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A B S T R A C T   

Coronavirus Disease 2019 (COVID-19) is a deadly infection that affects the respiratory organs in humans as well 
as animals. By 2020, this disease turned out to be a pandemic affecting millions of individuals across the globe. 
Conducting rapid tests for a large number of suspects preventing the spread of the virus has become a challenge. 
In the recent past, several deep learning based approaches have been developed for automating the process of 
detecting COVID-19 infection from Lung Computerized Tomography (CT) scan images. However, most of them 
rely on a single model prediction for the final decision which may or may not be accurate. In this paper, we 
propose a novel ensemble approach that aggregates the strength of multiple deep neural network architectures 
before arriving at the final decision. We use various pre-trained models such as VGG16, VGG19, InceptionV3, 
ResNet50, ResNet50V2, InceptionResNetV2, Xception, and MobileNet and fine-tune them using Lung CT Scan 
images. All these trained models are further used to create a strong ensemble classifier that makes the final 
prediction. Our experiments exhibit that the proposed ensemble approach is superior to existing ensemble ap-
proaches and set state-of-the-art results for detecting COVID-19 infection from lung CT scan images.   

1. Introduction 

The novel coronavirus (COVID-19) is the deadliest infectious virus, 
unleashing an outbreak that shook the whole world and resulted in 
millions of deaths. The first case of coronavirus was reported in late 
December 2019 in Wuhan province (China) with symptoms similar to 
pneumonia [62]. This virus swiftly spread around the globe, initially 
through person-to-person and later by community-to-community 
transmissions, becoming a worldwide health hazard [42]. Coronavirus 
strains are made up of a positive-oriented single-stranded RNA-type, and 
their ability to mutate quickly makes it impossible to prescribe a stan-
dard medication. The International Committee on Taxonomy of Viruses 
(ICTV) designated the coronavirus as Severe Acute Respiratory Syn-
drome CoronaVirus 2 (SARS-CoV-2), and the World Health Organization 
(WHO) proclaimed it a pandemic in March 2020. Due to the rapid spread 
of the virus and lack of standard medication, this virus resulted in 3.7 
million fatalities across the globe by May 2021 [46]. Hence, identifying 
coronavirus-infected individuals is critical for halting the transmission 
of the virus and combating the pandemic. 

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR), a type 
of molecular test, is the most extensively used test for detecting the 

presence of Covid virus in humans. If the RT-PCR test is conducted three 
weeks after witnessing symptoms, it is 90% accurate in discovering 
positive cases [15]. However, RT-PCR kits are not widely available, and 
the test takes at least 6 h to get the final result. Another type of test that 
may be performed for COVID-19 identification is the lateral flow test 
(LFT), however it is not as reliable as RT-PCR. Analyzing individual Lung 
Computerized Tomography (CT) scan images is another strategy that 
may be used to detect the presence of coronavirus when molecular tests 
are not available and in time-critical circumstances to obtain immediate 
results. Besides confirming the existence of the virus, CT-Scan analysis 
also indicates the percent of infection as well, which aids in offering 
appropriate treatment. Medical professionals and radiologists 
acknowledged that CT-Scan analysis detects COVID-19 with 90% ac-
curacy, which is equivalent to RT-PCR [14]. However, large scale 
manual examination of CT scan images is impractical, and radiologists 
must rely on Computer Aided Diagnosis (CAD) tools to analyze CT-scan 
images for COVID-19 detection. 

The research community has been rigorously working on developing 
effective CAD tools for diagnosing COVID infection from medical images 
such as X-rays and CT scans. Preliminary research focused on the use of 
Machine Learning based models to identify pathogenic lungs infected 

* Corresponding author. 
E-mail address: shaiknagurshareef6@gmail.com (N.S. Shaik).  

Contents lists available at ScienceDirect 

Computers in Biology and Medicine 

journal homepage: www.elsevier.com/locate/compbiomed 

https://doi.org/10.1016/j.compbiomed.2021.105127 
Received 19 June 2021; Received in revised form 5 December 2021; Accepted 5 December 2021   

mailto:shaiknagurshareef6@gmail.com
www.sciencedirect.com/science/journal/00104825
https://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2021.105127
https://doi.org/10.1016/j.compbiomed.2021.105127
https://doi.org/10.1016/j.compbiomed.2021.105127
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2021.105127&domain=pdf


