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Abstract

Metacaspase (MC), which is discovered gene family with distant caspase homologs in

plants, fungi, and protozoa, may be involved in programmed cell death (PCD) processes

during plant development and respond abiotic and biotic stresses. To reveal the evolution-

ary relationship of MC gene family in Rosaceae genomes, we identified 8, 7, 8, 12, 12, and

23 MC genes in the genomes of Fragaria vesca, Prunus mume, Prunus persica, Pyrus com-

munis, Pyrus bretschneideri and Malus domestica, respectively. Phylogenetic analysis sug-

gested that the MC genes could be grouped into three clades: Type I*, Type I and Type II,

which was supported by gene structure and conserved motif analysis. Microsynteny analy-

sis revealed that MC genes present in the corresponding syntenic blocks of P. communis,

P. bretschneideri and M. domestica, and further suggested that large-scale duplication

events play an important role in the expansion of MC gene family members in these three

genomes than other Rosaceae plants (F. vesca, P. mume and P. persica). RNA-seq data

showed the specific expression patterns of PbMC genes in response to drought stress. The

expression analysis of MC genes demonstrated that PbMC01 and PbMC03 were able to be

detected in all four pear pollen tubes and seven fruit development stages. The current study

highlighted the evolutionary relationship and duplication of the MC gene family in these six

Rosaceae genomes and provided appropriate candidate genes for further studies in P.

bretschneideri.

Introduction

Programmed cell death (PCD) is a developmental and genetically controlled cell death process,

which is divided into two broad categories: environmentally induced PCD and developmen-

tally regulated PCD in plants [1–4]. Environmentally induced PCD is primarily caused by

external abiotic or biotic signals, such as drought, hormone, heat shock and pathogens stresses
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[5–8]. In contrast, developmentally regulated PCD covers most of the organs and tissues of

plants, such as fruit, root, stem, leave and xylem, which caused by internal factors and occurs

at predictable locations and times [9–11].

Metacaspases (MCs) are multifunctional proteins that are involved in PCD regulation, cell

cycle and senescence, and oxidative stress. According to the sequence similarities and domain

structure, plant MCs are divided into two types: Type-I and Type-II [1, 12]. Additionally, a

subgroup appeared from the Type-I and named as Type-I�, which exclude N-terminal zinc-

finger motif [1]. These different types MC proteins contained a putative conserved caspase-

like domain (PF00656), which consists of p10 and p20 subunits [1, 12]. Additionally, Type-I

MC proteins have a short linker between the p20 and p10 subunits and an N-terminal pro-

domain upstream of the p20 subunit. Type-II MC proteins did not contain N-terminal pro-

domain upstream of the p20 subunit, but it has a longer linker between the p20 and p10 sub-

units than Type-I MC proteins [1, 12, 13].

MC genes play an important role in stress-induced and developmentally regulated PCD.

Tsiatsiani et al. (2011) have been identified nineMCs (AtMC1−AtMC9) in Arabidopsis thali-
ana [2]. Under the stress of UV-C and H2O2, the expression of AtMC8 was up-regulated in A.

thaliana, which accelerated the process of the PCD in protoplasts [14]. AtMC1 and AtMC2
have been reported as positive and negative regulators, respectively, to antagonize pathogen-

triggered PCD [15]. AtMCP2b (i.e. AtMC5) can activate apoptotic-like cell death during early

senescence process and oxidative stress [16]. AtMC9 plays an important role in the process of

autolysis during vessel cell death [9]. Additionally, the Nicotiana benthamiana NbMCA1, Cap-
sicum annuum CaMC9, Triticum aestivum TaMC4 have been reported to function in stress

response and PCD [4, 6, 17].

