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We present a novel method to solve the accessory
parameter problem arising in constructing conformal
maps from a canonical simply connected planar
region to the interior of a circular arc quadrilateral.
The Schwarz–Christoffel accessory parameter
problem, relevant when all sides have zero curvature,
is also captured within our approach. The method
exploits the isomonodromic tau function associated
with the Painlevé VI equation. Recently, these tau
functions have been shown to be related to certain
correlation functions in conformal field theory and
asymptotic expansions have been given in terms of
tuples of the Young diagrams. After showing how
to extract the monodromy data associated with the
target domain, we show how a numerical approach
based on the known asymptotic expansions can
be used to solve the conformal mapping accessory
parameter problem. The viability of this new method
is demonstrated by explicit examples and we discuss
its extension to circular arc polygons with more than
four sides.

1. Introduction
The theory of conformal mapping has a long history with
perennial interest in it due to its role as an invaluable
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tool in applied contexts such as fluid dynamics [1,2], solid mechanics [3,4] and in the study of free
boundary problems in porous media [5].

The Riemann mapping theorem guarantees that any simply connected planar domain is
conformally equivalent to an upper-half plane. However, the theorem is non-constructive and
there is a vast literature on analytical and numerical constructions of conformal mappings in
various contexts [6].

A famous result is the formula for the conformal mapping from a simply connected canonical
domain to a simply connected polygon; this is given by the Schwarz–Christoffel (SC) formula
[6,7]. For a triangle, the parameters appearing in the mapping formula can all be determined
directly from the vertex positions. By contrast, for polygons with four or more edges the relevant
parameters are not all determined and a set of the so-called accessory parameters must be found
that cannot be related, at least in any obvious way, to the geometry of the polygon. Research on
this class of mappings continues, with the extension of the SC formula to multiply connected
polygons found only quite recently [8,9].

Polygons are a special case of more general circular arc polygons, and the theory here is
also well developed in the simply connected case [7], with recent work again providing the
multiply connected extensions [10,11]. For circular arc polygons an explicit formula (up to
accessory parameters) for the conformal mapping from an upper half plane (UHP), say, cannot
in general be written down, although an explicit expression for its Schwarzian derivative is
available (again, up to accessory parameters). This leads [6,7,12] to a third-order nonlinear
equation for the mapping that can be linearized; as a result, the required mapping is given
as a bilinear combination of two independent solutions of a second-order Fuchsian differential
equation. Such mappings to circular-arc polygons arise frequently in applications. The connection
between Fuchsian differential equations, conformal mappings and solutions of free boundary
problems in groundwater flows has been exploited to great effect by Polubarinova-Kochina [5],
for example.

The principal difficulty in all these problems is solving for the accessory parameters. For SC
mappings to simply connected domains, the theory is, by now, well developed [13] with powerful
software available for general use (see discussion of the SCToolbox in [13]). Numerical solution
of the accessory parameter problem for circular arc polygons has been explored [14,15], but there
are no general-use codes and many numerical issues in solving the accessory parameter problem
in the general case still exist. The phenomenon of ‘crowding’, in which very small regions of
the preimage curve are mapped to extensive regions of the target curve, are a ubiquitous and
significant source of numerical difficulty for most computational approaches.

The purpose of this paper is to offer a novel mathematical perspective on the accessory
parameter problem in constructing conformal mappings to circular arc polygons. It is not
merely of theoretical interest: it has the advantage that numerical implementation of it appears
not to suffer from the aforementioned crowding problems. We focus here on a pedagogical
introduction to these ideas in the case of circular arc quadrilaterals (four sides). The approach
is fundamentally interdisciplinary with ideas imported from the theory of isomonodromic
deformations of Fuchsian differential equations and use of an associated tau function. We are
not aware of any previous application of such ideas to the construction of circular arc polygons.

Now for a few conventions: the conformal (or ‘uniformizing’) map z = f (w) from a canonical
simply connected domain in the complex plane, say, the UHP, to a domain bounded by a series
of circular arcs and/or straight lines—a ‘polycircular arc domain’—with n vertices satisfies the
Schwarzian differential equation [12]

{ f (w), w} :=
(

f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

=
n∑

i=1

[
1 − θ2

i
2(w − wi)2 + βi

w − wi

]
, (1.1)

where θiπ are the interior angles at each vertex zi = f (wi) in the target domain D, wi are the
positions of the pre-vertices, and βi are called the accessory parameters (figure 1).
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Figure 1. Conformal mapping from the UHP to the interior of a polycircular arc domain, with zi = f (wi).

The study of the uniformizing map can be related to the theory of Fuchsian equations by
considering that a solution of (1.1) is written as f (w) = ỹ1(w)/ỹ2(w), where ỹ1(w) and ỹ2(w) are
two linearly independent solutions of the second-order equation [6]

ỹ′′(w) +
n∑

i=1

[
1 − θ2

i
4(w − wi)2 + βi

2(w − wi)

]
ỹ(w) = 0, (1.2)

a generic Fuchsian equation with n regular singular points at the pre-vertices w = wi. Regularity of
f (w) as w → ∞ in (1.1), and therefore of ỹ1,2(w) as w → ∞ in (1.2), requires the algebraic equations

n∑
i=1

βi =
n∑

i=1

(2wiβi + 1 − θ2
i ) =

n∑
i=1

(βiw
2
i + wi(1 − θ2

i )) = 0, (1.3)

leaving us with n − 3 independent βi’s. By the same token, one can use the invariance of (1.1) by
Möbius transformations to fix three of the pre-vertices wi. This leaves the 4-vertex case as the first
non-trivial one. This is the case we will consider in the paper.

Let the pre-vertices be located at wi = 0, t0, 1, ∞ and the internal angles at the corresponding
vertices be θiπ , with θi ∈ {θ0, θt0 , θ1, θ∞0 }. For the purpose of embedding this equation in a
Fuchsian-like system in §3, it is very convenient to transform the Heun equation to its so-called
canonical form:

y′′(w) +
(

1 − θ0

w
+ 1 − θt0

w − t0
+ 1 − θ1

w − 1

)
y′(w) +

[
q+q−

w(w − 1)
− t0(t0 − 1)K0

w(w − 1)(w − t0)

]
y(w) = 0, (1.4)

where q± = 1 − 1
2 (θ0 + θt0 + θ1 ± θ∞0 ) and

K0 = −1
2

⎡
⎣βt0 +

∑
k �=t0

(1 − θt0 )(1 − θk)
t0 − wk

⎤
⎦ . (1.5)

We note that ỹ(w) and y(w) are related by a ‘s-holomorphic transformation’: ỹ(w) = φ(w)y(w), for
φ(w) = w−θ0/2(w − 1)−θ1/2(w − t0)−θt0 /2, and hence f (w) = y1(w)/y2(w) can be computed with a pair
of solutions from either (1.4) or (1.2). Hereafter, we generically refer to both t0 and K0 in equation
(1.4) as accessory parameters.

