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Development and evaluation 
of a deep learning approach for 
modeling seasonality and trends in 
hand-foot-mouth disease incidence 
in mainland China
Yongbin Wang1, Chunjie Xu2, Shengkui Zhang1, Li Yang1, Zhende Wang1, Ying Zhu1 & 
Juxiang Yuan1

The high incidence, seasonal pattern and frequent outbreaks of hand, foot, and mouth disease (HFMD) 
represent a threat for millions of children in mainland China. And advanced response is being used to 
address this. Here, we aimed to model time series with a long short-term memory (LSTM) based on 
the HFMD notified data from June 2008 to June 2018 and the ultimate performance was compared 
with the autoregressive integrated moving average (ARIMA) and nonlinear auto-regressive neural 
network (NAR). The results indicated that the identified best-fitting LSTM with the better superiority, 
be it in modeling dataset or two robustness tests dataset, than the best-conducting NAR and seasonal 
ARIMA (SARIMA) methods in forecasting performances, including the minimum indices of root mean 
square error, mean absolute error and mean absolute percentage error. The epidemic trends of HFMD 
remained stable during the study period, but the reported cases were even at significantly high levels 
with a notable high-risk seasonality in summer, and the incident cases projected by the LSTM would 
still be fairly high with a slightly upward trend in the future. In this regard, the LSTM approach should 
be highlighted in forecasting the epidemics of HFMD, and therefore assisting decision makers in making 
efficient decisions derived from the early detection of the disease incidents.

Hand, foot and mouth disease (HFDM) is a common acute infectious disease in children, the majority (91%) of 
whom are under 5 years1. Most show mild symptoms mainly characterized by fever and rash on the hands, feet 
and mouth. A small minority have more severe complications, such as myocarditis, pulmonary edema and aseptic 
meningoencephalitis, some of which are fatal2. The infections are predominantly caused by coxsackievirus A16 
(CVA16) and human enterovirus 71 (EV71), although other viruses can be involved3. The viruses are thought 
to be predominantly transmitted from child to child by direct and indirect contact, including droplets, droplet 
nuclei, dust, water and food1,4. Furthermore, approximately half of the individuals may be coinfected with more 
than one pathogenic agent5. HFMD was first reported in New Zealand in 1957, and since then, millions of cases 
and many outbreaks have been reported worldwide6. However, the worldwide epidemiology of HFMD has dra-
matically changed during the past decade, especially in East and Southeast Asian countries such as China, Brunei, 
Malaysia, Mongolia, Singapore and Vietnam7, where epidemics and numerous large-scale outbreaks of HFMD 
have occurred, resulting in enormous burdens of disease and global public health concerns3,8,9.

In mainland China, after the first reported case of HFMD in Shanghai in 198110, several outbreaks have been 
reported and have caused the deaths of numerous children3. Moreover, HFMD affects more than two million 
children annually in mainland China11, and the number of cases and deaths caused by HFMD sporadics, epi-
demics and outbreaks invariably tops the list of monitored class C diseases every year since HFMD was desig-
nated as a notifiable disease in 20083,12. Since 2016, although an available vaccine that only plays a role in the 
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infection caused by the EV71 virus has been introduced to prevent HFMD13, the potentially worsening trend in 
the reported cases of HFMD has not been reversed. Importantly, it is estimated that there is an increasing risk of 
ongoing HFMD recurrence in China in recent years14 and HFMD still continues to exert a significant influence 
on the general susceptible population. Early detection and advanced warning for the timing, extent and duration 
of HFMD epidemics will be particularly valuable in formulating effective prevention and intervention strategies 
to minimize the damage caused by the infection15. Therefore, a reliable forecasting technique to track the tempo-
ral patterns of HFMD is needed.

The existing early warning models for forecasting the morbidity and mortality of infectious diseases mainly 
consist of linear and nonlinear models, along with their hybrids16. Additionally, the autoregressive integrated 
moving average (ARIMA) model is one of the best linear models in terms of performance for a specified time 
series17; the nonlinear autoregressive neural network (NAR) approach is among the nonlinear models with arbi-
trarily expected accuracy that can effectively extract the meaningful dynamic information of a data sequence16. 
Both the ARIMA and NAR models are well suited to study the future trends of the morbidity or mortality time 
series of diseases with stationary short-term dependencies based on the aggregated long trajectories16. However, 
long-term trajectory modeling, which is most often encountered in epidemiological prediction, is frequently 
characterized by non-stationary long-term lags over time. Additionally, when employing an NAR model to con-
nect the preceding information located into the time-varying series to the present assignment, with the growing 
gap between the past inputs and estimated outputs, the NAR technique will encounter a vanishing or exploding 
gradient problem during training, which makes it difficult to develop the long-term dependence structure in a 
time series18. The long short-term memory (LSTM) architecture, a type of deep learning network that has been 
extensively studied and applied to quite a few frontier fields, such as voice recognition19, video classification20 and 
speech synthesis systems21, comprises a cluster of recurrently connected subnets that allow the LSTM method 
to store and access information over long periods of time, hence mitigating the vanishing or exploding gradient 
problem22. However, there is a current lack of research focusing specifically on the applicability of LSTM model 
in the forecasting of infectious diseases with time series analysis. Therefore, motivated by the merits of the LSTM 
model, the burden of HFMD and the persistently high incidence in mainland China, we aim to forecast the noti-
fied incident cases of HFMD with a LSTM model. Meanwhile, the simulating and predictive abilities of the LSTM 
model were compared with two especially useful estimation models, including the ARIMA and NAR methods, to 
seek the best-fitting time series modeling technique for HFMD, which will be of great help in initiating guidance 
planning and effective intervention measures for HFMD-prevention in mainland China.