Systematic analysis and genome-wide identification ofMC gene family have been reported

inHordeum vulgare, Solanum lycopersicum,Hevea brasiliensis, Vitis vinifera, Arabidopsis thali-
ana and Oryza sativa [18–23]. However, investigations on theMC gene family in Rosaceae

genomes are limited. F. vesca, P.mume, P. persica, P. communis, P. bretschneideri andM.

domestica are important worldwide cultivated fruit trees, and they belong to Rosaceae family

[24–29]. In the present study, we identifiedMC gene family members in these six genomes by

screening these genome sequences using bioinformatics approaches. Then we characterized

their phylogenetic relationship, gene structures, chromosomal distribution, microsynteny and

expression patterns. The current study explored the evolutionary relationship ofMC gene fam-

ily members in the Rosaceae plants and provided insights into the functions of PbMCs during

P. bretschneideri pollen tube and fruit development.

Materials and methods

Identification and characterization of the MC gene family in Rosaceae

genomes

Genome resources and predicted proteins of P. bretschneideri (version 1.0) was downloaded

from the GigaDB (http://gigadb.org/), P. persica (version 1.0) from Ensembl Plants (http://

plants.ensembl.org/index.html), P.mume (version 1.0) from PGDD database (http://chibba.

agtec.uga.edu/duplication/), F. vesca (version 2.0) from PLAZA v2.5 (https://bioinformatics.

psb.ugent.be/plaza/versions/plaza_v2_5/), P. communi (version 1.0) from Pear Genome Proj-

ect (http://peargenome.njau.edu.cn/),M. domestica (version 3.0) from GDR database (https://

www.rosaceae.org/). Three strategies were used to identify gene-encoding MC from six Rosa-

ceae plants at the whole-genome level. First, the published Arabidopsis thalianaMC protein

sequences were used to query putative MC homologous proteins of F. vesca, P.mume, P. per-
sica, P. communis, P. bretschneideri andM. domestica using BLASTp software with E-value
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cutoff 1×10−5. Subsequently, HMM (Hidden Markov Model) profiles of the Caspase-like

domain (PF00656) in the Pfam database was searched against the local database using

HMMER 3.0 software with E-values cutoff 1×10−3 [30, 31]. Finally, the Pfam and Smart data-

bases were used to check these candidate sequences that contained Caspase-like domain

(PF00656) [32, 33]. Additionally, we used the MEROPS online tool (https://www.ebi.ac.uk/

merops/) [2] to predict the distribution of Type-I�, Type-I and Type-IIMC genes in these

Rosaceae genomes.

Sequence alignment and phylogenetic analysis of MC proteins in Rosaceae

genomes

To further insight into the phylogenetic relationship of MC proteins in F. vesca, P.mume, P.

persica, P. communis, P. bretschneideri andM. domestica, we aligned multiple sequence align-

ments including FvMCs, PmMCs, PpMCs, PcMCs, PbMCs and MdMCs using MAFFT soft-

ware [34, 35]. For all MC proteins, we determined the best substitution model using modeltest

software [36]. Subsequently, the IQ-TREE software was used to generate the Maximum Likeli-

hood (ML) tree with 1000 bootstrap replications and VT+G4 model [37].

Gene structures and chromosomal locations of MC genes in Rosaceae genomes

To determine the location ofMC genes on chromosomes, the published Arabidopsis thaliana
MC genes were used as query sequences against local Rosaceae genome database using BLAST

software [38]. To display gene structure of eachMC gene, the GSDS website was used to parse

GFF3 files and visualize them [39]. The MEME program Version 4.11.1 was used to identify

the conserved motifs according to previously published manuscripts [40–42].

Microsynteny analysis of MC genes in Rosaceae genomes

The microsynteny analysis of eachMC gene was carried out using Microsyn software and

MCScanX pipeline [43, 44], based on the previous description [39, 45, 46]. Firstly, three files

(i.e. the gene identifier file, the CDS file and the gene list file) were generated. Subsequently,

we used local BLAST software to compare whole proteins of each species with E-value less

than 1e−10. The position and blast output files of all protein-coding genes were imported into

MCScanX software to scan the collinearity gene pairs and the Circos software was used to dis-

play the results of collinearity gene pairs [47]. Nonsynonymous (Ka), synonymous (Ks) and

Ka/Ks ratios were estimated using DnaSP v5 software [48].

