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Abstract: Surface texturing-plasma nitriding duplex treatment was conducted on AISI 316 stainless
steel to improve its tribological performance. Tribological behaviors of ground 316 substrates,
plasma-nitrided 316 (PN-316), surface-textured 316 (ST-316), and duplex-treated 316 (DT-316)
in air and under grease lubrication were investigated using a pin-on-disc rotary tribometer
against counterparts of high carbon chromium bearing steel GCr15 and silicon nitride Si3N4 balls.
The variations in friction coefficient, mass loss, and worn trace morphology of the tested samples were
systemically investigated and analyzed. The results showed that a textured surface was formed on 316
after electrochemical processing in a 15 wt % NaCl solution. Grooves and dimples were found on the
textured surface. As plasma nitriding was conducted on a 316 substrate and ST-316, continuous and
uniform nitriding layers were successfully fabricated on the surfaces of the 316 substrate and ST-316.
Both of the obtained nitriding layers presented thickness values of more than 30 µm. The nitriding
layers were composed of iron nitrides and chromium nitride. The 316 substrate and ST-316 received
improved surface hardness after plasma nitriding. When the tribological tests were carried out
under dry sliding and grease lubrication conditions, the tested samples showed different tribological
behaviors. As expected, the DT-316 samples revealed the most promising tribological properties,
reflected by the lowest mass loss and worn morphologies. The DT-316 received the slightest damage,
and its excellent tribological performance was attributed to the following aspects: firstly, the nitriding
layer had high surface hardness; secondly, the surface texture was able to capture wear debris,
store up grease, and then provide continuous lubrication.

Keywords: surface texturing; plasma nitriding; duplex treatment; tribological performance; austenitic
stainless steel

1. Introduction

Material scientists and engineers have long been committed to designing and producing new
materials that are both wear-resistant (hard or friction-reduction) and corrosion-resistant (mechanical
isolation, chemical stability, or passivation) and that can meet the increasing challenges and demands
over a wide range of modern industrial applications in aggressive and harsh conditions. In these
situations, another way of achieving improvement in performance is utilizing surface modification
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technologies involving coating formulations on the surfaces of existing materials and obtained expected
properties [1]. Surface modification technologies allow the realization of a favorable compromise
between cost and performance by endowing the material surfaces with a high hardness value, effective
friction-reduction, excellent corrosion resistance, and promising mechanical performance, without
affecting the entire structure of the material [2]. Meanwhile, coatings/films/layers deposited on the
surfaces of different substrates via surface modification technologies can increase the operating life
and widen the applying field [3].

Thanks to the excellent general corrosion resistance, nonmagnetic properties, acceptable
biocompatibility, promising mechanical properties, and desirable formability and weldability,
austenitic stainless steels (ASS‘s) have been confirmed as the most widely used family of stainless steels
in the field, ranging from civilian goods to military equipment [4–12]. Engineering components used
in severe environments demand more technical and physical reliability to guarantee safe operations
and longer service life [2]. Generally, ASS‘s are extensively used in structural applications where
corrosion resistance is a crucial requirement; however, ASS‘s components might fail during service due
to wear rather than corrosion-related degradation problems in engineering practice [2,5]. ASS‘s are
notorious for their poor tribological characteristics, such as low sliding wear resistance, high friction,
and the formation of strong adhesion [5–7]. As a result, ASS‘s often suffer surface damages when
they slide against themselves or other metals, which has limited their tribological applications [13].
For these purposes, surface modification technologies, e.g., thermochemical diffusion treatments
(such as nitriding, carburizing, and nitrocarburizing), surface alloying, spraying, laser cladding,
physical vapor deposition (PVD), surface mechanical attrition treatment (SMAT), and friction stir
processing have been conducted to enhance the corrosion resistance and tribological property of ASS‘s
by forming coatings, films, and layers on the surfaces [14–21].

