure 2 also shows

theoretical Lévy distributions with parameters determined from

Session 1 data (solid black line). For the sitting condition, the fit

parameters were decay exponent a = 0.95 and scale parameter

c = 0.03, whereas for the standing condition the parameters were

a = 0.98 and c = 0.025. As shown, the central region of the

experimental distributions for all three sessions are reasonably well

fit by the parameters determined from session 1, which suggests

that both decay exponents and truncation are influenced by

learning.

We decimated the change in velocity time-series Ds(t) to

determine the probability of return P(0, Dt) or zero-speed when

the time between observations was varied between 0.002 to 2 s.

The decay exponent a was estimated by regressing P(0, Dt) onto Dt

on double-log plot, depicted in Figure 3. The decay exponent a
was computed for each session and condition. Statistical analyses

demonstrated a was dependent on both session, F (2, 10) = 7.889,

P = 0.009, and condition, F (1, 5) = 7.696, P = 0.039 where F

represents the Fisher statistic for the contrast (mean-square error

within-subjects/mean-squared error between-subjects), (2, 10)

represents the statistical degrees of freedom for the mean-squared

error within- and between-subjects, respectively. In this context, P

represents the probability of observing the same or more extreme

results. With respect to the session effect, a was reduced in session

3 (M = 0.935, SE = 0.009) relative to session 1 (M = 0.981,

SE = 0.011), P = 0.046 (Figure S1). The decay exponent, a was

similar between session 2 (M = 0.964, SE = 0.014) and sessions 1

and 3 (P.0.05). Lastly, the decay exponent a was significantly

larger in the standing (M = 0.973, SE = 0.011) relative to sitting

(M = 0.947, SE = 0.009) condition, P = 0.039 (Figure S2). The

decay exponent a was not influenced by a condition 6 session

interaction effect (F (2, 10) = 0.942, P.0.05).

Balancing time was the average time spent pole balancing for

each session and condition and was contrasted via a 3 (session) 62

(condition) ANOVA with repeated-measures. Balancing time was

dependent on both session, F (2, 10) = 14.331, P = 0.001, and

condition, F (1, 5) = 6.919, P = 0.047, but was not influenced by a

session 6 condition interaction, F (2, 10) = 2.916, P.0.05.

Regarding the session effect, balancing was greater in session 3

(M = 73.686, SE = 12.7239) relative to session 1 (M = 29.796,

SE = 11.782) (P = 0.034) and session 2 (M = 44.503, SE = 11.8211)

P = 0.034, whereas mean balancing times for sessions 1 and 2 were

significantly different from one another, P.0.05 (Figure S3).

Lastly, mean balancing time was significantly greater in the

standing (M = 59.613, SE = 14.104) relative to sitting condition

(M = 39.0436, SE = 11.0446), P = 0.047 (Figure S4).

Discussion

The key goal of our study was to determine how power law

scaling in human pole balancing was influenced by learning.

Previously, Cabrera and Milton demonstrated that learning

resulted in less severely truncated distributions for the probability

of large step velocities, P(Ds, Dt). The authors proposed the change

resulted from truncation. With truncation, the symmetric Lévy

distribution becomes

P Ds,Dtð Þ~
c1La Ds,Dtð Þf Dsð Þ if Dsj j§lc,

c2La Ds,Dtð Þ otherwise

�

where P(Ds, Dt) is the probability of a given velocity step, c1and c2

are normalization constants, La(Ds, Dt) is the symmetric Lévy

distribution, f(Ds) is the truncation function, Ds is the step-size and

lc is the threshold for truncation. The truncation function f(Ds), can

be approximated as [24],

f Dsð Þ~
1 if Dsj jvlc

exp {
Dsj j{lc Dtð Þ

k Dtð Þ

� �h i
if Dsj j§lc

(

where Ds is the change in velocity, Dt is the time-step, lc is the

truncation threshold and b is (a22). In theory, the independent

axis of the Lévy distribution spans infinitely and therefore does not

have first and second statistical moments [23]. Cabrera and Milton

proposed increased probability for large changes in fingertip speed

(Ds) resulted from changes in truncation and not scaling. We were

concerned with whether the observed changes in the probability

distribution for step size resulted not only from truncation, but also

from a reduction in the decay exponent a for P(Ds, Dt). Our

hypothesis was confirmed in that power law scaling was influenced

by learning: participants became more tolerant of large changes in

fingertip speed and this was reflected in the decay exponent, a.