As we will see in the following, the problem we address is the original version of the Riemann–
Hilbert problem (RHp): how to find the accessory parameters in (1.4), or equivalently (1.2), given
the monodromy data of the solutions. As will be shown in §2, the monodromy data are tied
to the geometric properties of the domain. This can be seen from either the parallel transport
along the perimeter, or by the explicit construction outlined in §2. For (1.4) or, equivalently (1.2),
the monodromy data comprise four monodromy matrices Mi each associated with a singular
point. The matrix Mi encodes the result of analytic continuation around the singular point
wi of a particular solution to (1.4). Given that there are two linearly independent solutions
to this equation, the matrices are defined up to conjugation, meaning a change of basis of
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solutions. A convenient set of invariant coordinates to the space of monodromy data are the trace
coordinates

ρ = {Tr Mi, Tr MiMj, Tr MiMjMk, . . .}.
The RHp that we tackle in this paper is to find the accessory parameters of ODEs such as (1.4), or
the associated matricial system we will define below, from the monodromy data ρ.

The most convenient way to deal with the RHp is to cast equation (1.4) into a matricial
system of first order ∂wΦ(w) = A(w)Φ(w)—see (3.1). Given the number of parameters of the
partial fraction expansion of A(w), one realizes a family of equations with the same monodromy
data. This isomonodromy family has its parameters related by the Schlesinger equations (3.6).
It is a well-established fact that the second-order equation derived from the generic matricial
system can have extra singularities—see (3.3). These are apparent singularities, meaning that
the monodromy matrices associated with them are identity matrices. The Schlesinger equations
induce a Hamiltonian dynamics on the apparent singularities (3.5). The solutions of these
Hamiltonian equations possess the Painlevé property: their movable singularities (that is, those
dependent on initial conditions) are poles. Functions with the Painlevé property were recognized
at the end of the nineteenth century to constitute an important subclass of functions defined
by solutions of ordinary differential equations. The four-singularities case corresponds to the
Painlevé VI transcendent.

Despite having the Hamiltonian structure outlined in the beginning of the twentieth century,
the dependence of the isomonodromic Hamiltonian flow on the monodromy data was mysterious
until a series of papers from Jimbo, Miwa, Ueno and collaborators in around 1980 [16,17].
Motivated by applications to integrable models, distribution functions of statistical mechanics
and random matrix models, they introduced the isomonodromic tau function, which is related
by a logarithmic derivative to the value of the Hamiltonian under the isomonodromic flow, and
showed that it satisfies the Painlevé property.

Applications of the Jimbo–Miwa–Ueno tau functions, closer in spirit to the topic of this paper,
include the connection problem for the Heun differential equation, which was used to study
scattering of scalar fields in black hole backgrounds [18,19] as well as the quantization of the
Rabi model in quantum optics [20].

Another connection to our work is the observation that the tau function for the Painlevé VI
transcendent coincides with the Fourier transform of a particular 4-point Virasoro conformal
block for c = 1, relating the Painlevé transcendents with the representation theory of the Virasoro
algebra, and hence to (quantum) Liouville field theory. The latter has been studied for a long
time due to its ties to string theory, and, by the AGT conjecture [21], is given by certain partition
functions of supersymmetric gauge theories. The AGT conjecture [21], proved in [22], allows for
an exact expansion of the Virasoro conformal blocks in terms of sums of tuples of Young diagrams,
which we record in appendix A. By the observation made in [23], the same conformal block
applies to the semi-classical limit of Liouville field theory, which has been related to the existence
of the accessory parameters for the classical uniformization problem in [24]. In this paper, we give
a constructive procedure for this calculation.

The paper is structured as follows. In §2, we describe the construction of the monodromy
matrices and the monodromy data for generic n-vertex polycircular arc domains, even though we
will focus here on the n = 4 case. Section 3 outlines the isomonodromy method used to calculate
the accessory parameters t0 and K0. After some considerations in §4 we present some examples
in §5. We close with some remarks and conjectures.

2. Finding the monodromies
Let us start with two linearly independent solutions y1(w) and y2(w) of (1.4), arranged as a (row)
vector Y(w) = [y1(w) y2(w)]. Analytic continuation along a closed loop γi around a singular point
wi brings Y(w) to

Yγi (w) ≡ Y(e2π i(w − wi) + wi) = Y(w)Mi,
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where Mi, called a monodromy matrix, implements a linear combination between the elements of
Y(w) due to the existence of a branch point at wi as a consequence of wi being a regular singular
point of (1.4). The elements of Mj will depend both on the parameters of the equation as well as
the choice of solutions. By picking a different set of linearly dependent solutions one constructs
a new vector Ỹ(w) related to the previous one by Ỹ(w) = Y(w)F, where F ∈ GL(2, C). This change
implies the transformation in Mi:

M̃i = F−1MiF.

Since the particular form of F depends on this choice, we see that the set of monodromy matrices
{Mi} is defined up to conjugation. A similar transformation happens if we deform γi inside the
same homotopy class, because then the difference between the contours would be a closed path
inside which both functions are analytic. Therefore, for our particular example, Mi, i = 0, t, 1, ∞,
generate a conjugacy class which is a representation of the fundamental homotopy group of
P

1/{0, 1, t, ∞}. This is so because of composition: the monodromy matrix associated with two
independent contours γi and γj is MjMi. Notice that, since we will later view t0 as a time-like
variable parametrizing the isomonodromic deformations, we are now denoting it simply by t.

Given that the contour encompassing all singular points is contractible, we have the following
relation for the set of monodromy matrices

M∞M1MtM0 =1. (2.1)

Also, because of the equivalence of sets of monodromy matrices by overall conjugation described
above, it is desirable to associate with the set of monodromy matrices the invariant parameters:

2 cos παi = Tr Mi, 2 cos πσij = Tr MiMj. (2.2)

In our problem, we are given the geometrical representation of the domain we set out to
uniformize, and this allows us to compute the parameters defined above. Remember that the
uniformizing map is given by the ratio of two linearly independent solutions of (1.2), f (w) =
y1(w)/y2(w), which are analytic except at the singular points of their defining equation. Hence,
Mi is related to the manner in which f (w) transforms under an analytic continuation around wi.
For our application, the singular points are located at the boundary of the domain, which is the
image of the real line z = f (w = w̄), z̄ = f̄ (w = w̄). A convenient description of the boundary is given
by the Schwarz funcion z̄ = S(z) [25]. We will deal with the case where the boundary consists of
a connected sequence of circular arcs or straight lines {Ci}, a polycircular arc domain for short. On
each arc Ci, we have

Si(z) := z̄ = z̄i + r2
i

z − zi
= z̄iz + r2

i − |zi|2
z − zi

, (2.3)

where zi is the centre of circle to which Ci belongs, ri is its radius, and the Schwarz function Si(z)
and its inverse function are defined on an open set containing a point in the interior of Ci. One
can use this fact to continue z = f (w) past the real line: for w in the lower half plane, f̄ (w̄) is defined
and analytic near the real line and S̄i(z̄) = S̄i(f (w)) agrees with z for w = w̄. This is the Schwarz
reflection principle.