Apart from the surface modification technologies mentioned above, proper design on surface
morphology can also play positive rules in the tribological performance of ASS‘s according to recent
bionic achievements [22]. Design on surface morphology usually aims to obtain a regular pattern on
the surface, which is inspired by rough surfaces in the natural world [23–25]. The received artificial
surface patterns with typical distributing characteristics such as dimple, groove and protrusion
were collectively named as surface texturing [26–28]. In recent decades, surface texturing has been
considered an effective method to improve the tribological performance of mechanical parts with
great success [29]. Generally, the active roles of surface texturing in tribological performance lie
in two main aspects (see Figure 1): firstly, surface texturing can store up the grease and thus offer
sustainable lubrication; secondly, it can capture debris generated during service and thus minimize
abrasive wear [30,31]. Since the advantages of surface modification technologies and surface texturing
improve the tribological performance of materials, some surface modification-surface texturing duplex
treatments have been conducted. One kind is the “surface texturing-surface modification”, and the
other kind is the “surface modification-surface texturing”, as shown in Figure 2 [32–45]. A database
has been created, and reference information for practical applications has been provided.
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Our group concentrated on improving the tribological performance of AISI 316 stainless steel
(hereafter referred to as 316) by surface texturing-plasma nitriding duplex treatment. It is widely
reported that ASS‘s have a poor localized pitting corrosion-resistant ability in a chloride ion-rich
environment, the destructive surface of ASS‘s with numerous pits or dimples is a marked characteristic
of pitting corrosion [10,46,47]. Plasma nitriding treatment, which is one of the most extensively
used surface treatment technologies that are available for steels and ASS‘s to obtain improved
wear and/or corrosion resistance and fatigue strength, has been under development for several
decades [14,48–51]. In light of the background above, we firstly obtained a groove-like surface
texture on 316 by electrochemical processing in a 15 wt % solution of sodium chloride, and the
surface-textured 316 was then treated with plasma nitriding. The sliding tribological performance
of 316, plasma-nitrided 316 (PN-316), surface-textured 316 (ST-316), and duplex-treated 316 (DT-316)
in air and under grease lubrication against counterparts of high carbon chromium bearing steel GCr15
and silicon nitride Si3N4 balls were comparatively investigated.

2. Materials and Methods

The specimens used in this work were prepared at a size of 25 mm × 3 mm with an electro-spark
wire-electrode cutting machine from a cold-drawn 316 rod. The chemical compositions (wt %) of the
316 are S 0.001; P 0.020; N 0,024; C 0.031; Si 0.45; Ti 0.211; Cu 0.31; Mn 1.66; Mo 2.10; Cr 16.85; Ni 11.75;
and Fe balance. All raw samples were finely ground using SiC abrasive papers down to 800# followed
by ultrasonic cleaning in acetone bath.

Open circuit potential (OCP) and potentiodynamic polarization tests are usually conducted
in a sodium chloride solution to estimate the corrosion resistance of materials by employ of
an electrochemical measurement system [52]. In this work, OCP and potentiodynamic polarization
tests were performed on the 316 samples in a 15 wt % NaCl solution to obtain a groove-like surface
texture. The corrosion cell, which contained 1000 mL of electrolyte, was combined with a typical
three-electrode configuration. A saturated calomel electrode (SCE) was used as the reference electrode
and a platinum plate was used as the counter electrode (CE). The ground 316 specimens were employed
as working electrodes (WEs). OCP measurements immediately began after the samples were immersed
into the 15 wt % NaCl solution. The potentiodynamic polarization experiments were started after the
900 s immersion of the samples in the test solution. The potentiodynamic polarizations were swept
from −250 to 2000 mV vs. OCP scanned upwards at a rate of 1 mV/s. As this work concentrated on
the tribological behaviors of 316 and treated 316; therefore, the electrochemical corrosion behaviors
of each tested 316 was not described and discussed here. Plasma nitriding was employed to treat
ground 316 and ST-316 according to the literature [53,54].

A scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy
(EDS) was applied to observe the surface morphological images and characterize surface elementary
compositions of ground 316, ST-316, PN-316, and DT-316 samples. The phase constitutions of PN-316
and DT-316 were identified via X-ray diffraction (XRD). The cross-sectional morphologies of PN-316
and DT-316 were also observed via SEM. A microhardness tester was employed to measure the surface
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hardness of the 316, ST-316, PN-316, and DT-316 samples using a Vickers indenter under a load of
100 g for a dwell time of 20 s. For comparative purposes, all the friction and wear tests were carried
out on a rotary wear testing machine with the following identical parameters: disc wearing against
counter balls at 303 K with a gyration radius of 6 mm, a normal load of 30 N, and a sliding velocity of
300 r/min for 1 h. High carbon chromium bearing steel balls (commonly referred as GCr15 in China
with a hardness of about 700 HV, the nominal composition-wt % of GCr15 contains C: 0.95–1.05, Mn:
0.25–0.45, Si: 0.15–0.35, S: ≤0.025, P: ≤0.025, Cr: 1.40–1.65, Mo: ≤0.10, Ni: ≤0.30, Cu: ≤0.25, and Fe
balance) and silicon nitride (Si3N4 with a hardness more than 1500 HV) balls with a diameter of 5 mm
were chosen as the counterparts. The two kinds of ball counterparts, and 316 samples were used as
the upper specimens and lower specimens, respectively. There were two selected conditions of dry
sliding in air and grease lubrication in the friction and wear tests. Common commercial XHP lithium
lubricating grease was applied under the grease lubrication conditions. A new frictional pair was
prepared for each sliding test. The computer system was introduced to collect and record the friction
coefficient. The tribological behaviors of the samples were defined by comparing the results of friction
coefficient and mass loss. The specimens were thoroughly cleaned with acetone in an ultrasonic bath
before and after each wear test. An analytical balance with an accuracy of 0.01 mg was employed to
weigh the original and worn samples. The topographical features of the worn surfaces belonging to
the samples were also examined using SEM and EDS [55].