Results
General information.  The time series of notified cases of HFMD included 121 observations from June 2008 
to June 2018, and a total of 19,218,824 cases were reported. The monthly average of case notifications was 158,834, 
which led to an annualized average morbidity rate of 133,894 cases per 100,000 population with a standard error 
of 10,825 cases during the whole period. Between June 2008 and June 2017, 17,072,500 cases occurred, and the 
number of morbidity cases increased from 102,223 to 308,789, with an overall increase of 202.074% throughout 
the past decade. The highest incidence peak of 528,777 cases was observed in May 2014, which was a marginal 
increase of 417.278% compared to June2008. When the Hodrick-Prescott (HP) decomposition approach was 
performed to smooth the short-term monthly effect of the observed incidence case series from June 2008 to June 
2018, it was found that there were clear seasonal peaks, specifically in May and June of every year, a trough in 
January and February and an evident 12-month cyclical process. In addition, notwithstanding a slight decline that 
existed between January 2014 and June 2018, there were still a substantially large number of reported cases each 
year (Fig. 1 and Supplementary Fig. S1).

The best-performing SARIMA model.  Before modeling, the original in-sample observations were 
examined using the augmented Dickey-Fuller (ADF) test (ADF = −2.3318, P = 0.1642), which is indicative of 
an obviously non-stationary morbidity case series. Therefore, according to the results from the HP filter and 
ADF test, the first-order seasonal and non-seasonal differences were used to stabilize the variance and mean 

Figure 1.  Time series of monthly HFMD observed series and decomposition using Hodrick-Prescott filter in 
mainland China from June 2008 to June 2018.
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to suit the modeling requirement of a stationary sequence (ADF = −4.4129, P = 0.0006). Analysis of the spikes 
in the ACF and PACF plots at varying lags with the transformed incidence case series for HFMD resulted in 
the selection of several candidate models by trial and error to further detect the best-performing specification 
(Supplementary Figs S2 and S3). Finally, taking the error correlations between the ACF and PACF plots com-
prehensively and taking the AIC, AICc and SBC into consideration (Fig. 2 and Supplementary Table S1), the 
preferred model of SARIMA(1,1,2)(1,1,0)12 was generated with minimized AIC, AICc and SBC values of 2339.41, 
2340.08 and 2352.23, respectively. When the error correlations at lags fell into the estimated 95% confidence 
bounds (Fig. 2b,c), the Ljung-Box Q test showed that the residuals from the SARIMA model obtained desirable 
white noise (Fig. 2d and Table 1), and the LM test suggested that no ARCH effect was found at various lags in 
the residual series (Table 2). Furthermore, the test results of the estimated parameters were also all significant 
(Supplementary Table S1). Nevertheless, the only complication was that the Q-Q plot of the residuals showed 
a clear departure from normality at the tails (Supplementary Fig. S4). The specified equation of the SARIMA 
model was expressed as (1-B)(1-B12)Xt = (1 + 0.524B + 0.394B2)ɛt/(1 − 0.434B)(1 + 0.6B12). In the same way, the 
reported case series of HFMD from June 2008 to December 2016 and December 2017 was utilized to account for 
the robustness of the model. The best-fitting SARIMA method constructed using the first 103 in-sample observa-
tions was identified as a SARIMA(1,0,1)(1,1,1)12 form, and Supplementary Figs S5–S8 and Tables S2–S5 provide 
the results of the diagnostic tests for this optimal SARIMA approach; the best-simulating SARIMA approach 
obtained with the first 115 observed points was still identified as a SARIMA(1,0,1)(1,1,1)12 form, and the iden-
tified parameters and diagnostic tests for the preferred approach are given in Supplementary Figs S9–S12 and 
Tables S6–S9. Then, these optimal methods chosen were utilized to calculate out-of-sample predictions.

The best-performing NAR model.  To obtain an optimum NAR model, the hidden units and feedback 
delays, ranging from 10 to 35 and from 2 to 8, respectively, were iteratively examined within in-sample data 
points. Ultimately, we identified the best-fitting model with 18 hidden neurons and 5 feedback delays depend-
ent on the comprehensive optimum performance indices aside from the fact that a fat-tailed distribution, com-
pared to the normal distribution, should be utilized (Supplementary Fig. S13). As presented in Supplementary 
Fig. S14, in the preferred model, the minimum MSE values for the training, validation and testing datasets 
and for the entire dataset were 0.0011, 0.0074, 0.0144 and 0.0038, respectively; the maximum R values of the 

Figure 2.  The resulting plots of fit goodness tests from SARIMA(1,1,2)(1,1,0)12 model for HFMD notified 
cases series. (a) Standardized residuals. (b) Autocorrelation function (ACF) graph of errors across varying lag 
times. None of the autocorrelation coefficients are beyond the 95% confidence intervals in this residual series. 
(c) Partial autocorrelation function (PACF) graph of errors. (d) Q-statistic P-values. There are large P values 
at the significance level of 5%. Diagnostic checking indicates the chosen SARIMA specification can provide a 
reasonable approximation to the HFMD notified cases series.
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training, validation, testing subsets and entire dataset were 0.987, 0.931, 0.920 and 0.963, respectively. Moreover, 
the input-to-error correlations and autocorrelations of the produced residuals were never beyond the estimated 
95% uncertainty limits around zero across varying lag times, apart from the one in the ACF plot at lag zero that 
should occur (Fig. 3 and Table 1). The LM test suggested that the ARCH effect that existed in the original data 
largely minimized the errors of the NAR model (Table 2). In addition, the response plot of the estimated val-
ues from the randomly selected training, validation and testing datasets against their corresponding original 
observations at different time points showed that the optimal approach could simulate the data points included 
in the three grouped subsets well because of the small residuals that were mostly located between −0.2 and 0.2 
(Fig. 4). Similarly, according to the modeling steps described above, in these two robustness-test datasets, the 
best-presenting technique fit to the dataset between June 2008 and December 2016 was such an NAR model 
with 17 hidden neurons and 5 feedback delays. The identified layer architecture and statistical measures for this 
preferred network are displayed in Supplementary Figs S15–S19 and Tables S4, S5 and S10. The best-fitting model 
developed utilizing the data from June 2008 to December 2017 was an NAR model with 19 hidden neurons 
and 6 feedback delays, and with regard to the optimal network, all further diagnostic results can be seen in 
Supplementary Figs S20–S24 and Tables S8–S10. Afterwards, these best-performing networks were employed to 
conduct out-of-sample forecasting, and the simulated and forecasted values obtained were back-transformed to 
the original scale because they were computed on the transformed scale.