Expression analysis of MC genes

In the present study, the RNA-Seq data were downloaded from the public NCBI database, and

then these data was used to survey the expression ofMC genes. The accession numbers and

sample details for above the RNA-Seq data have mentioned in the availability of data and

materials section. The low-quality base-calls (Q< 20) of raw reads were deleted by FASTX-

toolkit. The clean reads were mapped to the reference genome using TopHat2 software with

default parameters [49, 50]. Finally, we used the Cufflinks software to assemble and estimate

the expression FPKM values [50, 51]. The R software was used to visualize the gene expression

profiles ofMC genes.

Quantitative real-time PCR (qRT-PCR)

The methods for collection and drying, and in vitro culture of pear pollen grains were based

on the procedures according to the previously published manuscripts [52, 53]. The pollen

Metacaspase gene family in Rosaceae genomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0211635 February 22, 2019 3 / 18

https://www.ebi.ac.uk/merops/
https://www.ebi.ac.uk/merops/
https://doi.org/10.1371/journal.pone.0211635


samples were collected from 40-year-old pear trees (Pyrus bretschneideri. Rehd), and mature

pollen was immediately frozen in liquid nitrogen and stored at −80˚C until use. The pollen

grains were cultured in this medium for hydration, germination and growth. The medium

components were 450 mM sucrose, 25 mM 2-(N-morpholino) ethanesulfonic acid hydrate,

15% (w/v) PEG4000, 1.5 mM H3BO3 and 0.5 mM Ca(NO3)2, with pH 6.0–6.5 (pH was

adjusted with KOH). The guanidine thiocyanate extraction method was used to isolate the

total RNAs by RNA Plus (Takara) [54, 55]. According to the manufacturer’s instructions, first-

strand cDNAs were synthesized from DNaseI-treated total RNA using Oligo(dT) primers and

reverse transcriptase (TIANGEN, China). The qRT-PCR was conducted on a CFX96 Touch

Real-Time PCR Detection System (BIO-RAD), based on the manufacturer’s protocol. Primer

Express 3.0 software (Applied Biosystems) was used to design the primers of PbMC genes for

qRT-PCR (S1 Table). Relative expression levels of PbMC genes were normalized against the P.

bretschneideri Actin gene (NCBI ID AF386514). The relative expression level was calculated as

2−ΔΔCt as described previously [41, 56]. In the present study, three biological replicates were

conducted for each sample.

Results

Identification of MC genes in Rosaceae genomes

To identify theMC gene family members in Rosaceae genomes, HMM model and BlastP were

used to search against the whole-genome sequence, with the procedures described previously

[45, 57]. We identified 70 genes as members ofMC gene family in these six Rosaceae genomes,

including 8 FvMC genes in Fragaria vesca, 7 PmMC genes in Prunus mume, 8 PpMC genes in

Prunus persica, 12 PcMC genes in Pyrus communis, 12 PbMC genes in Pyrus bretschneideri and

23MdMC genes inMalus domestica. The identifiedMC genes were designated as FvMC,

PmMC, PpMC, PcMC, PbMC, andMdMC followed by number. The theoretical pI values of 24

MC proteins, such as MdMC08 (9.13), FvMC06 (8.98) and FvMC06 (8.53) were above 7, sug-

gesting that these proteins were alkaline, however, the remaining sequences encoded by the

otherMC genes were acidic (<7). The detailed parameters ofMC genes were listed in S2

Table, including theoretical pI, molecular weight, protein length, and chromosome location.