3. Results and Discussion

The microstructural characterization of the produced 316 samples was firstly presented in this
section, and the tribological behaviors were analyzed and discussed in Sections 3.2 and 3.3.

3.1. Microstructural Characterizations

The surface morphologies of the ground 316, ST-316, PN-316, and DT-316 were presented in
Figures 3–6. In Figure 3a, it is noticeable that numerous parallel scratches were distributed on the
surface of ground 316. The scratches were formed after grinding with SiC abrasive papers. As shown
in Figure 4a, the ST-316 exhibits a rougher surface than that of ground 316. Grooves and dimples which
were produced after electrochemical corrosion in Cl−-containing solution were found on the ST-316
surface. It is well known that ASS has high pitting corrosion susceptibility in Cl−-rich environments,
and the destructive surface of ASS‘s with numerous pits or dimples is a marked characteristic of pitting
corrosion [12]. When the 316 was etched in a 15 wt % NaCl solution, the pits or dimples expanded
and connected to each other, ultimately turned into pitting grooves. Figure 5a reveals that the PN-316
presented a smooth and uniform surface, most of the scratches disappeared after ion bombardment
during plasma nitriding. Figure 5b presents the surface composition of PN-316, and the elemental
contents are in good agreement with Li et al.’s work, which realized the formation of a nitriding layer
on 316 [53].
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obvious difference in thickness between the two nitriding layers. Both of the two nitriding layers 
reached thickness values of over 30 μm. As shown in Figure 9a, a compact and continual nitriding 
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Figure 5. Surface morphology (a); and surface composition (b) of plasma-nitrided 316.

In Figure 6, the DT-316 indicates a similar surface morphology to ST-316 and elemental contents
similar to PN-316. It was found that the ion bombardment effect in plasma nitriding had a limited
impact on surface morphology of DT-316, and a nitriding layer could also be successfully produced on
a textured surface.

Figure 7 shows the XRD patterns of PN-316 and DT-316. It was demonstrated that CrN, γN,
γ′-Fe4N, and Fe3N were detected in both of the PN-316 and DT-316 samples. In Devaraju and Li et al.’s
studies, plasma-nitrided AISI 316L ASS samples were composed of the above phases when the plasma
nitriding temperature was higher than 500 ◦C [17,53,54].

Cross-sectional morphologies of PN-316 and DT-316 are suggested in Figures 8 and 9. Continuous
and uniform nitriding layers were formed on ground 316 and ST-316 samples, as the white dotted lines
and double-headed arrows indicate. As shown in Figures 8 and 9, there was no obvious difference
in thickness between the two nitriding layers. Both of the two nitriding layers reached thickness
values of over 30 µm. As shown in Figure 9a, a compact and continual nitriding layer was found
on the surface of DT-316, which meant the DT of “surface texturing-surface plasma nitriding” was
successfully realized on ground 316.
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A column chart of surface hardness values of ground 316, ST-316, PN-316, and DT-316 samples
were created, as shown in Figure 10. It was found that the ground 316 and ST-316 samples indicated
similar surface hardness values, and the hardness values of the PN-316 and DT-316 samples were
similar to each other. It was seen that electrochemical treatment could form a textured surface on
ground 316; however, there was no obvious change in surface hardness. As plasma nitriding was
conducted on the ground 316 and ST-316 samples, the produced PN-316 and DT-316 samples showed
significantly enhanced surface hardness. The improvement in surface hardness was ascribed to the
formation of hard nitrides and a N-solid solution in the two nitriding layers [55].
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3.2. Dry Sliding Tribological Behaviors