The best-performing LSTM model.  Generally, the LSTM network with 1 hidden layer surrounded by 1 to 
7 hidden units can satisfy the need for time series modeling. Consequently, to attain the optimal modeling param-
eters for the HFMD series, the range of time steps was set to 1 to 20, and the LSTM model was conducted repeat-
edly utilizing the activation sigmoid function with time steps ranging from 1 to 20 together with a batch size of 1 
using the Adam optimizer technique to stabilize the argument updates to help minimize the loss function of the 
RMSE. All candidate models were iterated through 300 epochs. Ultimately, we identified that the best-simulating 
model with 1 hidden layer containing 5 hidden neurons and 11 time steps relied on a minimum training score 

Lags

SARIMA model NAR model LSTM model

Box-Ljung Q P Box-Ljung Q P Box-Ljung Q P

1 0.046 0.830 0.963 0.326 1.324 0.250

3 0.319 0.956 3.489 0.322 2.818 0.421

6 1.578 0.954 5.051 0.537 3.143 0.791

9 3.295 0.952 6.941 0.643 3.441 0.944

12 8.170 0.772 7.442 0.827 7.141 0.848

15 11.330 0.729 11.443 0.721 12.800 0.618

18 13.122 0.784 11.626 0.866 15.252 0.645

21 14.728 0.836 14.941 0.826 15.355 0.805

24 18.265 0.790 16.648 0.863 16.889 0.853

27 26.991 0.464 17.448 0.920 19.358 0.857

30 29.634 0.485 19.393 0.931 21.247 0.880

33 31.664 0.534 21.815 0.932 23.716 0.883

36 50.369 0.056 24.575 0.925 27.236 0.853

Table 1.  Ljung-Box Q test of the residuals for the selected three optimal models at different lags.

Lags

Observed values SARIMA model NAR model LSTM model

LM-test P LM-test P LM-test P LM-test P

1 54.599 <0.001 1.869 0.172 0.262 0.609 0.002 0.961

3 73.920 <0.001 2.669 0.446 2.823 0.420 0.440 0.932

6 72.753 <0.001 3.575 0.734 2.972 0.812 3.338 0.765

9 71.185 <0.001 4.703 0.859 14.741 0.098 5.216 0.815

12 73.136 <0.001 14.080 0.296 11.422 0.493 7.294 0.838

15 71.275 <0.001 14.566 0.483 30.219 0.011 10.241 0.804

18 69.282 <0.001 15.566 0.623 32.252 0.020 13.735 0.746

21 67.505 <0.001 20.645 0.481 34.845 0.029 0.7462 0.881

24 73.785 <0.001 21.094 0.633 34.774 0.072 14.815 0.926

27 71.487 <0.001 25.263 0.560 36.360 0.108 18.172 0.898

30 68.830 <0.001 27.984 0.571 38.706 0.133 19.899 0.919

33 66.153 <0.001 32.378 0.498 41.990 0.136 22.538 0.915

36 64.210 <0.001 33.766 0.575 46.280 0.117 23.631 0.944

Table 2.  ARCH effect of the observations and residuals of the selected three models with LM test at various lags.
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of RMSE = 0.0031 and a testing score of RMSE = 0.0038 and with maximum R values of the training and vali-
dation subsets and of the overall data (0.972, 0.982 and 0.974, respectively) (Supplementary Fig. S25). In addi-
tion, as presented in Fig. 5, no overfitting occurred during the training process because of the similar downward 
trend between the testing and validation datasets before 300-step iterations. The ACF plot of the produced errors 
revealed no individually evident autocorrelation at varying lags except for the one at lag zero (Fig. 6b), as shown 
in the normal Q-Q plot (Supplementary Fig. S26), indicating that the forecasted residuals of the LSTM model 
were normally distributed to a great extent. The Ljung-Box Q test showed that errors did not depart from the 
assumptions of stochastic white noise (Fig. 6d and Table 1), and the LM test demonstrated that the volatility 
that existed in the actual observations was essentially eliminated in the residuals of the selected LSTM model 
as well (Table 2). Therefore, the model chosen is adequate in capturing the dynamic dependences of this time 
series. Likewise, the in-sample observations used to test the robustness of the model were applied to determine 
the optimal LSTM network as noted earlier: the network with 1 hidden layer including 6 hidden neurons and 12 
time steps was constructed based on the data series from June 2008 to December 2016 was the best-performing; 
the results of the diagnostic tests for this network are summarized in Supplementary Figs S27–S30 and Tables S4, 
S5 and S11. The network with 1 hidden layer containing 5 hidden neurons and 11 time steps built on the basis 
of the data series from June 2008 to December 2017 should be regarded as the best-performing. Supplementary 
Figs S31–S34 and Tables S8, S9 and S11 offer systematic diagnostic tests for this preferred network. After the 
optimal LSTM approaches are selected, they can be employed to predict the epidemic trends of HFMD in the 
upcoming years.