For a circular arc domain, Si(z) is given locally as a Möbius transformation such as (2.3).
Abusing notation and using the same Si now to denote a 2 × 2 matrix representing the action
of this Möbius transformation, the action of the Schwarz reflection principle on the vector Y of
solutions is

Ȳ(w) = Y(w)Si, Si = i
ri

(
z̄i 1

r2
i − |zi|2 −zi

)
, (2.4)

with the prefactor chosen so that Si is unimodular, and SiS̄i =1. If γi is a sufficiently small closed
curve containing zi, the monodromy picked by Y(w) as one follows the curve counterclockwise is

Yγi (w) = Y(w)Si+1S̄i (2.5)

as we compose the continuation through Ci and back through Ci+1. This establishes the
monodromy matrix Mi around zi explicitly.
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The definition Mi = Si+1S̄i, with S̄iSi =1, automatically satisfies (2.1). From

Mi = 1
riri+1

(
ziz̄i+1 + r2

i − |zi|2 z̄i+1 − z̄i

zi(r2
i+1 − |zi+1|2) − zi+1(r2

i − |zi|2) z̄izi+1 + r2
i+1 − |zi+1|2

)
(2.6)

we have

2 cos παi = Tr Mi = ziz̄i+1 + r2
i − |zi|2 + z̄izi+1 + r2

i+1 − |zi+1|2
riri+1

(2.7)

which are related to the internal angles πθi between the two segments meeting at zi by θi = 1 − αi.
This explicit representation of the monodromy matrices allows us to write all monodromy
parameters as

2 cos πθi = −Tr Mi, 2 cos πσij = Tr MiMj, (2.8)

where θi and σij will be called simple and composite monodromies, respectively.
We will assume for now that at least one radius ri is finite. A slight technical complication

for the method outlined here arises when one considers domains consisting solely of straight
lines. For this case, the polycircular arc domain degenerates to a polygon and the uniformizing
map is known to be given by the classical SC formula. We will see in §5, however, that we are
able to extend the results for generic polycircular arcs to the polygon case by considering a small
curvature—large ri—limit of the formulae above.

Not all monodromy parameters are independent: using the Cayley–Hamilton theorem, which
for invertible two-dimensional matrices gives

Mi + M−1
i det Mi =1Tr Mi,

and beginning from (2.1) one can arrive at the Fricke–Jimbo relation:

J(θi, σij) = p0tp1tp01 + p2
01 + p2

1t + p2
01 + p2

0 + p2
t + p2

1 + p2
∞ + p0ptp1p∞

− (p0pt + p1p∞)p0t − (p1pt + p0p∞)p1t − (p0p1 + ptp∞)p01 − 4 = 0, (2.9)

where pi = 2 cos πθi and pij = 2 cos πσij. Therefore, from the set of three composite monodromy
parameters σij = {σ0t, σ1t, σ01}, only two are independent. This is the same number of independent
accessory parameters in the differential equation (1.2). The way the monodromy data determine
the accessory parameters is best visualized when the Heun equation is written as a Fuchsian
system, which is the subject of the next section.

3. The Fuchsian system: isomonodromy and the Jimbo–Miwa–Ueno
tau function

As stated in the introduction, the second order differential equation has in general fewer free
parameters than the corresponding monodromy group. These extra parameters can be included
in the differential equation if it is cast as a matricial equation. For the Heun equation with four
regular singular points we have

∂wΦ(w) = A(w)Φ(w), Φ(w) =
(

y1(w) y2(w)
u1(w) u2(w)

)
, A(w) = A0

w
+ A1

w − 1
+ At

w − t
, (3.1)

where the 2 × 2 matrix Ai does not depend on w and the residue of A(w) at infinity implies that
A0 + At + A1 = −A∞, which can be diagonalized by a suitable transformation Φ(w) → GΦ(w).
When all Ai’s are traceless we will refer to (3.1) as a Fuchsian system. One can now define the
action of monodromy matrices: let Φγi (w) be the result of an analytic continuation of Φ(w) along
a closed loop γi around the singular point wi of the Fuchsian equation, so that we start with Φ(w)
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at an ordinary point and come back to it. Hence,

Φγi (w) = Φ(w)Mi.

Again, choosing a different starting point amounts to picking a monodromy matrix M̃i = FMiF−1,
for some F ∈ GL(2, C).

Using (3.1) a second order ODE for y1(w) of the form

y′′ − (Tr A + (log A12)′)y′ + (det A − A′
11 + A11(log A12)′)y = 0, (3.2)

is then derived where the subscript 1 in y1 has been dropped, and Aij corresponds to the ij-entry
of A(w). A similar equation can be found for any other element of Φ(w). One can further show
that y1(w) and y2(w)—as well as u1(w) and u2(w)—are linearly independent when the matrix Φ(w)
is invertible.

Requiring that (3.2) has the same form as (1.4) imposes constraints on the number of free
parameters of A(w). Enforcing that A∞ is diagonal leads to the assumption that A12(w) vanishes
like O(w−2) as w → ∞. Given the partial fraction expansion of A(w) we find

A12(w) = k(w − λ)
w(w − 1)(w − t)

, k ∈ C,

so that the off-diagonal element A12 has a single zero, which we call λ. Some algebra and a
comparison with (1.4) reveals that Tr Ai = θi and det Ai = 0. Then, one finds that (3.2) can be
written as

y′′ +
(

1 − θ0

w
+ 1 − θt

w − t
+ 1 − θ1

w − 1
− 1

w − λ

)
y′

+
(

κ−(1 + κ+)
w(w − 1)

− t(t − 1)K
w(w − t)(w − 1)

+ λ(λ − 1)μ
w(w − λ)(w − 1)

)
y = 0, (3.3)

where μ is the residue of A11(w) at w = λ, we chose A∞ = diag(κ−, κ+), with κ± = − 1
2 (θ0 + θt +

θ1 ± θ∞), and K is given by

K(λ, μ, t) = λ(λ − t)(λ − 1)
t(t − 1)

[
μ2 −

(
θ0

λ
+ θ1

λ − 1
+ θt − 1

λ − t

)
μ + κ−(1 + κ+)

λ(λ − 1)

]
. (3.4)

This relation between K, μ and λ allows us to show that the singularity of the equation (3.3)
at w = λ is apparent: the indicial exponents at this point are integers (0, 2) and (3.4) guarantees
that there is no logarithmic behavior. The monodromy associated with a circuit around w = λ is
therefore trivial and the corresponding matrix is the identity Mλ =1.

The relation between K, λ and μ also allows us to interpret a change of the singularity position
w = t as inducing a change in the parameters of (3.3) according to the Hamiltonian system

dλ

dt
= {K, λ}, dμ

dt
= {K, μ}, {f , g} = ∂f

∂μ

∂g
∂λ

− ∂f
∂λ

∂g
∂μ

, (3.5)

where it can be checked that the second order differential equation for λ(t) is the Painlevé VI
equation (PVI). One can see that this deformation does not change the monodromy parameters
by casting them in terms of the matricial system. Let the traceless matrices

Â(w, t) = Â0

w
+ Ât

w − t
+ Â1

w − 1
, B̂(w, t) = − Ât

w − t
,

where Âi does not depend on w, satisfy a zero curvature condition

∂tÂ − ∂wB̂ + [Â, B̂] = 0.