Computers in Biology and Medicine 141 (2022) 105127

2

with coronavirus [34]. Mesut et al. developed a machine learning based 
system to classify X-ray images into one of three categories: normal, 
pneumonia and coronavirus. Fuzzy color-based preprocessing was 
applied on original X-ray images before they were passed to pre-trained 
models such as MobileNetV2, SqueezeNet to extract features. Resultant 
representations were stacked and subjected to Social Mimic optimiza-
tion to derive discriminant features, which were then used to train a 
Support Vector Machine (SVM) model for classification [57]. Jawad 
et al. introduced another machine learning framework in which the 
original X-ray image dataset was augmented using Generative Adver-
sarial Network (GAN) and then sent to a Convolutional Neural Networks 
(CNN) for representation learning. The high dimensional representa-
tions that resulted were reduced by applying Principal Component 
Analysis (PCA) and trained using Logistic Regression (LR) model for 
classification. The authors claimed that using GAN for augmentation 
and PCA for dimension reduction improved the performance of the 
classification model [45]. Instead of using different models for feature 
extraction and classification, a single model was employed for both 
feature extraction and classification. This is another improvement in the 
field [25]. Various pre-trained CNN models such as VGG16, NASNet, 
EfficientNet, DenseNet121, and Xception were adapted and fine-tuned 
using the X-ray image datasets with the aim of detecting coronavirus 
[38]. 

Most of the above discussed works mainly focused on X-ray image 
analysis for Covid prediction. Significant research has been done for 
identification of Covid-19 infection based on chest CT scan images. 
Matteo et al. suggested a light CNN model based on SqueezeNet for 
COVID-19 detection from chest CT scan images [43]. Another variant of 
Convolutional Neural Network architecture was designed and imple-
mented to handle CT scan images for COVID-19 identification [16]. 
Another unique model, weighted filter based CNN architecture, was 
proposed with a minimum number of layers. Weighted filters enabled 
the CNN model to prioritize a certain set of features, resulting in 
increased accuracy [48]. Similarly, numerous CNN architectures have 
been proposed and developed in the literature for COVID detection from 
medical images [1]. Most of these works are limited in terms of feature 
optimization as they used CNN models for representation learning. 
Addressing this, a bi-stage feature selection approach was proposed for 
selecting optimum features acquired from CNNs trained on chest CT 
scan images [51]. However, CNN needs large-scale labeled medical 
images to develop a robust CAD system. Addressing this issue, various 
transfer learning and data augmentation based methodologies have 
been proposed in the literature [30]. However, most of them suffer from 
uni-lateral decisions, which means that all of those approaches were 
confined to decisions from a single model, without any mechanism to 
cross-check the correctness of those models. 

In this article, we present a novel ensemble strategy for making final 
predictions that combines the predictive capabilities of multiple state-of- 
the-art transfer learning-based pre-trained models. Initially, Lung CT 
scan images are processed and passed to one of the deep pre-trained 
models such as VGG16, VGG19, InceptionV3, ResNet50, ResNet50V2, 
InceptionResNetV2, Xception, and MobileNet. The convolution base of 
the model is frozen and the features obtained from them are fine-tuned 
on a three layered deep neural network with an induced dropout rate of 
0.3 after each layer. The Softmax probabilities obtained from these 
models serve as input to the proposed ensemble classifier, which is a 
composite neural network architecture that is jointly trained using 
multi-modal prediction probabilities. Our extensive experimental 
studies demonstrate that the proposed novel ensemble classifier is 
robust and outperforms existing ensemble approaches in the literature 
for the COVID-19 detection task. Summary of our major contributions in 
this work include:  

● Preprocessing of Lung CT scan images before passing them to pre- 
trained models for feature extraction.  

● Fine-tuning eight different pre-trained models such as VGG16, 
VGG19, ResNet50, ResNet50V2, InceptionV3, InceptionResNetV2, 
Xception, and MobileNet with frozen convolution base and trainable 
deep neural network head for classification. 

● Designing a Composite Neural Network architecture which ensem-
bles multi-modal Softmax probabilities.  

● Conducting experiments on SARS-CoV-2 and COVID-CT chest CT 
scan image datasets and presenting a comparative study with 
literature. 

This article is organized as follows: Section 2 presents a thorough 
description of the literature related to the theme of the work under 
consideration. Section 3 outlines the work flow of the proposed model 
along with a comprehensive description about each module of the pro-
posed model developed for COVID-19 detection from CT scan images. 
The datasets used for experimental studies, as well as the experimental 
setup and performance measurements, are described in detail under 
section 4. This section also includes experimental results, discussions 
about the outcomes of the experiments, and a comparative study. Sec-
tion 5 summarizes this study, as well as future insights. 

