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Backgroud: Lung adenocarcinoma (LUAD) is a common lung cancer with a
high mortality, for which microRNAs (miRNAs) play a vital role in its regulation.
Multiple messenger RNAs (mRNAs) may be regulated by miRNAs, involved in
LUAD tumorigenesis and progression. However, the miRNA–mRNA regulatory network
involved in LUAD has not been fully elucidated.

Methods: Differentially expressed miRNAs and mRNA were derived from the Cancer
Genome Atlas (TCGA) dataset in tissue samples and from our microarray data in plasma
(GSE151963). Then, common differentially expressed (Co-DE) miRNAs were obtained
through intersected analyses between the above two datasets. An overlap was applied
to confirm the Co-DEmRNAs identified both in targeted mRNAs and DEmRNAs in
TCGA. A miRNA–mRNA regulatory network was constructed using Cytoscape. The
top five miRNA were identified as hub miRNA by degrees in the network. The functions
and signaling pathways associated with the hub miRNA-targeted genes were revealed
through Gene Ontology (GO) analysis and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway. The key mRNAs in the protein–protein interaction (PPI)
network were identified using the STRING database and CytoHubba. Survival analyses
were performed using Gene Expression Profiling Interactive Analysis (GEPIA).

Results: The miRNA–mRNA regulatory network consists of 19 Co-DEmiRNAs and 760
Co-DEmRNAs. The five miRNAs (miR-539-5p, miR-656-3p, miR-2110, let-7b-5p, and
miR-92b-3p) in the network were identified as hub miRNAs by degrees (>100). The 677
Co-DEmRNAs were targeted mRNAs from the five hub miRNAs, showing the roles in the
functional analyses of the GO analysis and KEGG pathways (inclusion criteria: 836 and
48, respectively). The PPI network and Cytoscape analyses revealed that the top ten
key mRNAs were NOTCH1, MMP2, IGF1, KDR, SPP1, FLT1, HGF, TEK, ANGPT1, and
PDGFB. SPP1 and HGF emerged as hub genes through survival analysis. A high SPP1
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expression indicated a poor survival, whereas HGF positively associated with survival
outcomes in LUAD.

Conclusion: This study investigated a miRNA–mRNA regulatory network associated
with LUAD, exploring the hub miRNAs and potential functions of mRNA in the network.
These findings contribute to identify new prognostic markers and therapeutic targets for
LUAD patients in clinical settings.

Keywords: lung adenocarcinoma, microRNAs, hub genes, bioinformatics, prognostic marker

INTRODUCTION

Lung adenocarcinoma (LUAD) is the most common histological
subtype of lung cancer, accounting for approximately 40% of
all cases of lung cancer in China and other countries (Bray
et al., 2018; Cao and Chen, 2019; Siegel et al., 2020). LUAD
is characterized by rapid progression and early development
of metastases and a high recurrence rate, with the highest
morbidity and mortality in both genders (Bray et al., 2018;
Cao and Chen, 2019; Siegel et al., 2020). The overall 5-year
survival rates for LUAD only reach approximately 20% (Bray
et al., 2018; Miller et al., 2019) given the lack of early detection
and limited effective therapies at earlier stages of disease (Gan
et al., 2017). LUAD patients have an 80% chance of surviving
5 years if diagnosed at an early stage (Henschke et al., 2006).
Thus, there is a growing need to identify and characterize the
molecular pathogenesis of LUAD in order to better understand
the underlying disease mechanisms and to improve treatment
outcomes of this malignancy.

MicroRNAs (miRNAs) are a family of small non-coding RNAs
that downregulate gene expression by repressing or degrading
messenger RNA (mRNA) targets, thereby controlling the genes
involved in cellular processes (Di Leva et al., 2014; Du et al., 2018).
miRNAs regulate the expression of approximately 30% of all
human genes, playing important regulatory roles in many human
diseases (Lewis et al., 2005; Di Leva et al., 2014; Ramassone et al.,
2018; Wu K.L. et al., 2019; Wu S.G. et al., 2019; Condrat et al.,
2020). miRNAs could be readily detected in circulation and carry
information regarding the origin of a neoplasm, thus serving
as diagnostic and prognostic biomarkers in the development of
tumors (Hummel et al., 2010; Blondal et al., 2013; Qi et al.,
2013; Zhang et al., 2016; Liu et al., 2017; Świtlik et al., 2019;
Cojocneanu et al., 2020; Wang et al., 2020). An increasing
number of studies have reported various expression levels of
miRNAs in LUAD (Cazzoli et al., 2013; Zhong et al., 2018),
although findings remain inconsistent. Extensive genomic studies
have verified that abnormal expressions of multiple mRNAs of
genes involved in LUAD tumorigenesis and progression play
vital roles (Herbst et al., 2018). The miRNA–mRNA regulatory
network is characterized in such a way that individual miRNA
could regulate a wealth of different mRNAs of genes, and the
individual mRNA of a target gene could be correspondingly
suppressed by multiple different miRNAs (Cui et al., 2020; Li
et al., 2020; Liu et al., 2020). Thus, it is necessary to examine
the miRNA–mRNA regulatory network in LUAD to advance our
understanding of its molecular mechanisms.

