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Abstract

Subjective mood is a psychophysiological property that depends on complex interactions among the central and peripheral
nervous systems. How network interactions in the brain drive temporal fluctuations in mood is unknown. Here we
investigate how functional network configuration relates to mood profiles in a single individual over the course of 1 year.
Using data from the ‘MyConnectome Project’, we construct a comprehensive mapping between resting-state functional
connectivity (FC) patterns and subjective mood scales using an associative multivariate technique (partial least squares).
We report three principal findings. First, FC patterns reliably tracked daily fluctuations in mood. Second, positive mood was
marked by an integrated architecture, with prominent interactions between canonical resting-state networks. Finally, one of
the top-ranked nodes in mood-related network reconfiguration was the subgenual anterior cingulate cortex, an area
commonly associated with mood regulation and dysregulation. Altogether, these results showcase the utility of highly
sampled individual-focused data sets for affective neuroscience.
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Introduction
The brain’s white matter architecture promotes coherent
signaling among neuronal populations, enabling perception,
cognition and action (Fries, 2015; Avena-Koenigsberger et al.,
2018). Non-invasive measurements of electromagnetic and
hemodynamic neural activity permit comprehensive mapping of
statistical interactions among distributed areas, termed func-
tional connectivity (FC). In the absence of overt sensory stimula-
tion or task demands, brain areas spontaneously synchronize to
form networks with specific functional characteristics, termed
intrinsic connectivity networks or resting-state networks (RSNs;
Damoiseaux et al., 2006; Power et al., 2011; Yeo et al., 2011; Cole

et al., 2014). Recent reports demonstrate that resting FC patterns
are heritable (Glahn et al., 2010; Ge et al., 2017) and can even be
used to identify individuals, much like a fingerprint (Miranda-
Dominguez et al., 2014; Finn et al., 2015). A significant body of
work has emerged linking resting FC patterns to individual
differences in cognitive performance (Smith et al., 2015; Mišić
and Sporns, 2016; Rosenberg et al., 2016).

Much like cognition, subjective affect (here referred to as
‘mood’) also arises from a complex set of network interactions.
A fundamental psychophysiological property, mood depends
on distributed signaling throughout the central and peripheral
nervous systems, involving interoception, emotional state and
memory (Critchley, 2005; Kragel et al., 2018). These complex
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interactions are conditioned by the underlying anatomical
connectivity (Joyce and Barbas, 2018). Altered communication
throughout this neural circuit is thought to be the origin of mood
disorders such as major depressive disorder (MDD; Berman et al.,
2014; Mulders et al., 2015). In the cerebral cortex, mood regu-
lation and dysregulation is associated with several key areas,
particularly the subgenual portion of the anterior cingulate
cortex (sgACC; Brodmann area 25; Mayberg et al., 1999; Price and
Drevets, 2012). The circuit embedding of these areas means that
pathological perturbations, such as MDD, manifest at the level
of large-scale RSNs, including the salience and default mode
networks (Mulders et al., 2015). Indeed, areas such as sgACC
and their connected neighbors have been proposed as targets
for deep brain stimulation to treat MDD (Mayberg et al., 2005;
Fox et al., 2014; but see also Holtzheimer et al., 2017).

Systematically relating mood to distributed FC patterns poses
a unique challenge. By definition, mood is dynamic, fluctuating
over minutes, hours and days. To statistically relate fluctua-
tions in mood with FC patterns, repeated intra-individual sam-
pling is necessary. A recent landmark data set makes such an
investigation possible. In the ‘MyConnectome Project’, a single
individual (a healthy 45-year-old male) was phenotyped over the
course of several months (Laumann et al., 2015; Poldrack et al.,
2015). Weekly functional magnetic resonance imaging (fMRI)
scans were accompanied by self-reported measures of affect
[expanded Positive and Negative Affect Schedule (PANAS-X);
Watson and Clark, 1999] as well as a comprehensive battery of
physiological measurements. To date, two studies have investi-
gated the relation between FC and mood in this context. Shine
et al. (2016b) examined the propensity for regions to switch alle-
giance among large-scale networks within recoding sessions
and related this property to self-reported attention. Betzel et al.
(2017) investigated a similar within-session flexibility measure
in relation to subjective mood ratings and found that greater
flexibility was associated with positive mood scales. How daily
fluctuations in connectivity track mood and how these connec-
tivity patterns are anatomically organized, remains unknown.