2. Background study 

Recent advances in the Computer Vision Field (CVF) have grabbed 
the attention of the research community [10,11,58] and they started 
exploring ways to apply these models for medical image analysis ap-
plications such as tumor classification [8,9,53], retinopathy identifica-
tion [6,7,52] and even for COVID-19 diagnosis [34]. This section of the 
manuscript summarizes recent works proposed in the literature for 
COVID-19 detection from X-ray and CT scan images. 

2.1. Convolutional neural network based methods 

Convolutional Neural Networks (CNNs) are sparse Neural Network 
architectures that have been in wide usage for solving a variety of 
complex visual recognition tasks. Unlike traditional machine learning 
approaches, these deep models do not rely on hand-crafted features 
because the architecture itself is designed with feature extraction ca-
pabilities [35]. Convolutions, followed by Pooling operations, are used 
for feature extraction and sub-sampling, while the final dense layers 
present in the classification head [21] predict the class label. These CNN 
models are well-known for generating cutting-edge outcomes in a wide 
range of hard situations, including object identification and semantic 
segmentation [19]. 

Following the success of Convolutional Neural Network models, the 
research community focused on developing numerous CNN architec-
tures for detecting COVID-19 from chest X-ray and chest CT-scan im-
ages. A Deep Convolutional Neural Network architecture is designed and 
trained using chest X-ray images for automating the process of COVID- 
19 detection [37]. Another novel CNN architecture, ReCoNet, is 
designed with residual connections and multi-level processing for the 
same purpose and has been tested on the same dataset [2]. Similarly, 
another CNN-based model is designed and trained for reliable COVID-19 
identification utilizing multiple chest imaging such as CT scans, X-rays, 
and ultrasound scan images [20]. Ardakani et al. conducted a thorough 
examination of the performance of 10 different convolutional neural 
network architectures for covid prediction using CT scan images [4]. 
Similarly, different CNN architectures have been designed by modifying 
several architectural components, such as the number of layers, type of 
kernels, dimensions of kernels, and so on. However, the amount of 
labeled radiology images used for training limits the performance and 
generalization of those models [59]. In order to address this issue, 
several transfer learning-based approaches for COVID-19 identification 
have been developed in the literature [29,41]. 
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2.2. Transfer learning based methods 

Transfer Learning is a prominent Deep Learning approach in which 
the knowledge gained while training that model using large scale 
datasets can be transferred to another model specifically designed to 
solve a similar or related problem [17,59]. Transfer learning strategies 
often use pre-trained models, which are deep neural network models 
trained on huge labeled data and whose weights are readily available for 
usage [47]. VGGNet, InceptionV3, ResNet, Xception, MobileNet are 
popular state-of-the-art pre-trained models trained on the ImageNet 
dataset. In this section, we will explore significant transfer learning 
methodologies established in the literature for Covid-19 prediction. 
Eduardo Soares et al. introduced a CT scan dataset for COVID detection 
and employed various pre-trained models like ResNet, GoogLeNet, 
VGG16, and AlexNet for COVID infection detection [3]. A hybrid model 
combining CNN and Bi-LSTM was designed for COVID infection detec-
tion from CT scans [5]. Transfer learning based CAD system is built using 
chest radio graph images [36]. In contrast to traditional transfer 
learning, a deep transfer learning based approach was proposed to 
identify corona infection from chest X-ray images [31]. In similar lines, 
various transfer learning approaches have been proposed in the litera-
ture. Rahaman et al. developed the most competitive and different 
transfer learning approach for the COVID-19 detection task [44]. 

Most of the strategies discussed above relied on pre-trained models 
for feature extraction or fine-tuning. Few of them offered comparative 
studies among popular models fine-tuned on chest radio graphs, but they 
did not focus on fusing their predictive power, instead relayed on pre-
dictions from a single model. Few of them spotlighted the use of 
ensemble approaches to build a strong classifier from weak candidate 
models. Ebenezer et al. designed stacking-based ensemble by binding 
numerous pre-trained model predictions with a single Softmax neuron 
[49]. Both of these works employed final prediction labels of candidate 
models to train the final single neuron ensemble classifier. In contrast to 
these models, we suggest a unique ensemble strategy that uses predic-
tion probabilities, that represent the confidence scores with respect to 
the classes, and passes them to a composite deep neural network that 
aggregates candidate models. 