Phylogenetic and structural analysis of MC genes in Rosaceae genomes

MCs could be grouped into three classes (Type I�, Type I and Type II) according their con-

served domains [2]. In the present study, to obtain insight into the phylogenetic relationships

and evolutionary history in the MC family, MC proteins from F. vesca, P.mume, P. persica, P.

communis, P. bretschneideri andM. domestica were compared for comprehensive phylogenetic

analysis. As shown in Fig 1 and S1 Fig, the Maximum-likelihood tree of theseMC genes was

classified into three classes, which was supported the above discrimination based on their con-

served domains. Subsequently, we found that the class I contained 42 type IMC genes, and it

was further divided into four subclasses: A, B, C and D with each subclass having 14, 10, 8 and

10 members, respectively. The class II had 20 type IIMC genes, and it was categorized into two

subclasses: F and G, with each class containing 5 and 15 members, respectively. The class III

contained 8 type I� MC genes, which is named E.MC genes in P.mume, P. persica, P. commu-
nis andM. domestica distributed in all the seven classes, but there are no members from F.

vesca in class C and no members from P. bretschneideri in class E and F (Fig 1).

To gain understanding in the structural diversity ofMC gene family members, we built

exon-intron organization maps of eachMC gene, as shown in Fig 2. The 70MC gene family

members have different numbers of introns, ranging from 1 to 17, with the exception of

MdMC06,MdMC23, PbMC06, PcMC06 and PcMC04 having no introns. While PcMC02
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containing the highest introns (17) among theseMC genes. Additionally, we found that

the mostMC gene family members clustered in the same subfamily contained similar exon-

intron (i.e. intron numbers and exon length) distribution patterns. For example, four genes

(PmMC01, PpMC06, PcMC12 andMdMC04) locating in the subfamily F shared one intron,

Fig 1. Phylogenetic tree of MC genes from six Rosaceae species, including F. vesca, P. mume, P. persica, P. communis, P. bretschneideri and M. domestica.

The Maximum-likelihood tree was generated using IQ-TREE software, andMsMC (CBN76943.1) from Ectocarpus siliculosus was used as the out-group. The

size of the point corresponds to the size of the bootstrap value. The yellow, red and green lines highlight the paralogous gene pairs ofMC from the P.

bretschneideri, P. communis,M. domestica, respectively. However, the blue lines highlight the orthologous gene pairs ofMC among these six Rosaceae genomes.

https://doi.org/10.1371/journal.pone.0211635.g001
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and four genes (FvMC06,MdMC08, PmMC05 and PpMC08) belonging to subfamily D had

four introns. Likewise, mostMC gene family members in the subfamily A had no or one intron

except PbMC03,MdMC07 and PbMC07, which contained 2, 2 and 4 introns, respectively. Sub-

sequently, we also investigated the conserved motifs of MC proteins from Rosaceae genomes

to understand the diversified functions of these proteins. Twenty conserved motifs were iden-

tified and designated as motif 1 to motif 20 in MC proteins, as shown in S3 Table and Fig 2.

Additionally, we used the Pfam and SMART database to annotate each of the putative motifs

from MEME software. Motif 1, motif 2, motif 3, motif 4, motif 6 and motif 10 were found to

encode the Caspase-like domain (PF00656) and were scanned one or more times among all

the seven subfamily members. For example, motif 1 and motif 3 were scanned in subfamily F,

and motif 1, motif 2, motif 3 and motif 10 were scanned in subfamily C. Remarkably, most

MC members within the same subfamily, especially the most closely related members (e.g.

PmMC05/PpMC08, PbMC01/MdMC16, PcMC05/PcMC09 and PbMC04/PcMC08), generally

contained highly similar motif compositions and distributions, indicating function may be

similarities among these MC proteins. We also noted that different subfamilies had great dif-

ference within motif compositions and distributions, such as proteins in subfamily C con-

tained motif 8, motif 12, motif 13, motif 14, motif 16 and motif 17, while subfamily E members

possessed motif 1, motif 7 and motif 18. At the same time, several motifs were exclusively iden-

tified in a particular subfamily, indicating that these motifs may play an important role in the

subfamily, for example, motif 7 was unique to the proteins in subfamily E.