In terms of Âi, this zero curvature condition is equivalent to the Schlesinger equations:

∂Â0

∂t
= 1

t
[Ât, Â0],

∂Â1

∂t
= 1

t − 1
[Ât, Â1],

∂Ât

∂t
= 1

t
[Â0, Ât] + 1

t − 1
[Â1, Ât]. (3.6)
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Due to the zero curvature condition, and the analyticity of the system, one can prove that the
monodromy parameters are preserved by the change in t. In particular, the eigenvalues of Âi,
related to the parameters θi, are conserved under the (isomonodromic) deformation.

For any solution of the Schlesinger equations, the 1-form ω =∑
i<j Tr ÂiÂjd log(wi − wj) is

closed [16]. This allows for the definition of a tau function as ω = d log τ̂ . In simpler terms:

d
dt

log τ̂ (t) = 1
t

Tr Â0Ât + 1
t − 1

Tr Â1Ât. (3.7)

The tau function is related to the parameters of (3.3) by

d
dt

log τ̂ (t) = K + θ0θt

t
+ θ1θt

t − 1
− κ−(λ − t)

t(t − 1)
− λ(λ − 1)μ

t(t − 1)
. (3.8)

Utilizing the Schlesinger equations (3.6), one can show that d log τ̂ /dt obeys a differential
equation: consider the function ζ̂ (t) below and its derivatives

ζ̂ (t) := t(t − 1)
d
dt

log τ̂ (t), ζ̂ ′(t) = Tr Â0Ât + Tr ÂtÂ1, ζ̂ ′′(t) = Tr[Â0, Ât]Â1

t(1 − t)
. (3.9)

Any triple of traceless 2 × 2 matrices obeys

(Tr[Â0, Ât]Â1)2 = −2 det

⎛
⎜⎜⎝

Tr Â2
0 Tr Â0Ât Tr Â0Â1

Tr ÂtÂ0 Tr Â2
t Tr ÂtÂ1

Tr Â1Â0 Tr Â1Ât Tr Â2
1

⎞
⎟⎟⎠ . (3.10)

The algebraic formula above can be used to determine a differential equation for ζ̂ (t) and its
derivatives. Remember that, in (3.1), the matrices Ai are not traceless. Defining τ (t) := tθ0θt/2(t −
1)θtθ1/2τ̂ (t) it is straightforward to show that

t(t − 1)
d
dt

log τ (t) = (t − 1)Tr A0At + tTr AtA1 = ζ̂ (t) + (t − 1)θ0θt

2
+ tθ1θt

2
. (3.11)

Then, using A0 + At + A1 = −A∞, equation (3.10), in terms of ζ̂ (t), becomes

(t(t − 1)ζ̂ ′′(t))2 = −2 det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

θ2
0
2

tζ̂ ′ − ζ̂ ζ̂ ′ + θ2
0 + θ2

t + θ2
1 − θ2∞

4

tζ̂ ′ − ζ̂
θ2

t
2

(t − 1)ζ̂ ′ − ζ̂

ζ̂ ′ + θ2
0 + θ2

t + θ2
1 − θ2∞

4
(t − 1)ζ̂ ′ − ζ̂

θ2
1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.12)

Equation (3.12) is known as the σ -form of the Painlevé VI equation (σ -PVI). Thus one can interpret
the solution of (3.12), or, equivalently, of the Schlesinger equations (3.6), as representing a class
of differential equations of the form (3.1)—and therefore of (3.3) whose solutions have the same
monodromy parameters. The set is parametrized by the position of the singularity at w = t, and
we will call it the isomonodromic deformation of the Heun equation.

The task is now to view the Heun equation (1.4) as an element of a family of an
isomonodromically deformed system. It is clear from (3.3) and (3.4) that choosing

λ(t0) = t0, μ(t0) = −K0

θt
, (3.13)

one can arrive at the Heun equation in the form (1.4)—i.e. the equation without the extra
singularity term at w = λ – as a smooth limit of the isomonodromic family. One can then think
of these conditions as initial conditions for the Schlesinger equations, or, equivalently, for the
Painlevé VI system. By adjusting the parameters so that θt = θt0 − 1 and θ∞ = θ∞0 + 1, which
implies that q−q+ = κ−(1 + κ+) one recovers the exact form of (1.4) from (3.3).
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When written in terms of the tau function, these conditions define a well-posed initial value
problem for (3.12):

t(t − 1)
d
dt

log τ (θi, σij, t)
∣∣∣∣
t=t0

= t0
θtθ1

2
+ (t0 − 1)

θ0θt

2
+ t0(t0 − 1)K0,

d
dt

[
t(t − 1)

d
dt

log τ (θi, σij, t)
]∣∣∣∣

t=t0

= (θ∞ − θt)
θt

2
, (3.14)

where the hat symbol has been dropped. The conditions above allow us to solve for the accessory
parameters of (1.4) in terms of the monodromy data. These conditions along with the differential
equation (3.12) guarantee at least one solution for the accessory parameters, due to general
existence theorems for solutions.

Casting the accessory problem in terms of the tau function has more advantages. First, the tau
function can be shown to be an analytic function of t except at the singular points t = 0, 1, ∞. It is
a function of the invariant monodromy data, and its existence can be seen from (3.14) by standard
theorems of existence of solutions to ODEs such as (3.12). The full set of arguments of τ , namely

θi ∈ {θ0, θ1, θt0 − 1, θ∞ + 1}, σij ∈ {σ0t0 − 1, σ1t0 − 1, σ01},
can readily be computed for our problem using the method presented in §2. Our main motivation
for framing the problem in terms of the tau function comes from the fact that asymptotic
expansions for the latter in terms of the monodromy data can be computed [17]. Recently, the
Painlevé VI tau function was related to Virasoro conformal blocks [26] and further connections
to the partition function of supersymmetric gauge theories [21,22] allowed for a combinatorical
construction of the full series [27]. Equations (3.14) are indeed generic and can be used for relating
the monodromy data to the accessory parameters for any Heun differential equation. To our
knowledge, the explicit relation (3.14) was cast for the first time in [18,19]. See [28] for a more
recent discussion of the many different connections and applications.

Before delving into solutions to our particular conformal mapping problem, let us digress
and consider an interpretation of (3.14). The first equation establishes the tau function as the
generating function for the canonical transformation relating the accessory parameters to the
monodromy data, whose phase space can be parametrized by σ0t, σ1t; see [29] for a suitable
definition of Darboux coordinates in terms of monodromy data. The second condition can be
understood from the Toda equation for tau functions [30]:

d
dt

[
t(t − 1)

d
dt

log τ (t)
]

− (θ∞ − θt)θt

2
= c

τ+(t)τ−(t)
τ 2(t)

, (3.15)

where c ∈ C is a t-independent constant; this establishes t0 as a zero of either τ+(t) or τ−(t) where
τ±(t) are defined analogously to τ (t) but for systems with the modified monodromies

θ±
i = {θ0, θ1, θt ± 1, θ∞ ∓ 1}, σ±

ij = {σ0t ± 1, σ1t ± 1, σ01}. (3.16)

The Toda equation can be obtained by direct construction from the Fuchsian system by
multiplying the solution Φ(w) of (3.1) by diag((w − t)±1, 1). These are known in the literature
as Bäcklund or Schlesinger transformations. A tedious calculation shows that

d
dt

log τ+(t) = K + λ(λ − 1)
t(t − 1)

μ + κ−(λ − t)
t(t − 1)

− θt

(
1
t

+ 1
t − 1

+ 1
λ − t

)
.