Moreover, we contrasted decay exponents (a) for P(Ds, Dt) in

sitting and standing conditions. Our results suggest that while

decay exponents for the probability of a given step size (Ds) were

significantly larger in the standing versus sitting condition, the

P(Ds, Dt) distribution was considerably wider when standing.

Therefore, individuals were relatively more tolerant of large

fingertip excursions when standing. At first pass, these results seem

counterintuitive. The decay exponent for P(Ds, Dt) was reduced

when sitting relative to standing, indicating the decay in

probability for large changes in fingertip speed was less severe.

We argue, in confirmation of the results suggested by Cabrera and

Milton [17] that truncation was more severe in the sitting

condition – the physical capacities of the system were exhausted –

and individuals were not capable of tolerating large step sizes to

Motor Learning Distributions
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the same extent. The hypothesis is further supported by Figure 2,

which demonstrated the experimental distributions for all three

sessions were reasonably well fit in the central region by a

theoretical distribution plotted using parameters a and c
determined from session 1 data, for both sitting and standing

conditions. These results follow a more generalized formulation of

truncation. With respect to the discontinuous truncation function

f(Ds) mentioned above, there are three broad truncation

classifications: (i) the distribution is truncated gradually from

return [25], lc = 0; (ii) the distribution deviates from the symmetric

Lévy and is truncated gradually from some critical change in

velocity, lc ? 0; and (iii) the truncation gain is zero, k = 0, and

system capacities are exhausted rapidly at the critical step size

[26], lc. Physically, the truncation may have resulted from a

reduction in degrees of freedom, ultimately reducing the range of

motion and consequently, the truncation gain k. Currently, we are

working to identify the specific truncation mechanisms computa-

tionally.

Figure 1. Change in speed is Lévy distributed in the visuomotor stick-balancing task. Decimated time-series shows the probability of a
given step size P(Dv, Dt) is influenced by the time between successive observations, Dt (0.002 to 2 s). Overlaid colors represent the decimated time-
series, with time-steps ranging from 0.002 to 2 s (Dt (0.002 to 2 s). a) Sitting; b) Standing condition. Left to right: Sessions 1 to 3.
doi:10.1371/journal.pone.0005998.g001

Figure 2. P(Ds, Dt = 0.002 s) over three sessions in the sitting (left) and standing (right) conditions. Red: Session 1; Blue: Session 2; Green:
Session 3. Solid black line represents theoretical Lévy distribution with a) a = 0.95 and scale parameter c = 0.03, b) a = 0.98 and scale parameter
c = 0.025. The overlaid theoretical Lévy distribution demonstrates both decay exponent a and truncation change with learning in the standing
condition.
doi:10.1371/journal.pone.0005998.g002

Motor Learning Distributions

PLoS ONE | www.plosone.org 4 June 2009 | Volume 4 | Issue 6 | e5998



Conceivably, changes in the distribution of fingertip speed

changes P(Ds, Dt) could have occurred in the absence of learning.

However, we quantified a performance measure for pole balancing

based on balancing time. Balancing time was the mean time spent

pole balancing for each session and condition. We found that

learning did occur; the time spent balancing was dependent on a

session effect, which demonstrated that performance improved

with learning. Regarding the classification of participant skill

levels, it is likely that participants were still of low-moderate level

since mean balancing times were less than one minute [27]. Future

research should consider the differences in the examined

distributions between low-moderate and expert pole balancers

(mean balancing time &1 minute). As demonstrated, changes in

the Lévy index certainly occur for the progression from low to

moderate skill; it is unlikely these changes persist with further

developments of expertise.