Microarray analysis has been widely used in the evaluation
of miRNA in cancers to understand the complexity and
heterogeneity of malignant disease (Jurj et al., 2017; Cojocneanu
et al., 2020), but has not been fully elucidated in LUAD. A public
dataset from the Cancer Genome Atlas (TCGA) is widely used
in LUAD analyses, although cases primarily originate from
a non-Asian population, yet include primary tissue samples.
Hence, the TCGA dataset and actual clinical patient data
from multiple sample types contribute to determining the
biomarkers of LUAD and exploring the underlying mechanisms
(Rheinbay et al., 2020).

Here, we constructed a miRNA–mRNA regulatory network
of LUAD using TCGA data and our microarray analysis data,
including multiple sample types and ethnicities, to subsequently
identify hub miRNAs in the network. The functional enrichment
analysis of the targeted mRNAs of hub miRNAs were investigated
using the Gene Ontology (GO) and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analyses.
In addition, we analyzed the protein–protein interaction (PPI)
network to understand the potential mechanism of mRNAs in
LUAD occurrence and development. In doing so, we identified
the top ten key mRNAs using the PPI network and CytoHubba.
The Gene Expression Profiling Interactive Analysis (GEPIA)
allowed us to evaluate these key mRNAs and identify the hub
genes in LUAD using survival analysis.

MATERIALS AND METHODS

Figure 1 illustrates the workflow. This study received
ethical approval from the Ethics Committee of the Gansu
Provincial Hospital (14 April 2020, No. 2020-117). Informed
consent was obtained from all participants in the microarray
experiment, and the research adhered to the principles of the
Declaration of Helsinki.

The TCGA dataset from tissue samples and the microarray
data from plasma in LUAD were included in this study.
Supplementary Tables 1,2 provide the clinical characteristics
in LUAD from the TCGA and microarray data. The TCGA
data included miRNA (400 LUAD and 15 normal lung tissue)
and mRNA (515 LUAD and 20 normal lung tissue) samples,
all downloaded using Firehose1 on 16 April 2020 (Izadi et al.,
2017). The mRNA samples were obtained by filtering the samples
with low-quality reads as expressions <0.8. The miRNA data

1http://gdac.broadinstitute.org/
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were obtained from intersecting the mRNA-sequence data and
filtering the samples with low-quality reads as expressions <0.5.
The microarray data (n = 10) were collected between October
2018 and March 2019 at Gansu Provincial Hospital (China), and
included initially diagnosed LUAD patients (n = 6) and controls
(n = 4). We excluded patients who (a) previously received
chemotherapy, radiotherapy, molecular-targeted therapy,

immunotherapy or surgery before blood samples were collected;
(b) had other combined cancers; (c) were pregnant or lactating;
or (d) presented with cardiopulmonary insufficiency, serious
cardiovascular disease and a serious infection as well as severe
malnutrition (Wang et al., 2014; Li et al., 2019).

RNA degradation and contamination, especially DNA
contamination, was monitored on 1.5% agarose gels. RNA

FIGURE 1 | The study workflow. LUAD, lung adenocarcinoma; DE, differential expression; Co-DE, common differentially expressed; Co-mRNAs, common mRNAs;
TCGA, the Cancer Genome Atlas; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein–protein interaction.
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concentration and purity were measured using the NanoDrop
2000 Spectrophotometer (Thermo Fisher Scientific, Wilmington,
DE). RNA integrity was assessed using the RNANano 6000
Assay Kit of the Agilent Bioanalyzer 2100 System (Agilent
Technologies, CA, United States). A total amount of 2.5 ng
RNA per sample was used as the input material for the RNA
sample preparations. Sequencing libraries were generated using
NEBNextR UltraTM small RNA Sample Library Prep Kit for
IlluminaR (NEB, United States) following the manufacturer’s
recommendations and index codes were added to attribute
sequences to each sample. Raw data (raw reads) of fastq format
were first processed through in-house perl scripts. The clean
data (clean reads) were obtained by removing reads containing
adapter, reads containing ploy-N and low-quality reads from
raw data. The reads were trimmed and cleaned by removing
sequences <15 nt or >35 nt. At the same time, Q20, Q30, and
GC-content of the clean data were calculated. All downstream
analyses were based on clean data with a high quality. Then,
using the Bowtie soft tools, clean reads were compared to the
Silva database, GtRNAdb database, Rfam database, and Repbase
database, respectively, to identify the sequence alignment, and
filtered for ribosomal RNA (rRNA), transfer RNA (tRNA), small
nuclear RNA (snRNA), small nucleolar RNA (snoRNA), and
other ncRNA and repeats. The remaining reads were used to
detect known miRNA and novel miRNA predicted through
comparison with known miRNAs from miRBase. Detailed
information on the microarray appears elsewhere (Zhong
et al., 2018). The sequencing reads were uploaded to the gene
expression omnibus (GEO) dataset (access number GSE151963).