Thus, τ−(t) is actually related to our Hamiltonian K, whereas τ+(t) is zero at t = t0, because of the
condition λ(t0) = t0. The zeros of the isomonodronic tau function—the Malgrange divisor [31] are
related to special points of the space of parameters where the RHp does not have a solution [32].
The fact that we encounter the accessory parameters literally at one step from insolvency surely
has a deeper mathematical meaning and deserves further study. It is also worth noting that for any
domain with a geometric interpretation, like the ones in the examples to follow, the corresponding
θi will be real, and so will be the zero of the tau function 0 < t0 < 1, and the accessory parameter K0.
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We can pose the conjecture at this point that these are not only necessary but sufficient conditions,
and leave the verification for future work.

4. Determination of accessory parameters
In view of the foregoing discussion, we propose a determination of the accessory parameters
appearing in (1.4) from the equations

τ+(t0) = 0, K0 = K(t0), K(t) := d
dt

log τ (θi, σij, t) − (θt0 − 1)θ1

2(t − 1)
− (θt0 − 1)θ0

2t
, (4.1)

where explicit expansions for τ (t) near t = 0 and t = 1 are available from [27] and are recorded
here in appendix A.

It is pointed out that the arguments—i.e. the monodromy data ρ—used in the tau function
(4.1) are those used in the Fuchsian system:

ρ = {θ0, θt = θt0 − 1, θ1, θ∞ = θ∞0 + 1, σ0t = σ0t0 − 1, σ1t = σ1t0 − 1, σ01},
which in turn guarantees that the equation for the first line of Φ(w) (3.3) reduces to (1.4) when
λ = t. On the other hand, the monodromy data used for τ+(t) is related to ρ by a shift

ρ+ = {θ0, θt0 , θ1, θ∞0 , σ0t0 , σ1t0 , σ01},
being actually the monodromy parameters for the solutions of (1.4). For completeness we list the
monodromy data for τ−(t)

ρ− = {θ0, θt0 − 2, θ1, θ∞0 + 2, σ0t0 − 2, σ1t0 − 2, σ01}.
From the numerical point of view, three ways of solving (4.1) are available.

(i) Numerical integration of the differential equation (3.12) satisfied by the tau function.
The dependence of the solutions on monodromy data is computed from the asymptotic
expressions given by Jimbo [17].

(ii) Algebraic evaluation of the Nekrasov sums (A 1). This is the method chosen for this article
(even if it is not always the most computationally efficient). Even so, the method is found
to give overall better results than an alternative numerical method due to Howell [15]
and the convergence is fast for important examples. More significantly, it can yield
an approximate analytical expression for relations satisfied by the required accessory
parameters, as we show in §5.

(iii) Evaluation of the Fredholm determinant expression for the tau function given in [33]. This
method has the advantages of the combinatorial expansion along with fast convergence.
Examination of the efficacy of this method is the subject of ongoing work.

5. Illustrative calculations
Examples illustrating the new method are now presented. For comparison, and verification, we
also give values of the accessory parameters obtained using Howell’s method [15].

(a) A generic polycircular arc domain
The mapping from the upper half plane to the interior of the region displayed in figure 2 is now
calculated. To implement the new method, we must first find the monodromy data according to
(2.8) and (2.6). Results are recorded in table 1, reported correct to 10 digits. As stated above, the
monodromy data consists of seven parameters J(θi, σij) satisfying the Fricke–Jimbo relation (2.9),
which should vanish up to numerical tolerance. The parameters θi correspond to the internal
angles divided by π in figure 2. The composite monodromy parameter between consecutive
pre-vertices, say 0 and t, may also be the angle between two arcs since 2 cos(πσ0t0 ) = Tr S1S̄4S2S̄1 =
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D D

Figure 2. A generic polycircular arc domain D formed as the region enclosed by the circles centred at−1.1, −i, 1 + 0.1i, i
with the respective radii 0.8, 0.75, 0.9, 0.7. (Online version in colour.)

Table 1. Monodromy data for example (a).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θ0 0.1827991846 σ0t0 1 − 0.4304546489i
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θt0 0.2869823004 σ1t0 1 − 0.5385684561i
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θ1 0.3673544015 σ01 0.9631297769 + 0.7221017400i
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θ∞0 0.0853271421 J(θi , σij) 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tr S2S̄4, and therefore if the arcs C2 and C4 intersect, πσ0t0 is the angle between them at the
intersection. If they do not intersect, σ0t0 will be a generic complex number.

Using the monodromy data presented in table 1, the asymptotic expansion reviewed in
appendix A is used to generate all relevant expressions in terms of tau functions. From the second
equation of (3.14), it is clear that t0 is a zero of the following function:

L(t) := d
dt

[
t(t − 1)

d
dt

log τ (t)
]

− (θ∞ − θt)θt

2
.

In fact, the zeros of L(t) come in pairs, each one corresponding to a zero of either τ+ or τ−, in
agreement with the Toda equation (3.15). Figure 3 shows plots of these functions to illustrate the
‘factorization of the zeros’ of L(t).

The tau functions used here were generated using asymptotic expansions about t = 0 since t0
is found to be closer to 0 than to 1. Table 2 reports the accessory parameters t0 and K0 obtained by
the new method to 10 digits of accuracy. Accessory parameters obtained from an implementation
of the numerical scheme (based on a completely different construction) proposed by Howell [15]
are also reported. (Note that results using Howell’s method are also reported to 10 digits for
comparison but only 4–6 digits of accuracy were expected.)

It should be emphasized that we are determining only the differential equation (1.1) satisfied
by the mapping f (w). To determine f (w) completely, we must supplement (1.1) with (complex)
initial conditions. Alternatively, we notice that if f̃ (w) satisfies (1.1), then so will the function f (w),
related to f̃ (w) by a Möbius transformation

f (w) = af̃ (w) + b

cf̃ (w) + d
,

(
a b
c d

)
∈ SL(2, C). (5.1)

Hence one can simply guess initial conditions for the Schwarzian differential equation and find
a posteriori a Möbius transformation that takes that solution to the one with the correct vertex
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Figure 3. Plots of τ+(t) (a), L(t) (b), τ−(t) (c) and K(t) (d). The smallest zero of L(t) is a zero of τ+(t) while the larger one is
a zero of τ−(t).

Table 2. Accessory parameters for example (a).

newmethod Howell’s method

K0 −0.4364792362 −0.4365168488
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

t0 0.2086468690 0.2086251630
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

positions and curvatures. This, as a rule, is the simplest part of the implementation. One only
needs to pick an association f̃ (wi) → f (wi) for three different points wi to fix the transformation
(5.1) and, therefore, determine f (w).