In the present report we apply an associative multivariate
technique [partial least squares (PLS); McIntosh and Lobaugh,
2004; McIntosh and Mišić, 2013] to the ‘MyConnectome’ data set
to isolate patterns of functional connections and mood profiles
that fluctuate together across time. We then characterize the
topological organization of mood-related connectivity patterns
and identify their epicenters. Finally, we assess the signature of
multiple cognitive and affective systems and how their relative
balance is related to positive and negative mood.

Results
Subjective mood ratings were organized into 13 distinct positive
and negative scales as proscribed by Watson and Clark (1999):
negative affect, positive affect, fear, hostility, guilt, sadness,
joviality, self-assurance, attentiveness, shyness, fatigue, serenity
and surprise. fMRI data were pre-processed and parceled
into 630 cortical and subcortical regions of interest. FC was
defined as a zero-lag linear Pearson correlation between
regional blood oxygenation level dependent (BOLD) signal time
series. Only sessions that had complete fMRI and mood scales
were analyzed (total, 73). The upper triangle of FC correlation
matrices was submitted to PLS analysis. A form of reduced-rank
linear regression, PLS seeks to maximize the relation between
individual functional connections and mood scales in a single
multivariate pattern (McIntosh and Mišić, 2013).

Network configuration tracks mood fluctuations

PLS analysis revealed a statistically significant association
between FC and mood across 73 sessions (permuted P ≈ 0)
accounting for 52% of the covariance between connectivity
and mood. Figure 1 shows (i) functional connections and (ii)
mood scales that contribute most to this pattern. Functional
connections are weighted by bootstrap ratios, a measure of
reliability (see ‘Materials and methods’ for details).

Elements (connections or mood scales) weighted with the
same sign covary positively, while those with opposite signs
covary negatively. In other words, connections with positive
weights (red) are associated with greater positive mood (e.g.
positive, joviality, self-assurance and attentiveness), while con-
nections with negative weights (blue) are associated with greater
negative mood (e.g. negative, guilt, sadness and fatigue). Nodes
are arranged by their membership in RSNs derived by Yeo et al.
(2011; Figure 1A).

To further illustrate the relation between connectivity and
mood, Figure 1C shows fluctuations in individual session
scores for both patterns. The scalar scores are calculated by
projecting individual session data onto the PLS-derived pattern.
They reflect the extent to which a given statistical pattern
(e.g. functional network or mood profile) is expressed in a
given session. The close correspondence between the network
and mood scores suggests that when the participant exhibited
network configurations similar to Figure 1A (gray), he was more
likely to exhibit the mood pattern in Figure 1B (black; r = 0.68).

Regional contributions to mood-related connectivity

We next investigated the contribution of individual brain regions
to the mood-related functional network pattern. Figure 2A
shows the mean bootstrap ratio (i.e. network contribution) of
all functional connections that a given region participates in.
Areas with predominantly positive values, such as precuneus,
anterior cingulate cortex and medial orbitofrontal cortex, are
more prominent in the global network during positive mood.
Conversely, areas with negative values, such as paracentral
cortex, lateral prefrontal cortex and visual cortex, feature
prominently during negative mood. Figure 2B confirms this
intuition, showing the top 5% nodes with the greatest mean
negative, positive and absolute bootstrap ratio. We note that
the positive mood-related pattern closely resembles the default
mode network (Greicius et al., 2003; Fox et al., 2005).

Given the high ranking of sgACC in Figure 2B, and its
prominent role in mood disorders (Mayberg et al., 2005; Price
and Drevets, 2012; Mulders et al., 2015), we next examine its
connectivity fingerprint. Figure 3A shows a positive correlation
between sgACC FC strength (FC with other nodes) and the
PANAS-X positive mood score (r = 0.46; P = 3.83 × 10−5), indicating
that overall integration of sgACC was associated with better
mood. Note that this relationship is fully expected given the
results presented in Figure 2B and cannot be interpreted as an
independent discovery (Vul et al., 2009).

Finally, we ask how FC between sgACC and specific large-
scale systems relates to mood. Figure 3B shows how mean
sgACC-RSN FC correlates with positive mood (circles). While
connectivity with some RSNs was associated with greater
positive mood, for others the relationship was reversed,
suggesting that sgACC integration did not uniformly predict
better mood. To assess the statistical significance of this
connectivity fingerprint, we also compute correlations between
sgACC-RSN connectivity and positive mood under a null
model where RSN labels are randomly permuted for all nodes
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Fig. 1. Connectivity patterns track mood patterns. Multivariate PLS analysis was used to isolate patterns of functional connections and PANAS-X mood scales that

maximally covary with each other. (A) Functional connections that correlate with positive mood (red) and negative mood (blue). Connections are weighted by bootstrap

ratios (singular vector weight divided by its bootstrap-estimated standard error). (B) Correlations (i.e. loadings) of PANAS-X mood scales with the functional network

pattern. Error bars represent bootstrap-estimated 95% CIs. (C) Network and behavioral responses or scores are estimated for each individual session by projecting the

session data onto the singular vectors. The scores index the extent to which the participant expressed functional patterns and mood patterns shown in (A) and (B).