Chromosomal distribution and intraspecies microsynteny of MC genes in

Rosaceae genomes

According to the positions ofMC genes in Rosaceae genomes, we determined the physical

locations of these genes among the chromosomes. These data suggested that the distribution

of 70MC genes on the chromosomes of the six Rosaceae species was not evenly distributed

(Fig 3). For example, FvMCs were distributed on four of 7 chromosomes (chr 3, chr 5, chr 6

and chr 7), PbMCs were dispersed on six of 17 chromosomes (chr 1, chr 5, chr 7, chr 9, chr 10

and chr 12), while PcMCs only were dispersed on three of 17 chromosomes (chr 5, chr 6 and

chr 10). ForM. domestica, chromosome 10 harbors 6MdMCs, the highest number among all

M. domestica chromosomes (S2 Table), and followed by chromosome 15 contained 4MdMCs.
For P. communis and P. bretschneideri, chromosome 10 also harbors the highest number (3)

among all P. communis and P. bretschneideri chromosomes (Fig 3 and S2 Table).

Based on the whole genome analysis in these six Rosaceae genomes, P. bretschneideri pos-

sessed the most putative duplicated gene pairs, such as PbMC07/PbMC08 and PbMC03/

PbMC07,M. domestica contained nine gene pairs, P. communis had five gene pairs (S4 Table),

whereas other three species not contained any gene pairs (Fig 4). It might because these P.

bretschneideri, P. communis andM. domestica have experienced two genome-wide duplication

events [27, 46]. Remarkably, we found that no any gene pairs were generated by tandem dupli-

cation inM. domestica, P. bretschneider and P. communis, indicating that tandem duplication

may have made little or no contribution to the expansion of theMC gene family in these six

Rosaceae genomes. Additionally, the relationships of the flanking sequences of theseMC gene

pairs were further analyzed using MCScanX and MicroSyn software (Figs 4 and 5). In P.

bretschneideri, we identified three conserved genes flanking six pairs. Eight other pairs ofMC

Fig 2. Exon-intron structure and conserved protein motif analyses of MC genes from six Rosaceae species. Exons and introns are indicated

by green and grey, respectively. All motifs were scanned by MEME online tool using the complete amino acid sequences of all MC proteins from

six Rosaceae species.

https://doi.org/10.1371/journal.pone.0211635.g002
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genes had more than three pairs of conserved flanking genes, such as PbMC07/PbMC08 and

PbMC03/PbMC07 had 17 and 16 gene pairs of conserved flanking genes, respectively. In

P. communis, we found eleven conserved genes flanking two pairs, PcMC01/ PcMC04 and

PcMC01/ PcMC05. Three other pairs ofMC genes (PcMC02/ PcMC08, PcMC04/ PcMC05 and

Fig 3. Chromosomal location of MC genes among F. vesca (Fv), P. mume (Pm), P. persica (Pp), P. communis (Pc), P. bretschneideri (Pb) and M.

domestica (Md). Based on the GFF3 annotation information, the physical location of eachMC was mapped. The scale is indicated by mega bases (Mb). The

inner circle represents the species evolution tree, and the blue star indicated the whole genome duplication (WGD) event.

https://doi.org/10.1371/journal.pone.0211635.g003

Metacaspase gene family in Rosaceae genomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0211635 February 22, 2019 8 / 18

https://doi.org/10.1371/journal.pone.0211635.g003
https://doi.org/10.1371/journal.pone.0211635


PcMC06/ PcMC07) contained less than five pairs of conserved flanking genes. InM. domestica,

all pairs ofMC genes had more than four pairs of conserved flanking genes, such asMdMC06/

MdMC16 had eight gene pairs of conserved flanking genes. Therefore, we speculated that

large-scale duplication events may contribute to the expansion ofMC gene family members

during evolution in these three Rosaceae species (Fig 5).