Our sit versus stand comparison was conducted to delineate the

mechanisms by which individuals learn to accommodate noise in

pole balancing. Power law scaling is known to arise in unstable

physical systems influenced by parametric noise [16,17,28,29].

Balance control in unstable, time-delayed dynamical systems can

benefit from the presence of parametric noise, provided the system

is placed near a stability boundary. In such a way, the unstable

inverted pendulum with time-delayed (somatosensory) feedback is

stabilized by parametric noise- stochastic forcing of a gain term

back and forth across a stability boundary [28]. The rationale for

the sit vs. stand comparison can be summarized as follows.

Sensorimotor noise is state-dependent [30]. The standing

condition employed here capitalizes on more biomechanical

degrees of freedom relative to the sitting condition, with state-

dependent noise inherent to each additional degree of freedom. In

alignment with the premise that balance control can benefit from

noise, we hypothesized that pole balancing would be facilitated in

the standing condition. The hypothesis was confirmed, since

greater contribution from the distribution tails were observed in

the standing condition and participants were capable of balancing

for a prolonged period relative to when sitting. Though at present

we know little about the underlying mechanism, one explanation

might be that abundant dimensions along which the system can

vary (muscle activations, joint kinematics) facilitate the pole

balancing task.

Previously, research into the mechanisms underlying postural

control demonstrated that performance in a dual task (counting

backwards by 39s) with eyes closed reduced postural fluctua-

tions relative to an eyes closed condition. Similarly pole

balancing performance improved for a moderately skilled

subject in a dual-task situation (improvements were observed

for both rhythmical leg movement and imaged movement) [cf.

[31] for exemplary video, [27] for more detail]. In short, these

studies suggest that maintaining balance might be an exception

for motor performance, since in general; dual task conditions

have a deleterious effect on performance. Balance might be the

exception since it appears to be facilitated by passive dynamics

of the neuromuscular system (ligaments, joint capsules).

However, there are active contributions to the control of

balancing that are both reflexive (muscle spindles, golgi tendon

organs) and voluntary contributions (muscle contraction and

tension at the tendon insertion) [32]. In the present research

we make no distinction between learning in balancing studies

or other conventional motor learning studies (finger tapping

intervals, bimanual coordination). We speak of learning strictly

in the sense that performance improved as a function of

practice, which is synonymous to learning for many tasks in

the motor domain.

In summary, we demonstrated that motor learning resulted in

increased tolerance for large pole displacements in a human pole

balancing task. The decay exponent a was influenced by learning,

becoming significantly smaller with experience and resulting in less

severe decay in the probability for a given velocity step size, P(Ds,

Dt). Moreover, the decay exponent a for P(Ds, Dt) was greater in a

sitting versus standing condition. Our results show conspicuously

that both decay exponents and truncation change with learning,

resulting in an increased tolerance to large fingertip excursions in

pole balancing.

Figure 3. P(0, Dt) follows a power-law distribution for Dt = 0.002 to 2 s, in the sitting condition.
doi:10.1371/journal.pone.0005998.g003
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Previously, Cabrera and Milton [16] demonstrated that time

intervals between corrective movements followed a 23/2 power

law. These results were argued to be indicative of intermittent

control. Cabrera and Milton [18] argue that intermittent control is

favorable to continuous estimation on the basis of efficiency - an

intermittent control strategy would moderate the computational

burden incurred by the CNS. In their view, pole balancing

dynamics and the corresponding intermittent control regime

usurps any need for continuous estimation by the CNS since

passive or noisy pole dynamics act to impart a dynamical stability.

The CNS need only enact control when pole dynamics cross a

stability boundary, represented as threshold [16–18]. Such

dynamics have previously been reported in the control of upright

posture [33]. When the threshold is surpassed, the system

transitions from the fast to slow regime, defined by translations

of the pole pivot.

In this model, the ability to sense threshold crossings for pole

dynamics is bounded by the limitations of sensory processing.

Sensory feedback involves processing delay, which incorporates

limitations in transduction, conduction velocity, multi-modal

sensory integration, and neural processing to enable a control

decision. When a movement decision is made, motor commands

descend from the primary motor cortex to the distal effectors.