Comparative analysis.  Multiple statistical measures were applied to compare the in-sample simulation and 
out-of-sample predictive accuracies among the three methods. Compared to the SARIMA and NAR models, the 
minimum values of measures concerning the facets of training and testing were observed in the LSTM technique, 
aside from the MAE in the simulated stage of the NAR model, and were fitted to the robustness-test dataset from 
June 2008 to December 2017 (Table 3). For these three constructed models, overall, the curves simulated and 

Figure 3.  The resulting plots of fit goodness tests from the best-fitting NAR model for HFMD notified cases 
series. (a) Standardized residuals. (b) Autocorrelation function (ACF) plot of errors across varying lag times. All 
of the autocorrelations fail to be beyond the estimated 95% uncertainty bounds around zero across varying lag 
times apart from the one from ACF plot at zero lag that should occur. This manifests that the network appears 
to have captured the dependence hidden behind the HFMD notified cases series. (c) Input-to-error correlation 
plot for varying lags. The input-error cross-correlation function illustrates how the residuals are interrelated 
with the series of x(t). All of the correlations fall within the confidence bounds around zero, which hints the 
developed model is a perfect specification. (d) Q-statistic P-values. Analyses form the plots demonstrate the 
constructed model is adequate in excavating the information of this time series.
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predicted by the LSTM model were closer in proximity to the actual values as well (Fig. 7), which further implies 
that the epidemic trajectories of HFMD can be captured reasonably well by the LSTM technique. Hence, the 
LSTM technique was re-modeled to recursively achieve multistep-ahead predictions from July 2018 to December 
2020 (Table 4); it appears that a slightly potential rising risk in the incident cases of HFMD will be observed in 
the forecasting period. In the meantime, the uncertainty bands for the resultant forecasts were estimated utilizing 
simulation of 100 future possible paths by performing bootstrapping with the number of samples of 100023,24 
(Table 4 and Supplementary Table S12).

Discussion
Since 2008, HFMD has regularly captured wide attention owing to both its high incidence and potential health 
hazards for millions of children, along with substantial losses to economy every year in mainland China8. It is 
imperative that specific control and intervention planning be introduced and set by the related public health 
agencies to handle such a wide-ranging issue. However, vital to any initiation planning of HFMD is an accu-
rate prediction of its future temporal patterns. Early detection of HFMD epidemics based on models such as 

Figure 4.  The response of output and target for HFMD time series at various time points. This plot exhibits 
which time points are elected as the training, validation and testing subsets, along with their corresponding 
errors between inputs and targets. In view of the small errors, a further suggestion that the fitting is fairly 
accurate.

Figure 5.  The training and validation performances for LSTM model at 300 epochs. This plot documents 
that no overfitting is observed during the training process due to the similar downward trend before 300-step 
iterations.
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SARIMA and NAR has been a profitable technology for facilitating prevention strategies more effectively10,11,17. 
Therefore, in view of the LSTM model’s flexible capacity to learn what to store and what to abandon during 
information-processing25, to the best of our knowledge, this attempt is the first using an LSTM approach to model 
the long trajectory behaviors of HFMD incidence in mainland China. Our results imply that the LSTM method 
has the potential to obtain a clearer perspective of epidemic trends than the SARIMA and NAR models built on 
the specified predictive horizons. Notably, the LSTM method can make the outcome measurements of MAE, 
MAPE and RMSE markedly drop by 31.993%, 30.182% and 39.154%, respectively, in the training dataset, and can 
make their counterparts in the testing dataset decrease by 21.883%, 28.415% and 16.607%, respectively, compared 
to the SARIMA model. In contrast to the NAR model, the decreased percentages in the training subset for the 
three indices listed above are 0.310%, 29.091% and 13.001%, respectively, and their counterparts in the testing 
subset are 69.035%, 30.328% and 128.304%, respectively. Likewise, according to Fig. 7, it was found that the 
upward or downward trend simulated and forecasted by the LSTM model provides a more reasonable approxi-
mation to the reported points, especially for the identification of high incidence peaks, indicating that the LSTM 
model can adequately capture the essence of the dependence hidden behind the notified case series of HFMD. 
Similarly, in the two datasets used to account for the uncertainty in the model, the accuracy measurement indices 
in the LSTM approach also display the lowest error rates among these chosen, optimal methods, particularly 
in the 18-step ahead predictions, and the performances are as good as can be expected. The scale-dependent 
measure of MAE showed a lower value in the simulated stage of the NAR method than in the LSTM technique 
in the 6-step predictions; this result mainly arises from the fact that there are several simulated values that are 
far away from the observed values. Moreover, it was confirmed that the NAR model is effective in capturing the 
short-term dynamics of the data. In short, in comparison with the SARIMA and NAR models, the established 
LSTM approach not only can better explain the seasonal and trend characteristics of HFMD but also is robust 
with respect to medium-term and long-term forecasts. Apparently, this network can act as an effective tool for 
recognizing the temporal levels of HFMD incident cases in mainland China in upcoming years. Similar to the 
recent literature, which has also found that the LSTM method provides good forecasting power for air pollut-
ant concentrations26, financial time series27 and harmful algal blooms in rivers28. From this point of view, our 
LSTM technique appears to be worthy of being popularized for forecasting the incidence case series of HFMD 