The desired zero is at t0 	 0.209. However, there is actually more than one zero of τ+ in the
interval (0, 1): to within the accuracy of our numerical method, we identify a second zero close to
t = 0 at t0 	 1.0706 × 10−7. The t0 and K0 extracted from this zero yield an ‘isomonodromic’ region
in which the image of the real line follows one of the circles that make up the boundary of the
region once before continuing on to the next piece of the boundary. The zero of interest is the one
that yields a boundary that is free of self-intersections. One notes that the additional zeros should
indeed occur near 0 due to the interpretation of t0 as the anharmonic ratio between the positions
of the singular points.

In our numerical tests, we noticed a greater discrepancy between the results of Howell’s
numerical procedure and those generated by the new method when t0 is very close to either 0 or 1.
This is due to the well-known crowding phenomenon associated with the traditional approaches
to solving for the accessory parameters in conformal mapping problems. In the new method
introduced here, this problem is bypassed yielding more accurate solutions easily. Indeed, since
the tau function expansion converges faster in such circumstances, it is even desirable (for our
method) that t0 is near to one of the critical points. We explore ramifications of this observation
again in example §5(c) to follow.
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Figure 4. (a) Schematic of a meniscus on the top of a rectangular groove. Cross symbol (×) indicates the origin. Geometric
arguments show that C = R cosπε and R= cscπε. (b) Plot of the accessory parameters as functions of ε when h= 2.
(Online version in colour.)

(b) A circular meniscus spanning a rectangular groove
This example involves a circular meniscus forming the upper side of a rectangular groove as
shown in figure 4. When h → ∞, so that the two lower vertices merge at infinity, this geometry
can be described by a conformal mapping that is a hypergeometric function. Such a mapping has
been found by Morris [34] and used by him in a heat transfer problem involving an evaporating
meniscus. The following construction of the mapping for h < ∞ should be of use in generalizing
his analysis to finite-depth grooves.

The Schwarz functions for the separate boundary portions shown in figure 4 are as follows. On
the bottom straight line edge, we have z̄ = z + 2ih; on the left- and right-hand straight line edges,
we have z̄ = ±2 − z. For a given ε we find, from simple trigonometry, that

1
R

= sin πε, C = R cos πε = cot πε.

Hence the upper circular arc is given by |z − iC|2 = R2 or

z̄ = −iC + R2

z − iC
= −i cot πε + cosec2πε

z − i cot πε
.

From these Schwarz functions, the monodromy matrices can easily be determined following the
prescription given in §2.

To calculate t0, we look for the zero of τ+(t) that is closest to the midpoint of the interval (0,1).
Depending on whether the zero is in the first half of the interval—just a few terms is enough to
determine that—we may, in general, choose to use the expansion about 0 or 1 to speed up the
evaluation of the tau function: here we find t0 falls in the interval (1/2,1) as can be seen from the
plot in figure 4b. However, it should be noted that we are not able to make use of the expansion
of the tau function (A 1) around t = 1,1 due to fact that (A 1) presupposes that the monodromy
parameters satisfy the ‘generic conditions’ [17,33]:

σ0t0 /∈ Z, θ0 ± θt0 ± σ0t0 /∈ 2Z, θ1 ± θ∞0 ± σ0t0 /∈ 2Z. (5.2)

The first condition seems a technical point on the poles and zeros of the structure constants (see
(A 2)), whereas the last two conditions are related to the reducibility of the monodromy group,

1As explained in appendix A, we could obtain an expansion about t = 1 by permuting the vertices and the pre-vertices. In
this case, t0 would fall in the interval (0,1/2) and an expansion about t = 0 would then not be possible.
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Figure 5. Streamlines for potential flow over a semicircular obstacle, of unit radius, in a channel of height h= 2. The accessory
parameters are found to be t0 = 3.904625 × 10−4 and K0 = −2.725462 × 102. Graphs of the accessory parameters as
functions of channel height h are also shown (here K0(h)< 0 and |K0| is plotted). (Online version in colour.)

because their violation is equivalent to the commutativity between the corresponding single-point
monodromy matrices. If any of these is violated, the tau function has to be computed through a
limiting procedure. In this particular example, when we make the exchange 0 ↔ 1 in the indices
of the monodromy parameters in the relations above, and at least one of the conditions (5.2) is not
satisfied, and thus the expansion around t = 1 is not defined.

This leads to the following question: if only one tau function expansion is available and t0 is
far from the point about which the expansion is performed, what is the best way to proceed?
Three possibilities are as follows. (i) A large number of terms in the available expansion can be
computed to produce accessory parameters of the desired accuracy. This can be computationally
expensive. (ii) The first few terms of the expansion are used to generate initial conditions for
the differential equation (3.12) (close to the expansion point) and then the differential equation is
integrated until the condition L(t) = 0 is satisfied to some numerical tolerance. Of course, some
problems may arise since L(t) may in general have more than one zero, but one can always use a
truncated τ+(t) expansion to quickly distinguish the correct t0. We have found that this approach,
using the differential equation in tandem with the tau function expansion, is faster for some
configurations. (iii) We can use a perturbative approach based on altering the curvature of one
(or more) of the sides and taking a limit. This is explored in detail in example 5(d).

(c) Semi-circular obstacle in an infinite channel
Unbounded domains are also amenable to our approach. Consider the problem of finding the
streamlines of uniform potential flow over a semicircular obstacle in an infinite channel (figure 5).
This geometry is ubiquitous in applications, and several authors have considered the matter of
constructing a conformal mapping to this ‘disc-in-channel’ geometry [35–37]. Given the relevant
uniformizing map, the complex potential and hence the streamlines, follow immediately on use
of standard potential theory methods.

The simple and composite monodromy data associated with this domain are θ0 = θ∞0 = 0, θt0 =
θ1 = 0.5 with σ0t = π−1 cos−1(−h), σ1t = 0 and σ01 = π−1 cos−1(h). Figure 5 shows t0 and K0 as
functions of the channel width h (for fixed obstacle radius). Again, we only have available a tau
function expansion about t = 0, but, in contrast to the previous example, this presents no practical
problem because t0 is close to zero. For the same reason, just a few terms in the tau function
expansion are enough to find accurate approximations to t0 and K0.