3. Proposed approach 

The main aim of this work is to introduce a new ensemble approach 
that can learn from candidate CNN model predictions to produce more 
accurate predictions of Covid-19 based on chest CT scan images. The 
proposed approach consists of two modules, design of candidate model 
architecture and novel ensemble classifier. The technical features of 
these modules are covered in the sub-sections below. 

3.1. Architecture of the candidate models 

A candidate model is a neural network model comprising a pre-
processing module, a pre-trained convolutional base, and a classification 
head with regularization. Initially, chest CT scan images are passed 
through a preprocessing module for feature-wise normalization. These 
Normalized images are further reshaped according to the inputs 
accepted by the pre-trained models. These processed images are then fed 
to a frozen Convolutional base with ImageNet weights, this stage ex-
tracts semantic feature maps. Instead of directly passing the high 
dimensional spatial features to the classification head, these feature 
maps are compressed using the Global Average Pooling (GAP) layer and 
are eventually passed through the proposed classification head. The 
classification head is designed with a combination of dense and dropout 
layers to prevent the model from overfitting. Final dense layer of the 
model is connected to a Softmax layer with the number of neurons 
corresponding to the number of classes, in our case two neurons are used 
to represent Covid positive and negative cases. This Softmax layer 
generates class-specific probabilities, which are further fed to the 

proposed ensemble classifier. Fig. 1 depicts the architecture of the 
candidate model proposed for Coronavirus prediction. Each block of the 
candidate model that is used as part of the proposed model is explored in 
detail in the sub-sections that follow. 

3.1.1. Preprocessing module 
The main task of this module is to perform feature-wise normaliza-

tion on the input images. The images will be coerced into a zero- 
centered mean and unit standard deviation distribution using this 
module. This is achieved by computing the mean and variance of each 
image pixel value. The normalized images are further reshaped to the 
size accepted by a pre-trained convolutional base, which extracts feature 
representations. For instance, VGGNet, ResNet50, ResNet50V2, Mobi-
leNet accepts (224 × 224 × 3) shaped images and InceptionV3, Xcep-
tion, InceptionResNetV2 accepts (299 × 299 × 3) shaped images as 
input. Hence, Normalized images are reshaped accordingly before 
passing to the ConvBase module. 

3.1.2. Pre-trained convolution base 
This module is the heart of the candidate model. The main objective 

of this module is to extract semantic spatial representations from chest 
CT scans. We use eight different state-of-the-art pre-trained models like 
VGGNet with 16 and 19 layers [54], ResNet50, ResNet50V2 [22], 
InceptionV3 [56], Xception [13], MobileNet [24] and InceptionRes-
NetV2 [55] to form Convolutional Base with frozen ImageNet weights. 
Table 1 provides architecture details of pre-trained models such as ex-
pected input dimension, number of layers, number of parameters, 
number of frozen layers in the convolution base, and the number of 
spatial feature maps obtained from frozen convolution base. The 2D 
spatial representations obtained from ConvBase module are high 
dimensional and are squeezed by applying the global average pooling 
operation. Final squeezed representations serve as input to the classifi-
cation head. 

3.1.3. Regularized classification head 
The proposed classification head module consists of three ReLU 

activated dense layers, with 512, 512, and 256 neurons respectively. 
Each dense layer is supported by a dropout layer at a rate of 0.3 to avoid 
overfitting. In addition, weights of fully connected layers are L1 regu-
larized and biases are L1L2 regularized to further avoid overfitting of the 
model during the training process. All three modules are stacked and 
trained in an end-to-end fashion to generate predictions. Induced 
dropout and parameter regularization prevent the model from over-
fitting and allow it to produce meaningful predictions with reasonable 
accuracy. However, the performance of candidate models varies 
depending on the convolutional base used for feature extraction. In 
order to create a strong COVID detection system, we design a composite 
neural network which ensembles all candidate models by leveraging 
candidate model predictions. 