Fig 4. Synteny of six Rosaceae plants MC genes. All the syntenic MC genes were located in the map and then links by different lines. Chromosome

box numbers represent sequence lengths in megabases (Mb).

https://doi.org/10.1371/journal.pone.0211635.g004
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Interspecies microsynteny of MC genes in Rosaceae genomes

For better understand the evolutionary relationship ofMC genes among F. vesca, P.mume, P.

persica, P. communis, P. bretschneideri andM. domestica, interspecies microsynteny analysis

was carried out to identify orthologousMC genes. The flankingMC genes were analyzed to

identify involved duplication events. In the present study, 23 out of 70 intraspeciesMC genes

were identified to involve in the interspecies microsynteny (Fig 5D and S4 Table). Among

them, there were 13 orthologous gene pairs between P. communis and P. bretschneideri, 3

orthologous gene pairs between P. persica and P. bretschneideri, 2 orthologous gene pairs

between F. vesca and P. bretschneideri, 2 orthologous gene pairs between P. bretschneideri and

M. domestica, 1 orthologous gene pair between P.mume and P. bretschneideri, 3 orthologous

gene pairs between P. communis and F. vesca, 1 orthologous gene pair betweenM. domestica
and P. communis, 1 gene pair between P.mume and P. persica, 1 orthologous gene pair

Fig 5. Microsynteny ofMC gene families in P. communis (a), P. bretschneideri (b) andM. domestica (c). The Fig 5 (c) indicated interspecies microsynteny of

MC genes in Rosaceae genomes. Genomic fragments are suggested by numbers of triangles. Black triangle representedMC genes, and same color indicated

these genes in the same fragment.

https://doi.org/10.1371/journal.pone.0211635.g005
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between P.mume and F. vesca, 1 orthologous gene pair between P.mume andM. domestica,

and 1 orthologous gene pair between F. vesca and P. persica were identified (Fig 5D and S4

Table). Among P. bretschneideri and other five Rosaceae plants, we identified the different

number of orthologous gene pairs, which may be due to different loss rates of duplicated genes

during evolution.

Expression patterns of PbMCs in response to drought stress

Drought is a major abiotic stress that can affect plant productivity, growth and development.

MCs play an important role in the process of PCD during stress responses in plants. To further

understand the possible involvement of PbMCs in response to drought stress, the expression

profiles of PbMCs were analyzed by RNA-seq data. As shown in Fig 6A, only four out of

12 PbMCs were expressed under drought stress. Among these PbMC genes, three genes

(PbMC03, PbMC04 and PbMC05) displayed up-regulation at least one time point after treat-

ment. At the same time, we also found that the expression of PbMC08 showed continuous

decrease after a long period of stress treatment, and resulting in 5-fold decrease at 6 h after

treatment, and then the expression level increased after 24 h. In contrast, the PbMC04 gene

was strongly and rapidly induced by drought treatment, reached the maximum level at 6 h

after treatment, suggesting the existence of a possible feedback regulatory mechanism

(Fig 6A).

Expression patterns of PbMCs during pollen tube and fruit development

stages

For flowering plants, pollen germination and pollen tube growth are very important for sexual

reproduction. Tip-growth is the most important feature of pear pollen germination and pollen

tube growth. The pollen tube extends very rapidly and pollen tube death occurs within 24 h of

in vitro culture [52, 53]. These results suggested that pollen and pollen tube is an ideal model

system for studying the molecular mechanisms of a series of cellular processes, such as cell

growth and death. In the present study, sevenMC genes were found transcriptionally active in

at least one stage, and five genes (PbMC01, PbMC02, PbMC03, PbMC07 and PbMC08) out of

the seven genes were identified transcriptionally active in all four stages: including mature pol-

len grains of pear (MP), hydrated pollen grains (HP), pollen tube (PT) and top-growth pollen

tube (SPT), indicating that these genes may play a role in reproduction (Fig 6B). Subsequently,

we used the qRT-PCR experiment to verify the expression patterns, and the results were

shown in Fig 7. These data suggest that these PbMC genes showed similar expression patterns

as transcriptome data.