3.2.1. Friction Coefficient and Mass Loss

Figure 11 presents the friction coefficients of the tested samples under dry sliding against GCr15
(a) and against Si3N4 (b), respectively. As shown in Figure 11a, PN-316 and DT-316 samples revealed
higher friction coefficients around 0.7 than those of ground 316 and ST-316 samples, approximately 0.55.
This means that there were greater friction force values between PN-316-GCr15 and DT-316-GCr15
friction pairs than ground 316-GCr15 and ST-316-GCr15 friction pairs reflected by friction coefficients.
Moreover, PN-316 and DT-316 samples presented a similar variation trend and similar average values
in friction coefficient, which is attributed to the formation of harder nitriding layers than GCr15 on
the surfaces of related 316 samples. PN-316 and DT-316 possessing high hardness samples could
resist the damage against GCr15 during dry sliding; therefore, both of them exhibited higher friction
coefficients [56]. While ground 316 and ST-316 samples with lower hardness than GCr15 suffered wear
damage when they slid against GCr15, they demonstrated smaller friction coefficients.
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As shown in Figure 11b, all of the ground 316, ST-316, PN-316 and DT-316 samples suggested
lower friction coefficients when they were sliding against Si3N4 than those friction coefficients as they
were sliding against GCr15. The distinction in friction coefficient between the two counterparts could
be explained as follows: The Si3N4 had far higher hardness than the above four samples. Meanwhile,
the friction interfaces were ceramic–ceramic or ceramic–metal contact modes, which could reduce the
tendency to adhesive wear [57]. Therefore, all four tested samples showed lower friction coefficients.
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Figure 12 compares the variation characteristics in mass losses of the tested samples under
dry sliding against GCr15 (a) and against Si3N4 (b), respectively. The DT-316 presented the lowest
mass loss values after sliding tests as expected (GCr15: 1.03 mg, Si3N4: 15.54 mg). The PN-316 also
showed low mass losses (GCr15: 1.59 mg; Si3N4: 35.84 mg) as compared with ground 316 and ST-316
samples. It is notable in Figure 12 that ground 316 (GCr15: 66.31 mg; Si3N4: 48.17 mg) and ST-316
(GCr15: 64.53 mg; Si3N4: 46.13 mg) samples showed higher mass losses than those of PN-316 and
DT-316 samples. Their mass losses were close to each other when they slid against their counterparts.
This illustrated that they had undergone similar wear mechanism. However, the mass losses of PN-316
and DT-316 samples were not exactly the same, and there might be substantial differences in wear
mechanism. From Figure 12, it was found that the samples with surface textures indicated lower mass
losses than those samples with no surface texture. It was concluded, therefore, that surface texture
played a certain role in reducing mass loss by trapping wear debris under dry sliding regardless of the
counterparts in this work. Meanwhile, PN-316 and DT-316 samples with a far higher surface hardness
than GCr15 were able to resist wearing damage from GCr15 counterparts regardless of dry sliding and
grease lubrication.
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3.2.2. Wear Mechanism

In order to realize better visualizations of the worn surfaces and to explain the wear mechanisms,
the worn surface morphologies of all the tested samples under dry sliding against GCr15 and against
Si3N4 at different scales in the secondary electron imaging (SEI) mode obtained by SEM are given
in Figures 13–20. Meanwhile, the elemental concentrations in typical zones on the worn surfaces
were characterized using EDS to provide supplementary information and then to well elucidate the
deterioration mechanisms. The results are tabulated in Tables 1 and 2.

Table 1. EDS analysis of selected zones on worn surfaces after dry sliding against GCr15.

Element (wt %) O N Fe Cr Ni

Zone-1 11.18 – 63.53 16.05 9.24
Zone-2 11.14 – 63.24 16.48 9.14
Zone-3 2.21 3.65 68.35 16.41 9.38
Zone-4 – 4.64 69.34 16.67 9.35
Zone-5 26.26 0.11 70.94 2.25 0.44
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Table 2. EDS analysis of selected zones on worn surfaces after dry sliding against Si3N4.

Element (wt %) O N Si Fe Cr Ni

Zone-6 11.75 0.04 0.72 61.52 15.98 9.99
Zone-7 12.64 0.05 0.62 61.21 15.94 9.54
Zone-8 12.90 0.49 0.46 61.61 15.58 8.96
Zone-9 1.23 0.04 0.29 70.10 18.20 10.14
Zone-10 1.16 1.14 0.35 69.09 17.75 10.51