It should be noted that direct methods of integration based on (1.1) in such highly elongated
regions are known to be subject to numerical inaccuracies (which can be mitigated, for example,
by introducing an intermediate transformation to a ‘strip’ domain [15]). Such complications are
avoided by our new approach. Moreover, if t0 is close to one of the singular points at 0 or 1 this
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can be of great advantage in our approach in that only a few terms (often only the first term)
in the expansion of the tau function are needed. For instance, let us fix h = 2. It turns out we
can neglect all the terms in the expansion for the tau function coming from the conformal blocks
except for the first B∅,∅ = 1, then use only the two most contributing terms in the expansion and
still produce good approximations. To lowest order in t0, the relevant terms of τ+(t) comprise
only the n = 0, −1 terms appearing in (A 1) and, for each n, only the coefficients in B depending
on the Young diagrams of zero length. A simple calculation shows that the zero of τ+(t) occurs at

t1−σ
0 	 1 + sin(πσ )

1 − sin(πσ )
Γ 4(1/4 + (1/2)σ )
Γ 4(5/4 − (1/2)σ )

Γ 2(1 − σ )
Γ 2(σ − 1)

, h = − cos(πσ ),

where σ = σ0t0 and h is the height of the channel. Using this approximation, the zero of τ+(t)
for h = 2 is t0 	 3.905353 × 10−4. To approximate K0, it is sufficient to retain only one term in the
expansion of τ (t) yielding

K0 = d
dt

log τ (θi, σij, t)
∣∣∣∣
t=t0

− (θt0 − 1)θ1

2(t0 − 1)
− (θt0 − 1)θ0

2t0
	 (σ − 1)2 − (θ0 + θt0 − 1)2

4t0
.

For h = 2, K0 	 −2.725292 × 102.
This is evidence that, for certain geometries, the new method can be very simple to apply

and allows the accessory parameters to be determined as zeros of simple analytical expressions.
Remarkably, these particular instances arise precisely when the usual numerical conformal
mapping constructions face difficulties due to the well-known crowding phenomenon.

(d) The Schwarz–Christoffel mapping to a rectangle
All the examples so far have involved ‘circular-arc’ polygons where at least one side of
the quadrilateral has non-zero curvature. A polygon, whose sides are all straight lines (zero
curvature), is a special case and the conformal mapping can be constructed using the classical
SC formula [8,13]. In the theory of SC mapping, it is not usual to even consider second-order
Fuchsian differential equations. We now show, however, that there is significant advantage in
doing so and approaching the case of a polygon as a ‘zero curvature limit’.

Consider the conformal mapping to the interior of a rectangle. It can be shown that the matrices
Si associated with straight sides are lower triangular, which in turn implies that all monodromy
matrices have the same form. Moreover, the elements in the diagonal of Mi, the only ones which
contribute to the monodromy data in this case, do not depend on the aspect ratio of the rectangle.
Thus, the association ρ → {t0, K0} is spoiled since t0, at least, must depend on the aspect ratio.2

Therefore, in the case of polygons, the new method cannot be applied directly.
However, we have found that a small curvature perturbative approach can produce the

required values of the SC accessory parameters. The key idea of this small curvature perturbation
is illustrated in figure 6. When we make ε = 1 × 10−12, where ε measures the deformation from
zero curvature, the new method relates the aspect ratio h to t0 in excellent agreement with that
produced using the usual SC theory (which leads to a formula for the relationship between these
parameters [7] using elliptic integrals). In addition, numerical investigations regarding the new
method allowed for the discovery of a special class of conformal mappings having the same
accessory parameters: t0 = 0.5 and K0 = 0. They represent quadrilaterals illustrated by figure 6,
with h = 1 and 0 < ε ≤ 1

4 . Notice that when ε = 1
4 , all internal angles of the target domain vanish.

This evidence also motivates the conjecture: the zero curvature limits of t0(ε) and K0(ε) as ε → 0
exist and precisely determine the accessory parameters associated with the rectangle. A more
general conjecture (for any polygon) is expected to hold.

This novel determination of the accessory parameter for SC mappings—which is quite distinct
from any extant approaches—deserves more careful investigation. In terms of monodromy, SC

2K0 = 0 for any usual polygon with four sides. The corresponding tau function also yields this value as the contributions from
the conformal blocks in the case σij = θi + θj is zero (F. Novaes 2016, unpublished data).
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Figure 6. A ‘deformed’ rectangle where the sides are replaced by circular arcs making angleπε with the undeformed straight
sides. Also shown are graphs of t0(ε) and K0(ε) for the ‘deformed’ rectangle (with h= 1.3) as a function of ε. (Online version
in colour.)

domains are characterized by the additive property of the monodromies σij = θi + θj, along with
Fuchs relation

∑
i θi = 0. The particular fact that σ0t = θ0 + θt means that (i) the s parameter (A 4)

involved in the tau function expansion (A 1) diverges and (ii) there are poles in the Barnes function
in (A 2). A careful limit can be taken yielding a finite result for the tau function—see, for instance,
eqn (1.9) in [17]. The limit can be compared with known results for the case of rectangles, where
it is established for some time that the accessory parameter t0 is given in terms of a ratio of
elliptic functions [38]. Presumably, these are related to the Picard family of solutions for the tau
function [39]. This zero curvature limit of the tau function is the subject of ongoing work.

We finish by pointing out that, in examples 5(b) and (c), slight deformations of the straight
sides could have been used to overcome the potential difficulty associated with the lack of
availability of an expansion of the tau function about one of the singular points.

6. Discussion
It is well known that the uniformization map for triangles formed with geodesic arcs in the
Lobachevsky plane can be written in terms of ratio of hypergeometric functions, or ‘triangle
functions’. The corresponding map for circular arc quadrilaterals can be written as a ratio of
solutions of the Heun equation. However, unlike the hypergeometric case, the relevant Heun
equation itself depends not only on the internal angles but also on two additional parameters,
the accessory parameters t0 and K0. This paper has shown how to use the isomonodromic tau
function associated with the Painlevé VI equation to determine these two parameters.

This was done by considering the Riemann–Hilbert problem (RHp) of finding the ODE
associated with a function having prescribed singular behaviour. For the generic polycircular
arc domain, we showed—using the Schwarz reflection principle—that, given a target geometry,
we are able to determine all monodromy transformations—realized in our case by square two-
dimensional matrices obtained by consideration of the local Schwarz function associated with
each boundary arc. For the case of four sides, we then associated the monodromy data with
an isomonodromic tau function introduced by Miwa, Jimbo and Ueno [16,17] from which the
accessory parameters can be deduced by imposing conditions (4.1).

The proposed expansions for the tau function [26] were then used to extract the accessory
parameters. We found not only very good agreement with other methods, but also that
the analytic expansion for the tau function provides better accuracy with the same, or less,
computational effort. Situations where the accessory parameter t0 comes close to 0 or 1 are
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particularly well suited to the analytical approach, due to the fast convergence of the expansions
and the absence of ‘crowding’ problems that affect other numerical approaches. We find excellent
numerical accuracy with relatively small computational effort for a variety of quadrilaterals,
including ones with straight lines as edges, as well as unbounded domains.

Standard techniques for numerical solution of the accessory parameter problem for SC
mappings [13] or mappings to circular arc polygons [6,10] invariably rely on enforcing
geometrical conditions associated with the target domain. This usually requires some form of
nonlinear iteration on the accessory parameters until those geometrical constraints are met.
The new approach advocated here offers the unique perspective of relying not on geometrical
conditions but on a completely different set of mathematical constraints associated with
isomonodromic deformations.

The problem of determining the accessory parameters when the number of vertices is
greater than four naturally arises. Isomonodromic tau functions exist for a general number of
monodromies, so the suggestion that this could form a viable route to finding the corresponding
uniformization map for generic polycircular arc domains now seems reasonable.