To gain insight into the expression patterns of PbMCs in P. bretschneideri fruit develop-

ment, gene expression profile analysis was carried out in seven pear fruit developmental stages

(i.e. 15 days after full blooming (DAB), 30 DAB, 55 DAB, 85 DAB, 115 DAB, mature stage and

fruit senescence stage). The transcription levels of the PbMCs were measured using FPKM val-

ues (Fig 6C). Of the 12MC genes identified in P. bretschneideri, nine PbMCs were detected to

be expressed in one or more developmental stages, and three genes (PbMC01, PbMC03 and

PbMC04) out of nine PbMCs were identified to be expressed in all seven fruit development

stages (Fig 6C). Notably, several PbMCs continuously reduced or increased at one or several

stages, such as PbMC01 and PbMC12, which were up-regulated in Fruit_stage4 (85 DAB),

PbMC02, PbMC06 and PbMC10, which were highly expressed at Fruit_stage1 (15 DAB),

PbMC07 was up-regulated in Fruit_stage6 (mature stage), indicating that these gene play an

important role in the fruit-specific developmental stages.
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Discussion

In recent studies, the vast majority of published articles suggested that theMC genes exist as

multi-gene families in the genome [2, 18, 19]. Although the number ofMC gene family have

been investigated in several species [18–23], such as Arabidopsis thaliana, Vitis vinifera,Hevea
brasiliensis and Oryza sativa. However, theMC genes from Rosaceae genomes have not been

characterized in detail to our knowledge. In the present study, 70MC genes were identified in

six Rosaceae genomes; 12 of these sequences were from P. bretschneideri, and 8, 7, 8, 12, and

23MC genes in F. vesca, P.mume, P. persica, P. communis andM. domestica, respectively. By

using the MEROPS online tool (https://www.ebi.ac.uk/merops/) [2], we predicted the distribu-

tion of Type-I� (8), Type-I (42) and Type-II (20)MC genes in these genomes, which consistent

with the predictions of phylogenetic analysis of theseMC gene family numbers. Using a com-

parative genomic approach, Fagundes et al. (2015) identifiedMC genes in Viridiplantae, and

Fig 6. Expression analysis of PbMC genes under drought stress treatment (a), and/or during pear pollen tube (b) and fruit development (c). MP, HP, PT, SPT,

Fruit_stage1, Fruit_stage2, Fruit_stage3, Fruit_stage4, Fruit_stage5, Fruit_stage6 and Fruit_stage7 suggested mature pollen grains of pear, hydrated pollen

grains, pollen tube, top-growth pollen tube, 15 days after full blooming (DAB), 30 DAB, 55 DAB, 85 DAB, 115 DAB, mature stage and fruit senescence stage,

respectively.

https://doi.org/10.1371/journal.pone.0211635.g006
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then the distribution of Type-I and -IIMC genes was predicted in 42 plant species [1]. They

found that the total number of Type-IMC genes was more than twice the number of Type-II

MC genes [1], which is basically consistent with our results. The diversity of gene structure not

only provides additional evidence for supporting phylogenetic groupings, but it also plays an

important role in the evolution of gene families [58]. Exon-intron structure analysis suggested

that the most of Type IMC genes contained four or five exons and Type IIMC genes had two

or three exons. We also noted that the lengths of the exons were more conserved than the

introns in Type IMC genes (Fig 2). Our data was consistent with the previous published arti-

cles that Type IMC genes contained more exon numbers than Type IIMC genes [1, 22]. Addi-

tionally, the identification and phylogenetic classification ofMC genes were further supported

by the exon-intron structure analysis in Rosaceae genomes.