As shown in Figures 11a, 12a, 13a and 14a, it was found that the width values of the wear traces of
the tested samples were arranged as follows: ground 316 > ST-316 > PN-316 > DT-316 when the tests
were conducted under dry sliding against GCr15. In the high magnification images of the wear traces
(Figures 13b, 14b, 15b and 16b), there are obvious differences among the worn morphologies. It is
notable that ground 316 and ST-316 suffered more severe wear than PN-316 and DT-316, reflecting wear
traces (in Figures 13 and 14) and mass losses (in Figure 13a). Meanwhile, similar wear characteristics
of adhesions and abrasive scratches were found in the wear traces of ground 316 and ST-316. This can
confirm that the above two samples underwent similar wearing damage and indicated a similar wear
mechanism. It has been reported that, when ASS samples were sliding with themselves or other
metallic materials, severe plastic deformation and adhesion junctions were frequently formed between
the contacts due to the low surface hardness of ASS‘s [58]. There is also a high chemical affinity
between 316 ASS and the GCr15 steel counterpart, and cold welding and adhesion junctions were
prone to appear at the “metal–metal” friction interface under dry sliding. However, this kind of link
with insufficient bonding strength might be broken by a relative sliding of the friction pairs, and this
could result in adhesive wear. In addition, ASS was prone to oxidation during the course of dry
friction in air. Table 1 presents the results of EDS analysis belonging to the samples after dry sliding
against GCr15. It can be seen that both ground 316 and ST-316 underwent oxidation wear. The pull off
adhesion and oxidation products were crushed to fine irregular shaped particles that could induce
abrasive wear [59]. Figures 13 and 14 indicate that the worn surfaces of ground 316 and ST-316 were
very rough, and surface damage such as adhesive craters and abrasive scoring marks was clearly
observable. Therefore, the main wear form of ground 316 and ST-316 was adhesion and abrasion,
accompanied by oxidation wear [60].
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Figure 14. SEM images of worn surface of ST-316 after dry sliding against GCr15. (a) Low magnification;
(b) high magnification of the white rectangle zone.

As compared with Figures 13 and 14, the PN-316 and DT-316 showed similar wear traces
(see Figures 15 and 16), which means that the PN-316 and DT-316 experienced similar wearing
damage and went through a similar wear mechanism. It is certain that the plasma nitriding treated
samples underwent slightly more wearing than ground 316 and ST-316 according to the width values
of the wear traces (in Figures 15a and 16a) and mass losses (in Figure 12a), as expected. As shown
in Figures 15a and 16a, the wear traces of PN-316 and DT-316 were discontinuous and incomplete.
Figures 15b and 16b reveal that the worn surfaces of PN-316 and DT-316 were not as rough as the worn
surfaces of ground 316 and ST-316. Meanwhile, Figure 12a indicates that the mass losses of PN-316 and
DT-316 were far lower than those of ground 316 and ST-316. The promising wear resistance of PN-316
and DT-316 is attributed to the changing of contact mode from “metal–metal” to “ceramic–metal” and
the increased surface hardness (formation of nitride) after plasma nitriding [58]. Figure 15b and EDS
analysis in Table 1 show that the local area on the worn surface of PN-316 was destroyed. It is certain
that DT-316 was not worn through after dry sliding against GCr15, which was also reflected by EDS
analysis. Moreover, GCr15 was softer than PN-316 and DT-316; hence, GCr15 balls were more likely
to be destroyed when they were sliding against PN-316 and DT-316. The main wear mechanism of
PN-316 and DT-316 was mild abrasive wear and transfer from GCr15 to their surfaces in accordance
with the observations of worn surfaces.
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Figure 16. SEM images of worn surface of DT-316 after dry sliding against GCr15. (a) Low
magnification; (b) high magnification of the white rectangle zone.

As shown in Figures 17a, 18a, 19a and 20a, it was clear that the width of the tested samples can
also be arranged in the following sequence: ground 316 > ST-316 > PN-316 > DT-316 when the tests
were processed under dry sliding against Si3N4. As shown in the higher magnification images of
the wear traces (Figures 17b, 18b, 19b and 20b), there were remarkable differences among the worn
morphologies. As presented in Figures 17b and 18b, numerous parallel deep grooves and spalled holes
were found on the wear surfaces of ground 316 and ST-316. Micro-protuberances on Si3N4 played
a ploughing effect on the soft ASS surface and left ploughing grooves on the wear surfaces. As the
Si3N4 ball was far harder than ASS, plastic deformation took place on the ASS under the actions of load
and friction force. There was a dislocation pileup region on the near surface, which worked to induce
the initiation of micro-cracks underneath the surface [61]. The cracks gradually propagated with the
development of plastic deformation as the cracks extended to the surface. As a result, thin and long
wear sheets were formed and removed from the surface. The wear sheets were ground into abrasive
particles of a small size by the relative motion of friction pair, and abrasive wear then occurred [61].
Thereby, the wear mechanism of ground 316 and ST-316 was a composite form of delamination and
abrasive wear.
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(b) high magnification of the white rectangle zone.



Materials 2016, 9, 875 15 of 26

According to mass loss results in Figure 12b and EDS analysis in Table 2, PN-316 was worn
through after dry sliding against Si3N4. PN-316 suffered heavy wear, and it was evident that scratches
and ploughing grooves were found on the worn surface (see Figure 19). The main wear manner of
PN-316 under this condition was set as abrasive wear [58].