(Figure 3B; red density). When empirical correlations are
expressed as z-scores relative to the null distribution, only the
negative correlations observed between sgACC and the default
mode and frontoparietal networks are statistically significant
(Figure 3C; permuted P ≈ 0 for both). Altogether, these results
demonstrate a complex reconfiguration of sgACC connectivity;
positive mood is associated not only with a diffuse, non-specific
integration of sgACC with other brain regions but also with
a specific decorrelation of sgACC from the default mode and
frontoparietal networks.

Positive mood is associated with network integration

Rearranging brain areas by their membership in RSNs
(e.g. Figure 1A) suggests that modular structure may potentially

be associated with mood. To further investigate whether net-
work integration shapes the relationship between connectivity
patterns and mood, we partitioned the network into RSNs (Yeo
et al., 2011) and stratified functional connections into those
connecting areas in the same intrinsic network or different
networks.

To assess whether RSN–RSN interactions were statistically
significant, we used a label-permuting null model. We randomly
permuted RSN labels for each node and recalculated the mean
bootstrap ratio for connections within and between RSNs (10 000
repetitions; Mišić et al., 2015; 2016). Figure 4A and B show the
mean connection bootstrap ratio for positive mood-related and
negative mood-related weights, respectively. The weights are
expressed as z-scores relative to the label-permuting null dis-
tribution. The resulting figure suggests that positive mood is
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Fig. 2. Regional contributions to mood-related network patterns. (A) Mean bootstrap ratios of all connections at each region (estimated from Figure 1A). Positive values

are associated with more positive mood states, while negative values are associated with negative mood states. (B) Top 5% of nodes with the greatest mean negative

and positive bootstrap ratio. CIs indicate standard errors.

Fig. 3. Network embedding of sgACC is associated with mood fluctuations. Based on regional rankings in Figure 2 and prior literature, we investigate the role of sgACC.

(A) sgACC FC strength (average correlation to other brain areas) correlates with PANAS-X positive mood score across sessions. (B) Correlations between positive mood

on one hand and FC between sgACC and canonical RSNs on the other. Empirical correlations are displayed as circles; ‘null’ correlations, obtained by permuting RSN

labels, are shown as a histogram (red). FC between sgACC and default mode and frontoparietal networks correlates with positive mood significantly less than expected

by chance. (C) Empirical correlations between FC (sgACC,RSN) and positive mood are shown as z-scores relative to a label-permuting null distribution.

generally associated with between-RSN connectivity, while neg-
ative mood is associated with within-RSN connectivity, consis-
tent with Figure 1A.

We next investigated the possibility that network integration
contributes to positive mood, while network segregation
contributes to negative mood. For each experimental session,
we correlated the mean value of within- and between-module
connections with the session-specific score on the PLS-derived
behavioral pattern, corresponding to positive mood. Greater
between-module connectivity was associated with positive
mood (Spearman r = 0.22; P = 0.03; Figure 4C), while greater
within-module connectivity was associated with negative
mood (Spearman r = 0.29; P = 6.67 × 10−3; Figure 4D). As two
complementary measures of network segregation, we computed

the modularity and system segregation of FC networks in
individual sessions (see ‘Materials and methods’; Newman and
Girvan, 2004; Chan et al., 2014). Modularity—the tendency for
nodes to connect with other nodes in the same RSN—was
associated with negative mood (Figure 4E; Spearman r = 0.29;
P = 0.007). Similarly, system segregation—the normalized
difference of within- and between-RSN connectivity—was also
associated with negative mood (Figure 4F; Spearman r = −0.22;
P = 0.02).

It is possible that these effects are not module-dependent but
rather trivially driven by non-specific fluctuations in network
density. To test this hypothesis, we permuted module labels
but kept the permuted labels the same across all sessions.
We then recalculated the correlations between mood and
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Fig. 4. Intrinsic network contributions to mood fluctuations. Bootstrap ratio-weighted functional networks are partitioned according to the RSN assignments reported

by Yeo et al. (2011). (A) Mean positive bootstrap ratios within and between RSNs, expressed as a z-score relative to a label-permuting null model. High values indicate

greater than expected network connectivity during positive mood states. (B) The same procedure is performed but focusing on connections related to negative mood.