Fig. 1. Architecture of candidate model.  
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3.2. Novel ensemble classifier 

Ensemble is the process of creating a strong model from multiple 
weak candidate models that have been trained to perform the same task. 
Numerous such ensemble techniques have been proposed in the litera-
ture for classification and regression tasks [18]. Max Voting [12], 
Stacking [27], Bagging [60] and Boosting are popular ensemble tech-
niques that have demonstrated effective performance for a variety of 
tasks, including COVID-19 infection detection [28]. The downside of 
these models is that they rely solely on the final prediction label and 
ignore the confidence factor of the label. To avoid such problems, we 
propose a novel ensemble approach that focuses on confidence labels 
predicted by multiple candidate models. 

Initially, prediction probabilities from eight candidate models are 
passed to a composite neural network with a fusion layer, which is then 
followed by two ReLU activated fully connected layers with 256 neurons 
each. A dropout rate of 0.2 is applied after each fully connected layer, 
and all of the parameters of this composite network are regularized to 
prevent the model from overfitting. The Model loss is computed by 

taking into account the cross-entropy loss between the predictions and 
the ground truths, and the model parameters are optimized using ADAM 
optimizer. Fig. 2 depicts the overall picture of the proposed novel 
ensemble approach for COVID-19 infection detection using chest CT 
scan images. 

Let X be an input chest CT Scan image of dimension (H × W × D) 
passed to candidate models, and (P0, P1, ‥, Pc) be the probabilities ob-
tained from Softmax output layer of candidate models and represents 
how likely the given input X belongs to a class C. For eight candidate 
models, we get eight probability vectors as output and these output 
probabilities serve as input to a composite neural network. Instead of 
concatenating them to form a single vector, we treat each probability 
vector individually and pass them to a composite model which has eight 
dedicated input layers. This approach enables the model to learn 
candidate-specific probability while avoiding overlap with other 
candidate model probabilities. The fusion layer, which is placed after the 
input layer, allows the model to select the optimal feature vector from 
the input. The fully connected layers placed after the fusion layer learn 
the non-linear discriminant information required to accurately detect 
COVID-19 infection. 

In general, ensemble models use the most likely class label as input. 
This may mislead the final ensemble model deviating the focus on the 
maximum win label, resulting in greater misclassifications. The signifi-
cance of the proposed model is that it attempts to derive optimal deci-
sion by leveraging the class probabilities obtained from several state-of- 
the-art candidate CNN models. Instead of just relying on majority votes 
given by candidate models, it reduces misclassifications by leveraging 
both maximum votes and label confidence with respect to the actual 
label during training. End-to-end training of multiple inputs targeting a 
single goal helps the model to achieve superior performance over other 
ensemble strategies. 

4. Experimental discussions 

This section summarizes the experiments conducted to validate the 
proposed novel ensemble approach for detecting COVID-19 infection 
from chest CT scan images. A comprehensive description of the datasets 
utilized for the experimental studies is given at the beginning of this 
section, followed by the experimental setup and evaluation measures 
used to assess the efficiency of the proposed ensemble approach. Finally, 

Table 1 
Detailed Characteristics of Pre-trained models used as Convolution Base for 
Candidate Models.  

Model Default 
Input 
Size 

# 
Layers 

# 
Parameters 

# 
Frozen 
Layers 

# 
Features 

VGG16 (224 ×
224 × 3) 

16 138,357,544 13 4096 

VGG19 (224 ×
224 × 3) 

19 143,667,240 16 4096 

ResNet50 (224 ×
224 × 3) 

50 25,636,712 48 2048 

ResNet50V2 (224 ×
224 × 3) 

50 25,613,800 48 2048 

InceptionV3 (299 ×
299 × 3) 

48 23,851,784 46 2048 

Xception (299 ×
299 × 3) 

36 22,910,480 34 2048 

MobileNet (224 ×
224 × 3) 

28 4,253,684 26 1024 

InceptionResNetV2 (299 ×
299 × 3) 

164 55,873,736 162 1536  

Fig. 2. Architecture of proposed Novel Ensemble Classifier; Each fully connected layer post fusion layer consists of 256 neurons with ReLu activation and parameter 
regularization; Dropout with rate 0.2 is applied after every fully connected layer. 
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we present a comprehensive analysis of the experimental results on two 
benchmark datasets, along with comparative studies. 

4.1. Summary of the CT-Scan datasets 

The effectiveness of the proposed ensemble classifier is validated 
using two benchmark CT scan datasets, SARS-CoV-2 [3], and COVID-CT 
[61]. The subsections that follow provide details about each dataset, 
such as the source of the data, and number of images available for each 
category (COVID-Positive and COVID-Negative). 