Figure 6.  The resulting plots of fit goodness tests from the LSTM model for HFMD notified cases series. (a) 
Standardized residuals. (b) Autocorrelation function (ACF) plot of errors across varying lag times. The ACF 
plot of forecasted errors reveals no individually evident autocorrelation at varying lags except for the two points 
occurring at lags 11 and 13. For these two lagged points out of the estimated 95% confidence limit, they are also 
reasonable as this phenomenon can easily happen by chance alone. (c) Partial autocorrelation function (PACF) 
plot of residuals. (d) Q-statistic P-values. As shown, All P-values are larger than 0.05. These diagnostics manifest 
that the network is well suited to the dataset.
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in other settings in China and even a wide range of simulation applications, such as for all types of contagious 
diseases or in all time series analyses; however, this conclusion requires further verification. It should, however, 
be noted that with the increasing development of hybrid techniques, numerous combined methods incorporating 
linear approaches such as the SARIMA method17, the gray GM(1,1) model29, the error-trend-seasonal model30 
and the exponential smoothing model31 and nonlinear techniques such as the back propagation neural network 
approach32, the generalized regression neural network method33 and the radical basis function technique32 have 
already been adopted to serve as early warning tools for infectious diseases, and most have obtained satisfactory 
results. Consequently, much work will be required to explore the preferred models for detecting and analyzing 
HFMD morbidity cases in mainland China. In addition, in terms of the modeling measures (MAE, MAPE and 
RMSE), we found that the simulating and forecasting efficacies of the NAR method were slightly superior to the 
SARIMA method in the short-term (6-step) predictions, which is consistent with the earlier studies performed 
by Zhou et al.34,35, yet is incongruous with the study involving modeling the prevalence of schistosomiasis in 
Qianjiang16; in the medium-term (12-step) and long-term (18-step) prediction stages, the NAR method under-
performs the SARIMA model in the testing dataset, but this result is not in line with previous work predicting 
the morbidity of hemorrhagic fever with renal syndrome36 and the daily number of new admission inpatients35. 
It seems possible that these contrasting results are due to the following: the various characteristics of infectious 
diseases from different regions and the NAR approach suffer from overfitting, which is a defect inherent in the 
ANN methods. However, during MATLAB training, a default technique of early stopping was adopted to improve 
generalization and avoid overfitting. Therefore, being further suggestive of the necessity of constructing forecast-
ing techniques for different infectious diseases in various settings and at different time periods, it is superior to 
the NAR technique in short-term forecasting.

It is well established that accurate identification of high-risk seasonality plays a pivotal role in timely imple-
mentation of prevention strategies and the reasonable allocation of resources for HFMD6. In our report, HFMD 
could occur throughout the year, and larger epidemics could be regularly found every 2 to 3 years. Similar trajec-
tory behaviors were also reported in the studies involved in the regions of Vietnam37, Malaysia38, Hong Kong39, 
Taiwan40 and Singapore41, but the underlying drivers fail to be fully elucidated. In our study, evident seasonal and 
cyclical components were observed with the aid of the HP method; for example, every year from April until July, 
there was peak activity accounting for 59.581% of all notified cases, among which May and June were of particular 
concern, as they accounted for 60.952% of cases occurring in high-risk seasons. However, between January and 
February annually, there was a dramatic decline in the reported cases. A similar seasonal distribution was also 
revealed in recent years in other countries, including Singapore41, Malaysia38 and most regions of China6,39,40,42, 
containing Hong Kong, Taiwan, Shenzhen, Ningbo, Shandong, Zunyi, Guangdong and Guangzhou6. Moreover, 
outbreaks commonly occurred during the 4 months as well42,43. Additionally, two peaks could be noted in our 
data from June 2008 to June 2018, the first and stronger peak primarily occurred during the high-risk season, 
and the weaker peak was chiefly observed from August to November annually; the appearance of the two peaks 
was also reported in another study of southern China6. This seasonal pattern is consistent with that of Hong 

Models

Simulated performance Predicted performance

MAE MAPE RMSE MAE MAPE RMSE

In-sample observations from June 2008 to December 2017 6 out-of-sample predictions

SARIMA 30610.689 0.223 44383.404 40101.500 0.387 51150.446

NAR 19652.784 0.222 29740.835 21004.106 0.361 27364.566

LSTM 21548.164 0.203 27716.239 19505.800 0.221 25820.167

Reduced percentages (%)

LSTM vs. SARIMA 29.606 8.969 37.553 51.359 42.894 49.521

LSTM vs. NAR −6.192 8.520 4.562 3.736 36.176 3.019

In-sample observations from June 2008 to June 2017 12 out-of-sample predictions

SARIMA 30268.335 0.275 43330.873 41542.355 0.366 49978.944

NAR 20678.368 0.272 31998.251 61130.494 0.373 105803.807

LSTM 20584.538 0.192 26364.913 32451.557 0.262 41678.916

Reduced percentages (%)

LSTM vs. SARIMA 31.993 30.182 39.154 21.883 28.415 16.607

LSTM vs. NAR 0.310 29.091 13.001 69.035 30.328 128.304

In-sample observations from June 2008 to December 2016 18 out-of-sample predictions

SARIMA 30136.495 0.211 43456.811 43434.889 0.479 53852.232

NAR 19957.815 0.186 29345.366 73291.494 0.629 88387.215

LSTM 19931.051 0.176 25155.016 39729.413 0.351 50951.064

Reduced percentages (%)