High values indicate greater than expected network connectivity during negative mood states. (C and F) Correlating network segregation and integration with behavioral

responses (high values are equal to positive mood; low values are equal to negative mood) in individual sessions. Network integration (between-module connectivity)

is associated with positive mood, while network segregation (measured by within-module connectivity, modularity and segregation) is associated with negative mood.

within-/between-module density, repeating the procedure
10 000 times. The resulting distribution of correlation coeffi-
cients embodies the null hypothesis that density fluctuations
drive the observed correlations, as opposed to module assign-
ments. For all four measures (within-module density, between-
module density, modularity and segregation), the empirical
correlation was significantly greater than expected under the
null model (permuted P ≈ 0 for all four measures). Altogether,
these results indicate that positive mood was broadly associated
with greater network integration (higher between-network
connectivity) and lower network segregation (higher within-
network connectivity).

Stability of functional and mood patterns

Relating two sets of variables when the number of variables is
larger relative to the number of observations poses a risk of
overfitting and may result in a model that does not generalize to
future observations. Although pattern significance and reliabil-
ity are assessed by permutation and bootstrapping, respectively,
the correlation between brain and behavioral patterns may be
optimistic because it is maximized by the analysis.

Here we assess two properties related to stability. First, we
assess the stability of the connectivity and behavioral patterns
via split-half resampling (Kovacevic et al., 2013; see ‘Materials
and methods’ for more details). Briefly, the sample is split into
halves and the decomposition is performed on each half sepa-
rately. Data from one split are then projected onto the left and

right singular vectors (corresponding to the connectivity and
mood patterns) calculated from the other split. Pattern stability
is quantified as the mean correlation between left/right singular
vectors directly calculated from one split and left/right singular
vectors calculated by projecting the other split onto the corre-
sponding right/left singular vector. The mean correlation among
projected network patterns was r = 0.26 [95% confidence interval
(CI): 0.11 0.37], while the correlation among mood patterns was
r = 0.91 (95% CI: 0.80 0.94), suggesting that both sets of patterns
were stable across splits.

We next assess the out-of-sample correlation between
connectivity and mood scores. Following the method described
by Rahim et al. (2017), we reran the analysis with 100 randomized
train and test splits, where test sets represent 25% of the
sample. Test data were projected on the PLS models constructed
on the training set. Predicted mood and connectivity scores
were then correlated; the resulting mean out-of-sample
mood–connectivity correlation was r = 0.34. The correla-
tion was statistically significant against a permutation test
(permuted P ≈ 0).

Effects of fasting and lifestyle variables

To facilitate blood tests, the participant did not consume food
or caffeine on Tuesday sessions, resulting in a roughly equal
split between fasting and non-fasting sessions (39 vs 34). Two
previous reports indicated that fasting could alter functional
network architecture (Poldrack et al., 2015; Betzel et al., 2017),
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suggesting that the present results could be influenced
by fasting. To assess this possibility, we directly compared
PLS-derived scores on fasting and non-fasting days. Two-
sample t-tests confirmed significantly different functional
network expression on fasting and non-fasting days [t(71) = 4.00;
P = 1.5 × 10−4]. There was, however, no evidence of significant
differences with respect to mood expression [t(71) = 1.00;
P = 0.32]. Importantly, PLS-estimated connectivity and mood
pattern scores were correlated on both fasting (r = 0.67;
P = 2.75 × 10−5) and non-fasting (r = 0.74; P = 7.13 × 10−7) days,
suggesting that the relation between connectivity and mood was
present independent of whether the participant fasted or not.
Fisher’s test indicated that the two correlation coefficients were
not significantly different (z = 0.51; P = 0.61). Altogether, this
suggests that fasting influenced functional network patterns
but did not influence mood patterns or the pairing between
connectivity and mood patterns.

It is possible that fluctuations in mood and FC depend on
a variety of other health and lifestyle variables. To investigate
this possibility, we correlated mood scores and network scores
separately with variables recorded on evenings before and
evenings of the MRI scans. Variables include both subjective
and objective measures: same and previous evening subjective
measures (alcohol consumption, gut health, psoriasis severity,
stress and time spent outdoors), weather (precipitation and
lowest and highest temperature) and sleep quality [total sleep
time, time in light sleep, deep sleep and rapid eye movement
(REM) sleep; Poldrack et al., 2015]. The linear regression analysis
revealed no statistically significant associations [P > 0.05 for all
comparisons; false discovery rate (FDR) corrected], suggesting
that fluctuations in mood and connectivity are unlikely to be
explained by these exogenous factors.