4.1.1. SARS-CoV-2 
The SARS-CoV-2 dataset consists of 2482 chest CT scan images, 1252 

of which are from patients infected with SARS-CoV-2, and 1230 from 
patients who are not infected with SARS-CoV-2 but have other pulmo-
nary diseases. These CT scans are available in PNG format and have 
spatial dimensions ranging from 104 × 119 to 416 × 512. The samples of 
this dataset were collected from Sao Paulo hospitals, Brazil, and it in-
cludes 120 individuals, both male and female. 

4.1.2. COVID-CT 
The COVID-CT dataset is a small-scale chest CT scan image dataset. 

This dataset consists of 746 images, 349 of which belong to COVID- 
Positive and 397 of which belong to COVID-Negative category. All 
COVID-Positive CT Scan images were collected from medRxiv and bio-
Rxiv. These CT scans have spatial dimensions ranging from 124 × 153 to 
1485 × 1853 and are available in PNG format. Fig. 3 represents chest CT 
scan images with and without SARS-CoV-2 infection. 

4.2. Setup for experiments 

All the experiments are conducted in the Google Co-laboratory with 
the Keras and TensorFlow libraries. Since no standard test splits are 
provided for both datasets, we adopted hold-out set validation strategy 
as per [3,23,26,32,40,50] and used 80% of the data for training and 20% 
for validation. As most of the recent works followed an image-wise split 
on these datasets for validation, we too followed the same strategy to 
make a standard validation split in order to establish a fair comparison 
with them. 

We empirically determined the values of various hyper-parameters 
by observing the model performance by setting parameters within 
certain ranges. For the proposed model, we investigated learning rate 
ranging from 0.005 to 0.05, dropout rates ranging from 0.1 to 0.5, and 
weight & bias regularization rates ranging from 0.001 to 0.1. We have 
determined the parameters after conducting extensive experiments with 

these values, and fixed the hyper-parameters that resulted in highest 
performance. The details of each hyper-parameter is reported in Table 2. 
In all the experiments, the ensemble model is allowed to run for 100 
epochs to achieve consistent performance. Despite the fact that 100 
epochs is a fairly short number of epochs for training deep networks, we 
observed that the model quickly converged, and there was no substantial 
improvement in loss after 100 epochs. We have set epochs to 500 for 
fine-tuning candidate models. Other hyper-parameters, such as loss and 
optimizer, are selected based on the task at hand and type of training 
data available. Table 2 provides the details of fixed hyper-parameters 
used while performing experiments on our proposed ensemble 
approach and relevant studies. We used the check pointing strategy 
throughout the training phase to save the best model with the least 
amount of loss. The results reported for all the experiments refer to the 
measures obtained for the test data alone. 

4.3. Model evaluation measures 

Different classification metrics such as Accuracy, Precision, Recall, 
F1 Score and AUC are used to determine the efficacy of the proposed 
approach for the Coronavirus detection task. Accuracy is the ratio of the 
number of correctly estimated CT scan images to the actual number of 
CT scan images being examined. Precision reveals what percentage of 
the diseased images are actually diseased, while recall reveals what 
percentage of the actual diseased are predicted as diseased. F1 Score is 
the harmonic mean of the Precision and recall. Mathematical 

Fig. 3. Chest CT Scan Sample images with and without COVID-19 Infection.  

Table 2 
Hyper-parameter values set for Candidate and Ensembling models.  

Hyper Parameter Value 

Candidate Model - Batch Size 32 
Ensembling Model - Batch Size 32 
Candidate Model - Epochs 500 
Ensembling Model - Epochs 100 
Candidate Model - Optimizer ADAM 
Ensembling Model - Optimizer ADAM 
Candidate Model - Learning Rate 0.003 
Ensembling Model - Learning Rate 0.001 
Dropout Rate for Candidate Model 0.3 
Dropout Rate for Ensembling Model 0.2 
Weight Regularization L1(0.01) 
Bias Regularization L1_L2(0.01) 
Hidden layer activation ReLU 
Output layer activation Softmax 
Candidate Model - Loss Cross-entropy 
Ensembling Model - Loss Cross-entropy  
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expressions for computing each of these metrics are as follows: 

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(1)  

Precision =
TP

(TP + FP)
(2)  

Recall =
TP

(TP + FN)
(3)  

F1Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(4) 

In equations (1)–(4), TP and FP correspond to the number of true 
positives and number of false positives respectively. While TN and FN 
correspond to the number of true negatives and false negatives. 