Continuous estimation (predictive) can help circumvent sensory

processing delay. That is, pole excursions might be represented

probabilistically in terms of velocity steps and the probability of

these steps occurring. This proposal is aligned with functional

imaging studies that support a modular architecture in the

cerebellum for internal object representations [34].

In a recent experiment, manipulating an object with complex

dynamics (subjects balanced a flexible weighted ruler by applying a

force to the tip) resulted in greater activation of the ipsilateral

anterior cerebellum relative to an object with simple dynamics

[35]. Activation of the ipsilateral anterior cerebellum was similar

to that observed in a previous study [36] and was attributed to the

acquisition of an internal representation of the task. The prevailing

question then is why the cerebellum shows differential activation

when controlling objects with complex relative to simple dynamics.

These data imply that activation of the cerebellum is modulated by

task complexity. In the pole balancing task the observed

corrections are intermittent as demonstrated by a 23/2 power

law for time intervals between corrective movements [16]; it

appears that the motion of the pole is corrected only when a fall is

impending. It could be that the underlying control mechanism is

continuous and predictive: with learning a representation of pole

dynamics might be built and consequently used to estimate finger

and pole states so as to circumvent neural processing delays.

Predictive control mechanisms can help circumvent neural

processing delays by anticipating perturbations and performing

corrective movements prior to or as these perturbations arise.

However, whether an estimation based model can replicate the

intermittency observed in our experimental data is not yet known.

Though an estimation strategy might represent a plausible control

mechanism for the CNS, other scenarios might include a mixture

of non-predictive and predictive mechanisms. In this context,

participants might rely on passive dynamics until a stability

threshold is surpassed, at which point a predictive strategy might

be enacted for correction.

The present finding that the joint probability distribution for

changes in fingertip speed over time intervals is Lévy distributed

challenges any mechanism based solely on prediction. Typically,

Lévy distributed processes are thought to be reflective of non-

predictive searches or foraging patterns [37,38], which is

problematic for a theory of predictive control for pole balancing.

As a further consideration, the current understanding of predictive

mechanisms in motor control is grounded in Kalman filter-based

models. The limitation of the conventional Kalman filter as

applied to the context of the current results is that it implicitly

assumes additive Gaussian process and measurement noise [39]

and not the multiplicative noise that typically gives rise to power-

law distributed variables. These considerations are not easily

explained by current predictive theories of motor control. Future

endeavours should take these findings into consideration since

important insights into the mechanisms governing the control of

unstable systems may be proffered, including the possibility that

the interplay between passive and predictive mechanisms

(intermittency) might change as a function of expertise. Similarly,

future studies will likely incorporate functional imaging to

determine whether activation of the cerebellum while performing

a virtual pole balancing task is dependent on learning, both in

terms of intensity and the functional loci of activity. Though

previous research suggests overlearning beyond asymptotic

performance is reflected in increased cerebellar activation with

expertise in a complex bimanual coordination task [40], it is not

known whether similar effects can be expected in balancing tasks.

Supporting Information

Figure S1 The decay exponent a was greater in the standing

relative to sitting condition, signifying more stringent decay in the

probability for large step sizes in the standing relative to sitting

condition.

Found at: doi:10.1371/journal.pone.0005998.s001 (0.05 MB TIF)

Figure S2 The decay exponent a was dependent on learning,

resulting in less stringent decay in the probability for large step

sizes in the third relative to first session.

Found at: doi:10.1371/journal.pone.0005998.s002 (0.05 MB TIF)

Figure S3 Mean balancing time tbal was dependent on

condition, with time spent balancing significantly greater in the

standing relative to sitting condition.

Found at: doi:10.1371/journal.pone.0005998.s003 (0.05 MB TIF)

Figure S4 Mean balancing time t_bal increased with learning,

with time spent balancing significantly greater in the third relative

to first session.

Found at: doi:10.1371/journal.pone.0005998.s004 (0.04 MB TIF)
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