Figure 12b shows that DT-316 presented the lowest mass loss, and Figure 20a demonstrates that
DT-316 also had the narrowest wear trace. As shown in Figure 20b, cracking and spalling were found
on the worn surface. The DT-316 had a high hardness value and textured surface, which caused high
contact stress in the friction interface [62]. DT-316 was subjected to cyclic loading during the sliding,
and the cyclic loading had a very significant effect in initiation and growth of fatigue crack. Once the
crack propagation ran to a degree, spalling off occurred on the worn surface. Si3N4 possesses higher
hardness and higher chemical stability, and DT-316 was going to be worn. Therefore, the main wear
mechanism of DT-316 was fatigue wear.

Combining the mass losses with the observations of wearing morphologies, it was confirmed that
the DT-316 exhibited the best wear resistance under dry sliding against GCr15 and Si3N4 as compared
with ground 316, ST-316, and PN-316.

3.3. Sliding Tribological Behaviors under Grease Lubrication

3.3.1. Friction Coefficient and Mass Loss

Figure 21 shows the friction coefficients of the tested samples under grease lubrication against
GCr15 (a) and against Si3N4 (b), respectively. As shown in Figure 21a, PN-316 and ground 316 samples
revealed low friction coefficients in the running-in stage, a layer of grease and a thin sorption film on
their surfaces contributed to the reduction of friction. PN-316 and ground 316 samples had a relative
smooth surface and could not store up grease. As the grease was squeezed out of the friction interface
and the thin sorption film was worn down, the contact mode turned into nearly dry sliding. Increased
friction coefficients belonging to PN-316 and ground 316 fluctuated in the range of 0.5~0.6, which
were higher than those of ST-316 and DT-316 samples around 0.1. As ST-316 and DT-316 had textured
surfaces, the textured surfaces could play a role of storing up grease. The grease that was stored in the
grooves and dimples provided continuous lubrication, so they exhibited far lower friction coefficients
in the entire testing period. As shown in Figure 21b, PN-316 and ground 316 also showed similar
friction coefficient values as given in Figure 21a. ST-316 and DT-316 with textured surfaces indicated
a far lower friction coefficient as well.
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As shown in Figure 22, ground 316 presented the highest mass losses of all the tested samples
under grease lubrication against GCr15 (a) and against Si3N4 (b), and ST-316 and DT-316 had much
fewer mass losses than ground 316. PN-316, which underwent different wear modes, presented
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low mass loss after sliding against GCr15 and relatively high mass loss after sliding against Si3N4.
Combining Figure 22 with the friction coefficient results in Figure 21, it can be seen that PN-316
experienced slight wear after sliding against GCr15, and it was not worn down. However, PN-316
received heavy wear from Si3N4, and it was worn through, reflected by the friction coefficient and
mass loss, as compared with ground 316.
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3.3.2. Wear Mechanism

Figure 23a shows that the width value of the wear trace belonging to ground 316 under grease
lubrication against GCr15 was close to the tested ground 316 sample after dry sliding against GCr15.
It was also illustrated that the ground 316 received similar damages under the two conditions by
mass losses (in Figures 12a and 22a). The high magnification image of the wear trace in Figure 23b
showed a worn morphology similar to Figure 13b, indicating that ground 316 had a similar wear
mechanism of adhesive wear and abrasive wear. Figure 24a indicates that the wear trace of ST-316
was incomplete and discontinuous, groove and dimples were found in the wear trace. Figure 24b
shows that there were no ploughing or scratching features on the worn surface. The worn region
was smooth, like a polished surface. As established in Figures 21a, 22a and 24b, the ST-316 with
a textured surface was been destroyed. Grooves and dimples on the textured surface acted as a grease
reservoir to realize the friction reduction [62,63]. The wear mechanism of ST-316 can be deduced as
a polishing-like degradation.
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perpendicular to the sliding direction can be observed in Figure 25b, which meant mild fatigue wear 
had occurred. 

Figure 24. SEM images of worn surface of ST-316 under grease lubrication against GCr15. (a) Low
magnification; (b) high magnification of the white rectangle zone.

When PN-316 was tested under grease lubrication against GCr15, its superior wear resistance
compared with that of ground 316 benefitted from its higher surface hardness. Figure 25a reveals
a narrower wear trace than that of ground 316 in Figure 23a. Grease lubrication in the running-in
stage and a contact mode of “ceramic–metal” contributed to a lower mass loss and slight wear of
PN-316 under grease lubrication against GCr15 compared with those after dry sliding against GCr15.
The wear mechanism of PN-316 still showed slight abrasive wear and transfer from GCr15 to its
surface (see Figure 25b).
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Figure 25. SEM images of worn surface of PN-316 under grease lubrication against GCr15. (a) Low
magnification; (b) high magnification of the white rectangle zone.