4.4. Result analysis on SARS-CoV-2 dataset 

The SARS-CoV-2 dataset has been considered for our preliminary 
experiments. Deep pre-trained networks including VGG16, VGG19, 
ResNet50, ResNet50V2, InceptionV3, Xception, MobileNet, Inception-
ResNetV2 are used as Convolutional Base for candidate models to learn 
feature representations from the CT scan images. Regularized classifi-
cation head provides initial predictions which are later used as inputs to 
the proposed ensemble model. Table 3 represents the results of several 
baseline candidate models. Modified ResNet with 50 layers, MobileNet, 
and VGG with 16 layers have demonstrated their architectural stability 
for the COVID detection task by producing accurate predictions when 
compared to other models. 

InceptionResNetV2 (IRV2) achieved the lowest classification accu-
racy of 91.35%, while ResNet50V2 achieved the highest classification 
accuracy of 97.79%. The performance of the InceptionV3 and MobileNet 
models is similar to that of the IRV2 and ResNet50V2 models. 
ResNet50V2 outperforms other models not only in terms of accuracy, 
but also in terms of Precision, Recall F1-Score, and AUC. 

We compare the proposed ensemble approach with the top five 
models (5-clf) and all models (8-clf) to check the negative impact of the 
weak models on the performance of strong models in ensemble ap-
proaches. This comparison is included in Table 4, along with compari-
sons of existing popular ensemble approaches such as Max Voting, 
Random Forest bagging classifier, Gradient Boosting classifier. We can 
observe that the proposed ensemble approach with 5-clf and 8-clf out-
performs the existing ensemble approaches for the task of COVID 
detection on the SARS-CoV-2 dataset with an accuracy of 98.99%. This is 
the best accuracy so far on this dataset, to the best of our knowledge. The 
accuracy produced by both 5-clf and 8-clf is the same, but they differ in 
terms of other performance indicators considered here. The precision of 
the 5-clf model is 99.02%, which is the highest among all models, while 
the recall of the 8-clf model is 99%, which is also the highest among all 
models. 

4.5. Result analysis on COVID-CT dataset 

We extend our experimental studies with the COVID-CT dataset to 
check the effectiveness of the proposed ensemble approach with small 
scale datasets. Table 5 provides the results of various baseline candidate 
models trained on COVID-CT dataset. With this dataset, VGG with 16 
layers achieved the highest accuracy of 92%, while all other models 
were confined to below 90% accuracy. In Comparison, VGG19, Mobi-
leNet and ResNet50V2 models result in better accuracy than Incep-
tionV3, ResNet, Xception, and IRV2 models. From these results, we may 
conclude that the VGGNet architecture is better suitable for a small-scale 
dataset with lower mis-classification rates for the COVID-19 detection 
task. 

Table 6 compares the proposed ensemble approach with existing 
ensemble techniques. As discussed above, to validate the impact of weak 
models in making a final decision, we perform ensemble of the top five 
candidate models, VGG16, VGG19, ResNet50V2, MobileNet, and Xcep-
tion networks (5-clf) and all models (8-clf). It can be observed that both 
5-clf and 8-clf based ensemble models are comparable in terms of ac-
curacy, however they differ in other scores such as precision, recall, and 
F1-Score. The 5-clf model achieves a precision of 93.60%, while the 8-clf 
model achieves a recall of 93.54%, which are highest among all the 
models. 

4.6. Comparison with state-of-the-art methods 

In this section, we present a comparative study of the proposed 
ensemble approach with several state-of-the-art models developed for 
detecting COVID infection from chest CT scan images. We compare the 
proposed novel ensemble classification model with a set of models 
trained on deep feature representations of chest CT scan images from 
both SARS-CoV-2 and COVID-CT datasets. 

Table 7 compares the proposed model performance with the existing 
models in terms of accuracy, precision, recall and F1 Score. Deep ar-
chitectures such as xDNN [3], DenseNet201 [26] and Modified VGG-19 
[40] achieve reasonably good performance in terms of various measures 
on SARS-CoV-2 dataset. In terms of accuracy, xDNN surpasses the other 
two models with a 1.10%–2.30% improvement. However, our proposed 
ensemble approach exhibits superior performance and outperforms 

Table 3 
Comparing the performance of various pre-trained models fine-tuned on SARS- 
CoV-2 dataset images.  