Discussion
In the present report we investigated how FC and mood covary
in a single individual over the course of 1 year. We find that
fluctuations in mood are reliably tracked by functional network
organization. Positive mood was associated with greater inte-
gration between canonical intrinsic networks. The sgACC was a
highly-ranked node in the isolated network patterns, consistent
with its role in rumination and clinical depression.

Functional network organization and mood

The present results add further evidence that subjective
mood is an integrated network property, arising from complex
communication patterns throughout the cerebral cortex
(Critchley, 2005; Shine et al., 2016b; Betzel et al., 2017). Specifically,
mood is thought to arise from a set of polysensory circuits
linking interoception, emotion and memory (Critchley, 2005).
We find evidence of organized FC network patterns that
systematically reconfigure in parallel with mood changes.
Positive mood was associated with increased coherence
among anterior medial (gACC) and posterior medial (posterior
cingulate) structures (Figure 1). More broadly, we find that
increased coherence between intrinsic networks (integration)
was associated with positive mood, while increased coherence
within intrinsic networks (segregation) was associated with
negative mood (Figure 4). It is noteworthy that affinity toward
integrated states or configurations is also associated with better
cognitive performance (Shine et al., 2016a). The present results
complement a previous investigation using the ‘MyConnectome’
data set. Betzel et al. (2017) reported that moment-to-moment

network flexibility was associated with positive mood indices.
Our results show that a relationship between network structure
and mood can be observed over longer temporal scales as
well. Importantly, we find that positive mood is not necessarily
associated with random reconfigurations but specifically with a
tendency toward less segregated/more integrated states.

These results contribute to a growing literature linking
functional network interactions with cognition and affect
(Medaglia et al., 2015; Mišić and Sporns, 2016). A number of
recent studies have demonstrated that connectivity patterns
predict multiple aspects of cognitive performance including
fluid intelligence (Smith et al., 2015), cognitive control (Cole
et al., 2012), attention (Rosenberg et al., 2016), working memory
(Greicius et al., 2003) and learning (Bassett et al., 2015). How
functional connections are arranged and rearranged to represent
and interact with the external environment remains a key
question (Mišić et al., 2014; Zalesky et al., 2014; Shine and
Poldrack, 2017).

While ostensibly healthy, the participant’s network patterns
observed in relation to positive and negative moods mirror those
that have been reported in clinical MDD. For example, multiple
studies have reported increased FC between sgACC and the
default mode network in MDD (Zhou et al., 2010; Davey et al.,
2012; de Kwaasteniet et al., 2013), a pattern we observe in relation
to decreased positive mood (Figure 3). The increased integration
of sgACC effectively changes the configuration of the default
mode network in MDD (Greicius et al., 2007). Moreover, treat-
ments such as repetitive transcranial stimulation reduce sgACC
default connectivity (Liston et al., 2014; Salomons et al., 2014),
consistent with the positive mood-related patterns we observe.
Altogether, these potential overlaps suggest that healthy daily
fluctuations in mood may be a microcosm of clinical mood
disorders.

More generally, the reconfiguration of sgACC connectivity
demonstrates how systems-level effects can obscure complex
connection ‘fingerprints’ of individual nodes. In the present
analysis we find that general default mode connectivity is
associated with positive mood (Figure 2); likewise, mean sgACC
connectivity (Figure 3A) is also associated with positive mood.
However, their mutual connectivity is anticorrelated with
positive mood (Figure 3B and C). In other words, the integration
of sgACC and other default regions with the rest of the brain is
associated with positive mood, but their mutual connectivity is
associated with negative mood. How these complex reconfigura-
tion patterns map onto the heterogeneous connection profile of
sgACC remains an exciting open question (Palomero-Gallagher
et al., 2018).

Linking mood and physiology

Although it is tempting to interpret associations between func-
tional network organization and mood fluctuations in purely
psychological terms, the present results demonstrate the con-
tribution of physiological variables as well. Specifically, the par-
ticipant’s fasting on approximately half of the scanning sessions
had a significant effect on the expression of mood-related con-
nectivity patterns. Although fasting did not influence mood fluc-
tuations or connectivity–mood correlations, the effect of fasting
on network expression serves as a reminder that subjective
affect may be influenced by a variety of internal and external
factors.