As shown in Figure 26a, it was found that the wear trace of DT-316 under grease lubrication against
GCr15 was not clear. No obvious ploughing or scratching can be found in the high magnification
image of the wear trace in Figure 26b. As shown in Figure 26b, the worn zone on the DT-316 surface
is also smoother than that of PN-316 in Figure 25b. However, cracks that were perpendicular to the
sliding direction can be observed in Figure 25b, which meant mild fatigue wear had occurred.
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Figure 26. SEM images of worn surface of DT-316 under grease lubrication against GCr15. (a) Low
magnification; (b) high magnification of the white rectangle zone.

As the ground 316 could not store grease and the grease would be squeezed out of the friction
interface, the friction pairs directly contacted each other. As a result, ground 316 was severely worn by
Si3N4 in spite of the test that had begun with grease lubrication. Figure 27 suggests a wear morphology
similar to Figure 17 and confirms that ground 316 also underwent delamination and abrasive wear
under grease lubrication.
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Figure 27. SEM images of worn surface of ground 316 under grease lubrication against Si3N4. (a) Low
magnification; (b) high magnification of the white rectangle zone.

As shown in Figure 28a, the ST-316 obtained a wear trace with an inconformity in width,
and shallow grooves are found in Figure 28b. Because Si3N4 was far harder than ST-316, plastic
deformation would occur under the given normal load during sliding. Some of the stored grease on
textured surface were squeezed out and participated in the friction process at the friction interface.
The stored grease on textured surface could provide continuous lubrication, and played positive
effects on friction reduction and wear reducing. Thereby, the wear mechanism of ST-316 was mild
abrasive wear.

According to the friction coefficient and mass loss in Figures 21b and 22b, it is certain that PN-316
was worn through under grease lubrication against Si3N4. As shown in Figure 29a, PN-316 with a wide
wear trace experienced severe wear and the worn surface was very rough. As shown in Figure 29b,
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it is obvious that scratches and ploughing grooves were distributed on the worn surface. The wear
manner of PN-316 under grease lubrication against Si3N4 was abrasive wear.Materials 2016, 9, 875  19 of 25 
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As shown in Figure 30a, the wear trace of DT-316 under grease lubrication against Si3N4 was
illegible, and pits and dimples were found inside and outside the worn zone. Combined with the
friction coefficient and mass loss in Figures 21b and 22b, it was confirmed that DT-316 received slight
wearing damage. Parallel shallow grooves and minor cracks were found in the wear trace, as indicated
in Figure 30b. The textured surface distributed with grooves, dimples, or pits could store up grease
and provided continuous lubrication during friction, which was good for friction reduction and wear
reducing [62]. However, Si3N4 had higher hardness, and its micro-protuberances on the surface could
bring damages such as ploughing or scratching to DT-316. In addition, there was a nitriding layer
which had high hardness but low plasticity on DT-316, it was difficult to get plastic deformation for the
nitriding layer. Meanwhile, the nitriding layer could not fully resist the wearing from Si3N4, fatigue
cracks appeared in the local worn area. Therefore, the main wear mechanism of DT-316 was abrasive
wear accompanied by slight fatigue wear.
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4. Conclusions

Duplex treatment of surface texture-plasma nitriding was conducted in virtue of the advantages of
its surface texture and surface modification. Firstly, the 316 substrate was electrochemically processed
in a NaCl solution to obtain a textured surface (ST-316) by making use of its high sensitivity to
pitting corrosion in a Cl−-rich environment. Then, the plasma nitriding was employed to treat the
316 substrate and ST-316. The tribological behaviors of ground 316, ST-316, PN-316, and DT-316 were
thoroughly investigated, and the findings were summarized as follows:

(1) When NaCl media with high concentrations were used to achieve electrochemical processing
of 316 samples on purpose, the initial formed pits expanded and attached to each other, ultimately
turning into grooves and dimples that distributed on the surfaces (See Figure A1).

(2) A continuous and uniform nitriding layer was successfully prepared on ground 316 and ST-316
surfaces. The obtained nitriding layers reached thickness values of over 30 µm. The nitriding layer was
built up by iron nitrides and chromium nitride. Plasma nitriding significantly enhanced the surface
hardness of the 316 substrate and ST-316 samples.