Model Accuracy Precision Recall F1-Score AUC 

VGG16 96.18 96.16 96.2 96.17 96.2 
VGG19 94.77 94.95 94.66 94.75 94.66 
ResNet50 92.15 92.13 92.18 92.14 92.18 
ResNet50V2 97.79 97.77 97.84 97.78 97.84 
InceptionV3 91.55 91.62 91.67 91.55 91.67 
Xception 94.77 94.75 94.83 94.77 94.83 
MobileNet 97.38 97.41 97.35 97.38 97.35 
InceptionResNetV2 91.35 91.33 91.39 91.34 91.39  

Table 4 
Comparing the performance of various ensembling models with proposed 
approach on SARS-CoV-2 dataset images.  

Ensembling Approach Accuracy Precision Recall F1- 
Score 

AUC 

Max Voting 98.39 98.37 98.40 98.39 98.40 
Bagging (Random Forest) 96.18 96.26 96.32 96.18 98.44 
Boosting (Gradient 

Boosting) 
98.19 98.17 98.25 98.19 98.25 

Proposed Ensembling (5- 
clf) 

98.99 99.02 98.97 98.99 98.97 

Proposed Ensembling (8- 
clf) 

98.99 98.98 99.00 98.99 99.00  

Table 5 
Comparing the performance of various pre-trained models fine-tuned on COVID- 
CT dataset images.  

Model Accuracy Precision Recall F1-Score AUC 

VGG16 92.00 91.91 91.91 91.91 91.91 
VGG19 88.67 88.58 88.46 88.52 88.46 
ResNet50 84.67 84.52 84.42 84.47 84.42 
ResNet50V2 88.00 87.96 87.72 87.82 87.72 
InceptionV3 83.33 83.27 83.65 83.27 83.65 
Xception 85.33 86.51 84.30 84.80 84.30 
MobileNet 88.67 88.5 88.61 88.55 88.61 
InceptionResNetV2 82.00 81.90 81.58 81.71 81.58  
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xDNN, hybrid Convolutional SVM [39] and the rest of the baseline 
models on SARS-CoV-2 dataset. To the best of our knowledge, 98.99% is 
the state-of-the-art accuracy so far on the SARS-CoV-2 dataset. 

Similar trends have been observed in the case of COVID-CT dataset as 
well. DesnseNet169 [23], ResNet101 [50] and SqueezNet based CNN 
[43] achieve acceptable results on COVID-CT dataset, whereas ensemble 
of such deeper architectures (Decision Function [32] and Transfer 
Learning Ensemble [49]) outperforms individual models. On the 
COVID-CT dataset, our proposed ensemble approach outperforms 
existing ensembles models in the literature and sets state-of-the-art 
scores by achieving an accuracy of 93.33%. 

From this comparison study, we claim that the proposed novel 
ensemble approach minimizes misclassifications and provides more 
generalized predictions for COVID-19 detection on providing processed 
chest CT scan images as input candidate models whose predictions are in 
turn used by the proposed ensemble model. 

Using processed chest CT scan images as input to the candidate 
models, we claim that the proposed new ensemble technique minimizes 
mis-classifications and gives more generic predictions for COVID-19 
detection. These predictions are then utilized by the suggested 
ensemble model and further improves accuracy. 

5. Conclusion and future work 

The main objective of this work is to introduce an effective ensemble 
approach for detecting SARS-CoV-2 infection from chest CT scan images. 
The proposed approach is unique in terms of candidate model design 
used for initial predictions and composite ensemble classifier design for 
ensemble candidate models. Deep pre-trained convolutional bases of 
VGGNet, ResNet, MobileNet, InceptionV3, Xception, and IRV2 allow 

candidate models to learn discriminant features from CT scan images. 
Regularized classification head prevents candidate models from over- 
learning and makes generalized predictions. The Proposed composite 
ensemble classifier receives candidate prediction probabilities as an 
input and creates a strong discriminator for final prediction. Our 
experimental studies on two benchmark datasets, SARS-CoV-2 and 
COVID-CT, validates the effectiveness of the proposed ensemble 
approach for COVID-19 detection. The results from both datasets indi-
cate that, in comparison to existing models and conventional ensemble 
techniques, the suggested ensemble approach is substantially efficient in 
terms of various performance measures. 

This work might be extended in the future to allow for the detection 
of a variety of lung infections from CT scan images. Furthermore, we 
may also try to design an attention-based ensemble approach that pri-
oritizes certain candidate models based on their individual performance 
for the task considered. 
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