A related consideration is the multidimensional nature of
subjective affect itself. Modern theories characterize affective
experience along at least two distinct dimensions: valence
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(the ‘color’ of the experience) and arousal (the intensity
of the experience; Feldman, 1995; Anderson et al., 2003).
Although the present analysis was designed to allow greater
resolution with respect to mood by including all of the PANAS-X
categories, it does not permit us to conclusively dissociate
valence and arousal. Our results suggest an important role
for arousal because PANAS-X categories related to ‘fatigue’
and ‘attentiveness’ loaded highly on the PLS-derived patterns
(Figure 1B). This is consistent with the fact that the participant
fasted prior to half of the scanning sessions. On fasting days,
when the participants consumed neither food nor caffeine, he
experienced lower arousal. Altogether, the present results point
to a possible role in functional network organization as a method
for dissociating neural representations of valence and arousal.

Interestingly, we found no other reliable associations
between mood-related network patterns and exogenous lifestyle
variables. For instance, network expression did not correlate
with previous or same-evening gut health, stress or time spent
outdoors. This is surprising given previous demonstrations
that even short periods of time spent outdoors (e.g. nature
walks) improve cognitive performance, such as working memory
(Berman et al., 2008). Lack of association with these variables
may therefore suggest that subjective mood is not a simple
reflection of environmental and physiological variables but
must be considered from the perspective of neural signaling
and network-wide interactions.

More generally, our findings open new questions about the
physiological and psychological nature of subjective mood.
Although we have demonstrated a link with hemodynamic
correlations, mood depends on multiple physiological properties
that are not accessible via fMRI, including electromagnetic
rhythms and neurotransmitter signaling (Castrén, 2005). How
proprioceptive and interoceptive signals are interpreted with
respect to the external environment and in the context of
emotional state remains an open question (Clark et al., 2018).
Our results suggest that distributed functional interactions
provide a reliable signature of mood fluctuations, but how these
functional interactions mediate the integration of sensorimotor
and autonomic signals remains to be determined.

Segregation and integration

Modern theories increasingly emphasize the role of system
segregation in cognition and task performance (Shine and
Poldrack, 2017; Wig, 2017). Resting-state system segregation,
presumably reflecting autonomous processing in specialized
circuits, is associated with greater cognitive ability, including
episodic memory and fluid processing (Chan et al., 2014; Gu et al.,
2015). Likewise, acquisition of automated skills is concomitant
with increased segregation (Bassett et al., 2015; Mohr et al.,
2016). Conversely, effective task performance, presumably
requiring communication among distributed systems, is often
associated with decreased segregation, including working
memory (Vatansever et al., 2015; Cohen and D’Esposito, 2016;
Shine et al., 2016a), cognitive control (Schultz and Cole, 2016;
Shine et al., 2016a), emotional/motivational processing (Kinnison
et al., 2012) and visuo-spatial attention (Spadone et al., 2015). The
present results suggest that a similar segregation–integration
framework may apply to subjective affect. We find that daily
differences in system segregation track subjective mood ratings,
with positive mood associated with reduced segregation among
intrinsic networks. While inter-network signaling may directly

contribute to better mood, it may alternatively mediate mood
via increased cognitive engagement.

Methodological considerations

The present results are subject to several methodological con-
siderations and potential limitations. Most importantly, these
results are valid only for a single, 45-year-old male individual.
Although the observed patterns are concordant with previous
literature, further validation is needed in multiple individuals
before we can be confident that the observed results will gen-
eralize to the rest of the population. We hope that the present
report, much like several recent others, will prompt further
investigation in single deeply phenotyped individuals (Laumann
et al., 2015; Poldrack et al., 2015; Shine et al., 2016b; Betzel et al.,
2017; Gordon et al., 2017).

It is important to note that, because there are fewer
observations (sessions) than variables (connections), relating
connectivity patterns to mood scales is an underdetermined
(ill-posed) problem. We have demonstrated the reliability of
the results in several ways, including null non-parametric
assessment of pattern stability and out-of-sample pairing,
but further validation in independently collected data sets is
necessary. With the advent of large imaging repositories, directly
relating FC patterns to experimental manipulations is becoming
an exciting new frontier in human brain mapping (Craddock
et al., 2015; Mišić and Sporns, 2016; Smith and Nichols, 2018).
Statistical models, such as the one presented here, are still prone
to overfitting and external replication is warranted.