LSTM vs. SARIMA 33.864 16.588 42.115 8.531 26.722 5.387

LSTM vs. NAR 0.089 4.739 9.643 77.270 58.038 69.516

Table 3.  The comparison results of in-sample simulating and out-of-sample predicted performances for the 
three models.
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Kong39, Taiwan40 and Vietnam37. The single peak was customarily observed in northern China44, and earlier 
studies on the temporal characteristics of HFMD in Japan3 and Malaysia38 matched that in northern China. 
This may be pertinent to the different viruses, geographical differences or changing risk (e.g., school attendance, 
temperature, humidity or other meteorological drivers). Furthermore, in studies of particular regions of China, 
the leading agents (EV71 and CVA16) are also distributed in various peaks45, where the pathogenic agent EV71 
is predominant in the stronger peak months. By contrast, CVA16 is more inclined to circulate in the more vul-
nerable population. These two etiologic factors are notably attenuated in January and February. Regarding the 
seasonal variations, climatic factors are possibly responsible for such a discrepancy (e.g., the ability of the caus-
ative agents to survive outside the host, the variability in the behavior and immune level of the host by climatic 
factors, and the inclination of people to go outdoors in summer rather than in winter increases the chances of 
person-to-person contact causing the etiologic agents to more easily achieve transmission among humans by 
virtue of spreading-factors)6.

Figure 7.  The comparisons of in-sample simulations and out-of-sample predictions among these three models 
selected. (a) Comparison between the actual observations and the results from the SARIMA model. (b) 
Comparison between the actual observations and the results from the NAR model. (c) Comparison between 
the actual observations and the results from the LSTM model. The shaded area represents the validation sets 
from July 2017 to June 2018, in which the comparative results between the values predicted by the three selected 
models and the actual suggest that the curve forecasted by LSTM model is more proximal to the actual. As 
presented in (c), the red dotted line stands for the trends from July 2018 to December 2020 projected by the 
LSTM method.
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To understand the epidemic situation in advance of the coming years, the constructed LSTM model with the 
best-fitting and best-predicting performance was adopted to calculate forecasts for the next two years. The results 
indicated that although the estimated observations would not show a large amplitude of oscillations relative to 
the in-sample data obtained, HFMD morbidity cases remained high, among which the highest-risk seasonality 
seemed to occur in June and July. Similar to prior findings6, two apparent seasonal peaks will be observed sepa-
rately in subsequent Junes and Octobers, in all probability. Thus, due attention and instant action should be paid 
to these months and a response should be prompted, such as health promotion education; prevention at and 
control of key locations, particularly in nurseries and schools; vaccination and financial support. In addition, the 
prevention and control strategies for the rest of the low-risk months should fail to be ignored. In summary, the 
expected number of cases of HFMD remain present and still comparatively large, demonstrating that China is still 
afflicted with a chronic threat of HFMD.

Some limitations should be acknowledged in this work. First, no theoretical guidance can be adopted to iden-
tify the optimum number of hidden units, feedback delays and other key parameters during the establishment 
of ANN models. In practice, they are frequently selected by trial and error, and the specific forecasting process 
is poorly understood. Second, estimating the 95% uncertainty bounds for the predictions remains an additional 
problem. Third, the aggregated HFMD incidence case data utilized were obtained from nationwide passive infec-
tious disease surveillance. We thus fail to rule out artifactual monitoring biases (e.g., substantial underreporting, 
misdiagnosis and delay). Fourth, the statistical predictions do not take known drivers into account and lack any 
epidemiological data other than case numbers and months, owing to their unavailability. Therefore, whether 
further studies that take these variables into account will have the potential to boost the fit and predictive ability 
remains to be authenticated. Fifth, albeit the LSTM technique built can be considered to be an instrumental tool 
for the medium-long-term estimation of future trends in HFMD incidence case data, in applications, this network 
is expected to be updated in due course with the incident cases to ensure its superiority in predictive performance. 
Sixth, detailed data on HFMD notifications are missing (e.g., age and sex), which precludes further analysis in 
the present work. Lastly, the LSTM model was developed based only on nationwide monitoring data over the 
period from 2008 to2018. These results therefore need to be interpreted with caution, and the analytic results can 
represent only entire epidemics of HFMD on the Chinese mainland. Remodeling for the region-specific notified 
HFMD cases time series may act as guidance for the formulation of targeted public health strategies, and whether 
the model is appropriate to calculate predictions for other kinds of communicable diseases requires further study.

In conclusion, notwithstanding its flaws, our study does indicate that the LSTM model established can provide 
more accurate predictions, be it in the in-sample dataset or the out-of-sample dataset. For the HFMD notified 
case time series compared with the individual SARIMA and NAR models, the LSTM model may be a beneficial 
tool for the early detection and advanced warning of HFMD activities in mainland China and can allow the offi-
cial government to allocate health resources effectively and appropriately formulate the preventive and control 
planning for HFMD. Additionally, the number of forecasted incident cases are still relatively large and indeed 
present in the imminent future, this issue warrants to be resolved urgently and strategically within the effective 
measures taken.

Materials and Methods
Data collection.  In this study, the aggregated monthly and yearly reported cases of HFMD, available from 
June 2008 to June 2018, were obtained from the notifiable infectious disease monitoring system provided by the 
Chinese Center for Disease Control and Prevention (CDC) (http://www.nhfpc.gov.cn/jkj/s3578/new_list.shtml). 
A total of 121 observations covering 11 years were collated and summarized. Subsequently, the whole dataset was 
split into two blocks to build the models, among which the first 109 data points (from June 2008 to June 2017) 

Time Predictions 95% uncertainty bands Time Predictions 95% uncertainty bands

Jul-2018 417719 [366119, 469320] Oct-2019 179164 [120755, 237573]

Aug-2018 232278 [192745, 271810] Nov-2019 197632 [153917, 241346]

Sep-2018 120464 [73475, 167453] Dec-2019 116959 [80180, 153739]

Oct-2018 164881 [114495, 215267] Jan-2020 36199 [−650, 73047]