(3) In dry sliding against GCr15, ground 316 and ST-316 with lower surface hardness suffered
more severe wear than PN-316 and DT-316. Ground 316 and ST-316 underwent adhesive wear
and abrasive wear, accompanied with oxidation wear. ST-316 revealed tribological behavior similar
to ground 316, which meant single surface texturing presented no obvious positive effect on the
tribological performance of ground 316 in dry sliding against GCr15. Plasma nitriding treated samples
underwent slighter wearing than ground 316 and ST-316, as expected. The mass losses of PN-316 and
DT-316 were far lower than those of ground 316 and ST-316. The main wear mechanism of PN-316 and
DT-316 was mild abrasive wear and transfer from GCr15 to their surfaces.

(4) In dry sliding against Si3N4, there were remarkable differences among the worn morphologies.
The wear mechanism of ground 316 and ST-316 was a composite form of delamination and abrasive
wear. The main wear manner of PN-316 under this condition was set as abrasive wear. DT-316
experienced fatigue wear.

(5) Under grease sliding against GCr15, ground 316 received a similar extent of damages as it was
in dry sliding, it revealed a wear mechanism of adhesive wear and abrasive wear. The ST-316 with
a textured surface was not destroyed. Grease stored in grooves and dimples on the textured surface
could realize the friction reduction. The wear mechanism of ST-316 can be deduced as polishing-like
degradation. The wear mechanism of PN-316 was slight abrasive wear and transfer from GCr15 to its
surface. No obvious ploughing or scratching was found in the wear trace of DT-316. Minor cracks
were observed, which meant DT-316 received mild fatigue wear.
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(6) Under grease sliding against Si3N4, although the test began with grease lubrication, ground
316 was still severely worn. Ground 316 also underwent delamination and abrasive wear. The wear
mechanism of ST-316 was mild abrasive wear. PN-316 was worn through under this condition, and its
wear manner was abrasive wear. DT-316 received slight wearing damage. Ploughing, scratching,
and fatigue cracks appeared in a local worn area on the worn surface of DT-316. The main wear
mechanism of DT-316 was abrasive wear accompanied by slight fatigue wear.

(7) When the tribological tests were carried out under dry sliding and grease lubrication conditions,
the tested samples displayed different tribological behaviors. The PN-316 indicated a secondary
improvement in wear resistance compared with the DT-316, as they were estimated under dry sliding,
while the tribological properties of ST-316 could be ranked only second to those of the DT-316 when
the tests were conducted under grease lubrication conditions.

(8) The DT-316 samples revealed the most promising tribological properties, reflecting the
lowest mass loss and worn morphologies. The excellent tribological performance of DT-316 was
attributed to the following aspects: firstly, the nitriding layer had a high surface hardness; secondly,
the surface texture was able to capture wear debris, store up grease, and then provide continuous
lubrication. Therefore, surface texturing-plasma nitriding duplex treatment could be performed on the
working surface of 316 stainless steel with enhanced surface hardness and good tribological properties.
The surface texturing-plasma nitriding surface treatment duplex processing realized a “1 + 1 > 2”
effect on 316 SS. Our group will concentrate on choosing appropriate surface technologies on textured
surface for specific serving conditions. Meanwhile, tribo-chemical reactions between the counterparts
and the grease, or between the tested samples and the grease, are also worthy of attention.
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Appendix A

Figure A1 shows the SEM surface morphologies of the electrochemical processing 316 samples
in different NaCl concentrations. As can be seen from Figure A1, all processed surfaces had become
rougher compared with the ground 316 (Figure 3a). Electrochemical processing of 316 samples
in a 10 wt % NaCl solution yields a surface with numerous randomly distributed corrosion pits
(Figure A1a). These data are consistent with published works, where little difference was observed in
the surface morphologies of pitting corrosion of 316. When the 316 was processed in a 15 wt % NaCl
solution, the pits expand and become attached to each other, ultimately turned into pitting grooves and
dimples, as shown in Figure A1b (and Figure 1b in this paper). In a 20 wt % NaCl solution, the surface
seems to contain more parallel distributed pitting grooves and dimples (Figure A1c), indicating
a certain surface texture characteristic. On the other hand, increasing the concentration of NaCl was
not likely going to produce better surface texture characteristics. As demonstrated in Figure A1d,
a relatively uniform and smooth surface was obtained after the electrochemical etching process in
a 25 wt % NaCl solution. As a result, we concur with the conclusion that higher concentrations of Cl−

combined with relatively elevated scan rates might yield severe general corrosion of the 316 surface,
indicated by wide and shallow grooves, and tiny pits.
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Figure A1. Surface morphologies of the electrochemical processed 316 surfaces. (a) 10 wt % NaCl;  
(b) 15 wt % NaCl; (c) 20 wt % NaCl; (d) 25 wt % NaCl. 
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