Conclusion
Altogether, our results demonstrate that functional network
organization reflects daily fluctuations in subjective mood.
Disruption of the intrinsic modular architecture, primarily
driven by sgACC and components of the default mode network,
is associated with positive mood. These results open exciting
new questions about the confluence of proprioceptive and
interoceptive signals, how they are mediated by functional
neuroanatomy and how this system is disrupted in mood
disorders.

Materials and methods
MyConnectome imaging data

The ‘MyConnectome Project’ is a deep phenotyping study of a
single individual (male; right-handed; 45 years old) performed
over the course of 1 year (Poldrack et al., 2015). All data were
downloaded from the project repository (https://myconnectome.
org/wp/data-sharing/) on 13 April 2016. Brain imaging was per-
formed at fixed times of the day (Tuesdays and Thursdays at
0730 h). Frames were censored (removed) if they had framewise
displacement > 0.25 mm or if they were part of contiguous
uncensored segments spanning <5 frames. Regressors included
whole brain, white matter and ventricular signals and their
derivatives, as well as 24 motion regressors derived by Volterra
expression. To facilitate subsequent bandpass filtering (0.009–
0.08 Hz), data were interpolated over the censored frames by
least-squares spectral estimation (Poldrack et al., 2015).

We analyzed the pre-processed, parceled fMRI time series for
scan sessions 14–104. The pre-processing procedure is described
in detail in (Laumann et al., 2015; Poldrack et al., 2015). The brain
was parceled according to a custom partition optimized for the

https://myconnectome.
org/wp/data-sharing/
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participant (Laumann et al., 2015) using the procedure developed
by Gordon et al. (2014) and Wig et al. (2014). The final parcellation
consisted of 616 surface regions and 14 subcortical regions from
Freesurfer’s subcortical parcellation, for a total of N = 630 regions
of interest. Scan sessions were ∼10 min long and the BOLD signal
was sampled with a time to repetition (TR) of 1.16 s, yielding 518
time points per session. FC was defined as a zero-order linear
Pearson correlation between regional BOLD time series.

PANAS-X mood scales

Behavioral data, including self-rated affect, were collected on the
same day as the imaging scans. Affective states were measured
using the PANAS-X, a 60-item schedule completed using a 0–5
Likert scale (Watson and Clark, 1999). Following Watson and
Clark (1999), we distilled the items into 2 general dimension
scales (negative affect and positive affect) as well as 11 more
specific scales (basic negative emotion scales: fear, hostility,
guilt and sadness; basic positive emotion scales: joviality, self-
assurance and attentiveness; other affective states: shyness,
fatigue, serenity and surprise).

Partial least squares

PLS analysis was used to relate FC patterns and mood patterns
(Wold, 1966; McIntosh and Lobaugh, 2004; Krishnan et al., 2011).
The goal of the analysis is to identify weighted patterns of func-
tional connections and mood scales that optimally covary with
each other across scanning sessions. A form of reduced rank
regression, PLS is closely related to canonical correlation analysis
in the sense that both techniques aim to identify weighted
mappings between two sets or blocks or variables (Worsley et al.,
1997; McIntosh and Mišić, 2013).

Connectivity and mood data were represented as two matri-
ces Xn × p and Yn × q. Both matrices had n = 73 rows corresponding
to the scanning sessions. The matrix X had p columns,
corresponding to unique functional connections. Given k nodes,
there were P = k(k-1)/2 connections. The matrix Y had q columns,
corresponding to each of the PANAS-X scales. The matrices were
standardized column-wise and a correlation matrix (X′Y) was
computed. The matrix was then subjected to singular value
decomposition (SVD; Eckart and Young, 1936)

X′Y = USV′. (1)

The output of the decomposition are two orthonormal
matrices of left and right singular vectors (U and V) and a
diagonal matrix of singular values (S). The ith columns of U and V
weigh the contribution of individual connections and behaviors,
respectively. Collectively, the ith left and right singular vectors
and singular value constitute a latent variable: a multivariate
pattern that weighs the original variables such that they
maximally covary with each other. The ith singular value is
proportional to the total connectivity–behavior covariance
accounted for by the latent variable. The effect size associated
with a particular latent variable (η) can be estimated as ratio of
the squared singular value (σ ) to the sum of all squared singular
values:

ηi = σi
2/

∑

j

σ 2
j . (2)

Permutation tests. The statistical significance of the overall mul-
tivariate pattern was assessed by permutation tests (Nichols
and Holmes, 2002). The rows of one of the data matrices (X)
were randomly permuted, and a connectivity–mood correlation
matrix was recomputed. The permuted correlation matrices
were subjected to SVD as before, generating a singular value
under the null hypothesis that there is no relation between FC
and mood. This procedure was repeated 10 000 times to generate
a null distribution of singular values. A P-value was estimated
as the proportion of permuted singular values that surpass the
original singular value.