Nov-2018 188281 [153866, 222697] Feb-2020 2426 [−38061, 42912]

Dec-2018 122213 [92903, 151522] Mar-2020 115231 [61218, 169245]

Jan-2019 25824 [−12713, 64359] Apr-2020 210295 [144546, 276044]

Feb-2019 8856 [−29540, 47252] May-2020 240488 [159436, 321540]

Mar-2019 118917 [66934, 170900] Jun-2020 460614 [397661, 523566]

Apr-2019 176434 [114298, 238571] Jul-2020 419429 [342643, 496216]

May-2019 165857 [107939, 223776] Aug-2020 232450 [174459, 290441]

Jun-2019 339025 [299026, 379023] Sep-2020 121814 [67407, 176222]

Jul-2019 369045 [309402, 428689] Oct-2020 168242 [108510, 2279730]

Aug-2019 272607 [207759, 337456] Nov-2020 194318 [145616, 243020]

Sep-2019 140126 [81893, 198359] Dec-2020 126442 [85527, 167356]

Table 4.  The predictive incident cases of HFMD using the best-presenting LSTM technique from July 2018 to 
December 2020.
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were regarded as in-sample modeling horizons, while the remaining 12 data points (from July 2017 to June 2018) 
were considered as out-of-sample predictive horizons. Since the sample length and time periods adopted to con-
struct the models might have an impact on the forecasting power, two additional data categories were provided 
to test the robustness of the models developed, among which the first 103 (from June 2008 to December 2016) 
and 115 data points (from June 2008 to December 2017) were considered as in-sample modeling horizons, while 
the other 18 (from January 2017 to June 2018) and 6 data points (from January 2018 to June 2018) were used as 
out-of-sample predictive horizons.

In China, HFMD is clinically diagnosed by physicians, and the laboratory confirmed the diagnosis dependent 
on the detection of specific nucleic acids, the isolation of enterovirus related to pathogenic factors and the detec-
tion of a fourfold change in neutralizing antibodies. In addition, verified cases must be registered within 24 hours, 
and duplicate cases must be deleted by professionals at the end of the same month. Ethical approval or consent is 
not required for our present study owing to the public availability of HFMD surveillance data in China.

Constructing the SARIMA model.  The Box-Jenkins method of ARIMA(p, d, q) has been the most com-
monly used statistical forecasting technique for time series data that display no seasonality46. However, in appli-
cations, particularly in the morbidity time series of diseases, this time series frequently shows marked seasonal 
and cyclic tendencies30. Consequently, to avert losing significant series traits, a seasonal ARIMA method, spec-
ified as SARIMA(p, d, q)(P, D, Q)s, has been proposed to reveal data with those patterns47. In this model, the 
actual observation can be represented as a linear combination of the prior observation and the error sequence. 
As such, the secular change and seasonal variation of time series are captured in the SARIMA method as inter-
pretable terms48. Although, of note, the linear SARIMA method can also model periodicity, the fitted cyclic 
change remains invariably symmetric. In our present study, considering the characteristics of HFMD incident 
case sequences containing evident cyclical and seasonality6, a typical SARIMA model will be a useful tool in pre-
dicting the future temporal trends17, among which the seasonal part of HFMD was taken for the predictors and 
the monthly HFMD incidence time series was used for the dependent variable. The final formula of a SARIMA 
model can be expressed as:
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where B refers to the backshift operator, ɛt denotes the errors from HFMD series, S signifies the length of seasonal 
cycle of HFMD notifications, d and D are the non-seasonal and seasonal differenced times, respectively. In the 
SARIMA model notation, p and q represent the orders of the non-seasonal autoregressive and moving average 
models, respectively; P and Q represent the orders of the seasonal autoregressive and moving average models, 
respectively. ∇ = − B(1 )dd , ∇ = − B(1 )S
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We utilized the R statistical package (version 3.4.3, R Development Core Team, Vienna, Austria) and SPSS 
software (version 17.0, IBM Corp, Armonk, NY) to construct the SARIMA model. The development of the 
SARIMA approach is under the assumption of a stationary incidence time series10. Therefore, in this research, the 
ADF test was used to identify whether the actual reported cases and processed data using differencing or a trans-
formation technique accomplished stationarity49. Afterwards, the autocorrelation function (ACF) and partial 
autocorrelation function (PACF) plots, the Schwarz Bayesian criterion (SBC), the Akaike information criterion 
(AIC) and the corrected Akaike Information criterion (AICc), along with the Lagrangian multiplier (LM) and 
Ljung-Box Q tests were applied to estimate and diagnose the model50. The above mentioned modeling procedures 
were repeatedly conducted until the best-performing model was ultimately discovered.

Establishing the NAR model.  Complexities and challenges in understanding the temporal charac-
teristics of infectious diseases that exist are the complicated nonlinear interactions among different dimen-
sions in real-world scenarios16. Artificial neural networks (ANNs) can adequately enable arbitrarily intricate 
non-stationary series to attain any desired accuracy owing to their powerful flexible nonlinear mapping capacity, 
and they have been considered as a function approximator applied in the domains of environmental forecast-
ing, electrical energy and medicine10,16. The NAR model is a leading shallow, dynamic recurrent neural network 
(RNN) that is based on the linear autoregressive model with the ability to time-varying the state of interconnected 
neurons51, can be adopted to explore the nonlinear relationship between the response variable and its predictors 
owing to its network architecture with a hidden layer accompanied by a sigmoid transfer function that allows it to 
have no restrictions on the parameters that comply with the requirement of stationarity52–54. Furthermore, with 
the aid of tapped delay lines, the NAR technique also has a short-term memory function for the previous inputs 
and outputs, which makes its response at any given time rely not only on the present inputs but on the history of 
the inputs series as well55. For a time series with obvious seasonality, when providing suitable observations from 
the same season as inputs, this network can capture the time series components of periodicity, seasonality and 
secular trend adequately well with respect to the appropriate inputs that require a multitude of experiments to 
discover the optimum. Accordingly, this method can provide reliable forecasts for current HFMD incidence case 
series including linear and nonlinear information. The specified equation of the NAR method can be written as:

= − − ⋅ ⋅ ⋅ −y t f y t y t y t d( ) ( ( 1), ( 2), , ( )), (2)
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where y(t) represents the predicted points of the HFMD incidence series relied merely on the prior data of lagged 
period d.