Another compelling course of action is the study of similar mappings on higher genus
Riemann surfaces, as relevant to multiply connected polycircular domains, for example [8,11].

Other questions arise from the numerical observations made here. We saw that the tau
function has a single zero on the interval (0, 1) associated with the accessory parameters for
the ‘fundamental domain’ without self-intersections. It would be interesting to know if this
uniqueness—up to global Möbius transformations—is indeed a feature of uniformizing maps
of regions having a geometric interpretation. The zero curvature limit discussed here in the
application to the SC map can yield an analytical solution for the accessory parameters—it seems
to be related to the Picard solutions for Painlevé VI—but a proof of this is currently lacking.

A deeper mystery concerns trying to reconcile conditions (4.1) with previous work on the
isomonodromic tau function and its relation to the RHp. Previously, it had been folklore that the
zeros of the tau function are related to points in parameter space where the RHp does not have
a solution. This can be understood from the fact that zeros of the tau function are simple, and
hence the accessory parameters, which are given by the logarithmic derivative of the tau function,
should not be defined there. Surprisingly, the accessory parameter of the ODE sought is related
to this one by a Schlesinger transformation. This matter merits further investigation.
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Appendix A. Asymptotic expansion for the Painlevé VI tau function
A formula for the Painlevé VI tau function expansion was proposed in [26,27], building from the
AGT conjecture. In [40,41], it was shown that the asymptotic formula does satisfy the Painlevé VI
differential equation (3.12). Whether every solution of (3.12) allows for such an expansion is still
an open question. The structure comes from equating the Painlevé VI tau function to an expansion
in terms of conformal blocks of a certain correlation function in conformal field theory:

τ (t) =
∑
n∈Z

C(θ0, θt, θ1, θ∞, σ0t + 2n)snt((σ0t+2n)2−θ2
0 −θ2

t )/4B(θ0, θt, θ1, θ∞, σ0t + 2n; t). (A 1)
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Figure 7. A Young diagram representation for the partition λ = {7, 5, 2, 1}. λ2 is the number of boxes in the second row, λ′
2

is the number of boxes in the second column and the hook length of the box (2, 2) is the number of elements in the second
column bellow that box plus the number of boxes to the right of it, in its row, plus one, to account for itself. |λ| is the size of the
diagram.

The details are outlined in [26]. Indeed, the equation above expresses the tau function as an
asymptotic expansion around t = 0. The action of the braid group on the singular points in
the Fuchsian system allows for similar expansions around t = 1 and t = ∞ [17]. The structure
constants C in (A 1) can be written as

C(θ0, θt, θ1, θ∞, σ ) =
∏

α,β,=± G(1 + (1/2)(θ1 + αθ∞ + βσ ))G(1 + (1/2)(θt + αθ0 + βσ ))∏
α=± G(1 + ασ )

, (A 2)

where the classical Barnes function G(z) satisfies the functional equation G(1 + z) = Γ (z)G(z) and
can be defined according to

G(1 + z) = (2π )z/2 exp
∫∞

0

dt
t

[
1 − e−zt

4 sinh2(t/2)
− z

t
+ z2

2
e−t

]
, Re z > −1. (A 3)

Moreover, s can be calculated in terms of the monodromy data as

s = (w1t − 2p1t − p0tp01) − (w01 − 2p01 − p0tp1t) exp(π iσ0t)
(2 cos π (θt − σ0t) − p0)(2 cos π (θ1 − σ0t) − p∞)

, (A 4)

where pi = 2 cos πθi, pij = 2 cos πσij, w1t = p1pt + p0p∞ and w01 = p0p1 + ptp∞. Because of the
Fricke–Jimbo relation (2.9), the monodromy parameters are not all independent.

The last term in (A 1), B(θ0, θt, θ1, θ∞, σ0t; t), corresponds in conformal field theory to the
conformal block function Fc=1( 1

4 θ2
0 , 1

4 θ2
t , 1

4 θ2
1 , 1

4 θ2∞, 1
4 σ 2

0t; t) where 1
4 θ2

i represent the conformal
dimensions of the fields in a four-point correlation function, 1

4 σ 2
0t stands for the intermediate

conformal dimension, and c = 1 is the central charge. By the AGT relation, conformal blocks can
be expanded in terms of Nekrasov functions, which implies

B(θ0, θt, θ1, θ∞, σ ; t) = (1 − t)θtθ1/2
∑

λ,μ∈Y

Bλ,μ(θ0, θt, θ1, θ∞, σ )t|λ|+|μ|, (A 5)

where the sum is over the Young diagrams λ and μ contained in Y, the set of all such diagrams
which represent ordered partitions of integers.3 So, for instance, since 15 = 7 + 5 + 2 + 1, one
possible partition for the integer 15 can be represented as λ = {7, 5, 2, 1}, or by the Young diagram
in figure 7. The size of the diagram is given by the number of boxes in it, thus |λ| = 15.

3The boxes in the diagrams we are interested in are indistinguishable from each other.
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Furthermore,

Bλ,μ(θ0, θt, θ1, θ∞, σ ) =
∏

(i,j)∈λ

((θt + σ + 2(i − j))2 − θ2
0 )((θ1 + σ + 2(i − j))2 − θ2∞)

16h2
λ(i, j)(λ′

j + μi − i − j + 1 + σ )2

×
∏

(i,j)∈μ

((θt − σ + 2(i − j))2 − θ2
0 )((θ1 − σ + 2(i − j))2 − θ2∞)

16h2
μ(i, j)(λi + μ′

j − i − j + 1 − σ )2 , (A 6)

where (i, j) denotes the coordinates of the boxes in the tableau, λi stands for the number of boxes
in the row i, from the top to the bottom of the diagram λ, λ′

j is the number of boxes in the
column j, and hλ(i, j) = λi − i + λ′

j − j + 1 is called the hook length. For instance, suppose we want
to calculate the first few contributions to B:

(1 − t)−θtθ1/2B =B∅,∅t0 + (B ,∅ + B∅, )t + (B ,∅ + B ,∅ + B , + B∅, + B∅, )t2 + · · · (A 7)

We assign coordinates (i, j) to each box in the Young diagrams λ, μ in Bλ,μ according to figure 7 and
then calculate the coefficients in the series above by using (A 6). The symbol ∅ stands for ‘partition
of zero’, and the product over the coordinates of ∅ in (A 6) equals 1, by convention, so that B∅,∅ =
1. In fact, the first few terms in this asymptotic expansion were found by Jimbo [17] who also
showed that asymptotic expansions around the other critical points t = 1, ∞ are analogous to the
one around t = 0. To produce accurate results more efficiently when t0 � 1, it may be convenient,
although not strictly necessary, to use the asymptotic expansion around t = 1 which is obtained
when one makes the following interchanges in (A 1):

t ↔ 1 − t, θ0 ↔ θ1, σ0t ↔ σ1t (A 8)

and, in the definition of s, one must change the exponential term as exp(π iσ0t) → exp(−π iσ1t).
Another approach to deal with the case with t0 � 1 is to make a cyclic change in the association
between the vertices and the pre-vertices until 0 < t0 ≤ 0.5.
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