Bootstrap resampling. Bootstrap resampling was used to esti-
mate the reliability of individual connections and mood scale
weights (Efron and Tibshirani, 1986; Milan and Whittaker, 1995).
Sessions (i.e. the rows of X and Y) were sampled with replace-
ment, and the resampled data matrices were used to gener-
ate correlation matrices that were then subjected to SVD as
described above. The procedure was repeated 10 000 times,
allowing us to construct a sampling distribution for each indi-
vidual connection and behavior weight. To identify connections
and mood measures that (a) made a large contribution to the
overall pattern and (b) were stable across sessions, we calculated
the ratio of a variable’s weight (wi) to its bootstrap-estimated
standard error [SE(wi)], termed ‘bootstrap ratio’:

bi = wi/SE (wi) . (3)

If the bootstrap distribution is approximately Gaussian, the
bootstrap ratio is equivalent to a z-score (Efron and Tibshirani,
1986). It is important to note that in the present analysis, where
observations represent single-subject trials, the estimated sam-
pling distributions yield CIs on fixed effects. As such, stability
estimates may be vulnerable to natural or artefactual signal
autocorrelation (e.g. due to movement or respiration).

Split-half resampling. To assess the generalizability of the
estimated patterns, we performed split-half reliability testing
(Kovacevic et al., 2013). We randomly split sessions into two
halves and calculated separate correlation matrices for each
split (X′Y1 and X′Y2). We then projected each matrix onto the
original singular vectors U and V to estimate the corresponding
singular vectors:

U1 = X′Y′
1VS−1 and U2 = X′Y′

2VS−1

V1 = X′Y1US−1 and V2 = X′Y2US−1 . (4)

Finally, we correlate the projected left and right split-half
patterns (i.e. U1 and U2, and V1 and V2) across 1000 splits. The
resulting correlations measure how reliably the FC and behav-
ioral patterns can be paired with one another.

Cross-validation. As a final assessment, we estimated the
out-of-sample correlation between connectivity and mood
scores (Rahim et al., 2017). The analysis was performed on 100
randomized train and test splits, with test sets representing
25% of the sample (19 sessions). Test data were projected on
PLS-derived singular vectors, and the resulting test sample
scores were correlated with each other. To assess the statistical
significance of the correlation coefficient, we performed a



N. Mirchi et al. 55

permutation test with 1000 replications. Rows of the FC data
matrix X were randomly permuted, and the procedure for
estimating out-of-sample correlations between singular vectors
was repeated. A P-value was estimated as the proportion of
correlation coefficients generated for the randomly permuted
samples that exceeded the original correlation coefficient.

Modularity and segregation

Modularity (Q) is a commonly used quality function in com-
munity detection that quantifies the tendency for groups of
nodes to form densely interconnected modules (Newman and
Girvan, 2004):

Q =
∑

ij

[
wij − pij

]
δ
(
ci, cj

)
, (5)

where wij is the observed positive-valued connection weight
between nodes i and j, while pij is the expected connection
weight between the nodes. The Kronecker delta function, δ(ci,
cj), is equal to 1 when nodes i and j are assigned to the same
community (ci = cj) and zero otherwise (ci cj), ensuring that
modularity is only computed for pairs of nodes belonging to
the same community. The expected connection weight between
pairs of nodes is defined according to the standard configuration
model, such that

pij = sisj

2m
, (6)

where si = ∑
iiwi is the strength of node i and m = ∑

i,j>1wij is
total weight of all connections in the network. Under this null
model, communities are considered to be of high quality if the
constituent nodes are more highly correlated with each other
than in a randomly rewired network with the same strength
distribution and density.

An alternative measure of separation among putative com-
munities is system segregation (Chan et al., 2014). The measure
(S) is defined as the normalized difference of mean within- and
between-community connectivity:

S = Zw − ZbZw, (7)

where Zw and Zb are the mean within- and between-community
connection strengths, respectively.
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Mišić, B., Sporns, O. (2016). From regions to connections and
networks: new bridges between brain and behavior. Current
Opinion in Neurobiology, 40, 1–7.
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