In this work, the graphical user interface (GUI) in MATLAB (Version R2014a, MathWorks, Natick, MA, USA) 
was employed to automatically create an advanced script prior to modeling an NAR. First, the actual HFMD 
observations were processed between 0 and 1 using a normalized approach56 to facilitate further analysis. Second, 
the dividerand function was used to randomly divide the in-sample data into training, validation and testing 
subsets, following ratios of 70%, 15% and 15%, respectively. In the robustness-test data, the abovementioned 
ratio in the training, validation and testing subsets was also used in the first test dataset, while another commonly 
used ratio of 80%, 10% and 10% corresponding to the training, validation and testing subsets, respectively, was 
employed in the second test dataset. Third, the number of hidden neurons and delays d were adjusted by repeated 
attempts with the Levenberg-Marquardt algorithm in an open feedback loop. The response plot of outputs and 
targets, correlograms and input-error cross-correlation plots, coupled with the mean square error (MSE) and 
correlation coefficient (R), were offered to choose the best-fitting model. Finally, the training open-loop form was 
transformed to a closed loop to achieve a goal of multistep-ahead forecasting (Supplementary Fig. S35).

Establishing the LSTM model.  As mentioned above, coincident with the increase in the time lag has been 
a decrease in the long-term learning ability during the training of an NAR method due to a vanishing or explod-
ing gradient problem, which is a major flaw for NAR method forecasting26. A LSTM model, not the least prevalent 
and rewarding variant of the conventional RNNs, can overcome this disadvantage encountered in an NAR model 
as it is capable of maintaining state and identifying traits over the length of the sequences used26,27. The LSTM 
technique has a special layered architecture with memory blocks that contain one or more self-connected mem-
ory cells22,57, surrounded by three gating units, including the input, output and forget gates, that can continuously 
perform write, read and reset operations, to preserve information (Supplementary Fig. S36)57,58. Such a configu-
ration can keep the states persisting or communicating between updates of the weights with the progress of each 
epoch; moreover, it can reinforce the RNN by capturing the long-term dynamics of the time series components 
of periodicity, seasonality and secular trend in addition to the short-term dynamics. The estimated equations of 
the LSTM model can be defined as:

σ= + + +− −i W x W h W c b( ) (3)t xi t hi t ci t i1 1

σ= + + +− −f W x W h W c b( ) (4)t xf t hf t cf t f1 1

= + + + +− − −c f c i W x W h W c btanh( ) (5)t t t t xc t hc t ci t c1 1 1

σ= + + +− −o W x W h W c b( ) (6)t xo t ho t co t o1 1

=h o ctanh( ) (7)t t t

= − + + +−y t W f W y t W h b b( ) ( ( ( 1) ) (8)yh hx hh t h y1

where it refers to the input gate; ft is the forget gate; ct stands for the states of memory cell at time t; ot represents 
the output gate; ht is the hidden states at time t; Wxc, Wxi, Wxf and Wxo are the weight matrices connecting the 
input signals; xt, Whc, Whi, Whf and Who represent the weight matrices connecting the hidden layer output signals; 
ht, Wci, Wcf and Wco stand for the diagonal matrices connecting the neuron activation functions; bi, bc, bf, bo, bh and 
by refer to the bias vectors; σ is the activation function (tanh or sigmoid); y(t) is the predicted points of the HFMD 
incidence series; Whx, Whh, and Wyh are the input-hidden weight matrix, hidden-hidden weight matrix and 
hidden-output weight matrix, respectively; and = ′− − − −

y y y y( )t t t t d1 1, 2, ,  is a vector including time steps of the 
series.

Our prediction project using the LSTM model for regression was conducted with Keras. First, the actual 
HFMD notifications were rescaled between 0 and 1 using a normalized preprocessing approach. Second, 
in-sample data were separated into two blocks, 75% of them would be used for the training model, whereas the 
remaining 25% of the data would be utilized to validate the generalization and to simulate performance. Similarly, 
in the robustness-test data, the same data classification described above was applied to the first test dataset, while 
70% and 30% data points were taken as training and validation subsets, respectively, out of the second test data-
set. Third, the back propagation through time (BPTT) algorithm59 was adopted for LSTM training with various 
time steps, and hidden layer neurons used to select the preferred model relied on the minimum root mean square 
error loss and satisfactory ACF plot22. Finally, the best-fitting architecture was chosen to generate out-of-sample 
predictions, and then the results should further be transformed to the simulated and forecasted values from the 
original observations with the inverse transform technique.

Measuring for accuracy.  In order to distinguish the stimulation and forecasting accuracies from the 
selected various models, the root mean square error (RMSE), mean absolute error (MAE) and mean absolute 
percentage error (MAPE) were ultimately adopted to measure the performance accuracy.
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Where Xi stands for the actual notified notifications, Xi represents the simulated and predictive values with the 
selected preferred methods, N is the number of simulations and predictions under the models used.

Data Availability
These data can be extracted as presented in the website of data collection or please contact the first author on 
reasonable request.
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