Gene duplication plays an important role in the process of biological evolution [59]. In

some plants, microsynteny has been extensively described, such as GELP,WOX andMYB
gene family in Rosaceae genomes [39, 41, 46]. In the present study, based on the microsynteny

analysis, we did not observe the microsynteny relationships among FvMC01, FvMC03,

FvMC04, FvMC06 and FvMC07, PcMC09, PcMC10, PcMC11 and PcMC12, and 22 with other

MC genes in these four species (P.mume, P. persica, P. bretschneideri andM. domestica),

implying that either these genes were formed through complete transposition and loss of their

primogenitors or they were ancient genes without detectable linkage to otherMC genes.

Remarkably, two or moreMC genes from these Rosaceae genomes (F. vesca, P.mume, P. per-
sica, P. communis, P. bretschneideri andM. domestica) were orthologous to theMC genes of

the same species, indicating that these gene pairs may play important roles in the expansion of

MC gene family during evolution, such as PcMC01, PcMC04 and PcMC05 are orthologous

genes to PbMC03, as well as PbMC04 and PbMC09 are orthologous genes to PcMC08.

So far, there is increasing evidence that MC activity plays an important role for PCD in

plant growth and development, and it is essential for plant pollen and embryonic development

Fig 7. qRT-PCR analyses of PbMC genes during pear pollen tube development. MP, HP, PT and SPT suggested mature pollen grains of pear, hydrated

pollen grains, pollen tube and top-growth pollen tube, respectively.

https://doi.org/10.1371/journal.pone.0211635.g007
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[1–4, 60]. For example, Watanabe et al. (2011) were observed the stronger GUS expression of

AtMCP2d promoter in vascular bundles of roots, pollen and embryonic cells [61]. In the pres-

ent study, we explored the expression pattern ofMC genes in pear pollen tube development

and fruit development. Previous studies have shown that different abiotic stresses can induce

PCD, and abiotic stress-induced PCD has a significant effect on plant growth and development

[18–22, 62].MC genes have also been shown to play key roles in the abiotic stress response in

plants. Oryza sativa MC genes showed differential expression patterns in response to cold,

drought, and salt stresses, and the expression of most OsMC genes was down-regulated when

responding to salt and drought stresses [63]. InHevea brasiliensis, Liu et al. (2016) reported

that all of theHbMCs, exceptHbMC5, displayed transcriptional changes when responding to

salt, drought, as well as cold stresses [19]. InHordeum vulgare, qPCR analysis suggested that

the expression ofHvMC4 was significantly increased upon excess-B supplementation [23]. In

the present study, we found that several PbMC genes also respond to drought stresses, includ-

ing PbMC03, PbMC04 and PbMC08. Interestingly, the PbMC08 shown continuous down-reg-

ulated after a long period of stress treatment. In contrast, the PbMC04 gene was strongly and

rapidly induced by drought treatment. The opposite expression pattern indicates that different

PbMC genes contained divergent regulatory mechanisms to respond drought stress. Our data

suggested that PbMC genes might play an important role in pear reproductive development

and abiotic response.

Conclusion

In the present study, 70MC genes were identified in Rosaceae genomes, which including 8, 7,

8, 12, 12, and 23MC genes in the genomes of F. vesca, P.mume, P. persica, P. communis, P.

bretschneideri andM. domestica, respectively. Subsequently, we carried out comparative geno-

mic and systematic analysis, such as phylogenetic relationships, exon-intron structures, micro-

synteny, conserved motifs, and expression patterns. Our results suggested the vast majority of

MC gene of P. communis, P. bretschneideri andM. domestica was expanded by large-scale gene

duplication. Expression profiling revealed that PbMC01 and PbMC03 were able to be detected

in all four pear pollen tube and seven fruit development stages. This understanding ofMC
expression provides a new avenue for functional analyses of pear during pollen tube and fruit

development.
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