Construction of the miRNA–mRNA
Regulatory Network
The differentially expressed miRNAs (DEmiRNAs) and mRNA
(DEmRNAs) were analyzed comparing the LUAD and normal
samples using the R package limma. The DEmiRNAs consistent
with the expression of TCGA were further analyzed. The isoform
expressions of the DEmiRNAs were identified using the R
package miRNAmeConverter. The common consistently and
differentially expressed (Co-DE) miRNAs were obtained using
intersected analyses comparing TCGA and microarray datasets
(Cojocneanu et al., 2020). The targeted mRNAs of the Co-
DEmiRNAs were predicted using three online analytical software
tools including miRDB2, TargetScanHuman (version 7.2)3, and
miRWalk (Agarwal et al., 2015; Dweep and Gretz, 2015; Chen
and Wang, 2020)4. An overlap was applied to confirm the Co-
DEmRNAs identified both in targeted mRNAs and DEmRNAs
using FunRich tools (Pathan et al., 2015). Adjusted p-values (adj.
p) were used to correct false-positive results (Patten et al., 2016).
DEmiRNAs and DEmRNAs were identified applying p < 0.05
and | Log 2 fold-change (log2FC) | >1. The volcano plots were
drawn using R package ggplot2. Based on the results of the
Co-DEmiRNAs and Co-DEmRNAs, we constructed the miRNA–
mRNA regulatory network using the Cytoscape software version
3.7.0 (Shannon et al., 2003). The top five miRNAs (degree >100)
were selected as hub miRNAs in the network.

2http://www.mirdb.org/
3http://www.targetscan.org/
4zmf.umm.uni-heidelberg.de/mirwalk2

FIGURE 2 | Differential expression of miRNAs and mRNAs. (A) Differential expression (DE) miRNAs in patient cohort (GSE151963), (B) DEmiRNAs in TCGA and
(C) DEmRNAs in the TCGA dataset. The red plots show the upregulated expression of miRNA or mRNA; the blue plots show the downregulated expression of
miRNA or mRNA; the gray plots show the normal expression of miRNA or mRNA. DE, differential expression; Co-DE, common differentially expressed; miRNA,
microRNA; mRNA, messenger RNA.
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Functional Enrichment Analysis and
Confirmation of Hub Genes
The biological functions of the targeted mRNAs of these hub
miRNAs were evaluated using the GO and KEGG pathway
enrichment analyses with the R package ClusterProfiler (Yu
et al., 2012). We considered p < 0.05 statistically significant.
Using the STRING database,5 we downloaded data from the
PPI network for targeted mRNAs for the hub miRNAs applying
the following criteria: (a) homo sapiens; and (b) medium
confidence 0.400 (Zhu et al., 2020). Then, the PPI network
was further adjusted using the Cytoscape software version 3.7.0,
and we identified the top ten key mRNAs of the PPI network
using cytoHubba’s Maximal Clique Centrality (MCC) ranking
(Yang et al., 2019). The hub mRNAs were further verified
using survival analysis using the Gene Expression Profiling

5http://string-db.org

Interactive Analysis (GEPIA) tools6. Significant survival was
identified through survival analysis (log-rank p < 0.05). The
key mRNAs with significant survival outcomes were identified as
hub genes in LUAD.

RESULTS

Identification of Differentially Expressed
miRNAs and mRNAs
Through small RNA sequence and data standardization, we
harvested a total of 3,166 miRNAs for subsequent analysis of
the microarray data. In total, we identified 6 patients (50% male,
median age of 62.5 years, 100% Asian, and 100% stage III–IV)
with LUAD using plasma samples from the microarray data. In

6http://gepia.cancer-pku.cn

TABLE 1 | Common differentially expressed miRNAs (n = 30) in the GSE151963 and TCGA datasets.

ID GSE151963 TCGA

log2 FC p-value Expression change log2 FC p-value Expression change

Consistent (n = 19)

hsa-miR-369-3p 4.071 2.38E-07 Down 1.434 2.41E-03 Down

hsa-miR-539-5p 3.966 1.06E-07 Down 2.943 6.00E-03 Down

hsa-miR-379-5p 3.727 1.04E-04 Down 1.69 5.53E-03 Down

hsa-miR-494-3p 2.999 7.57E-04 Down 1.837 3.53E-03 Down

hsa-miR-495-3p 2.695 1.06E-03 Down 2.12 4.78E-02 Down

hsa-miR-337-3p 2.634 1.02E-04 Down 2.556 1.69E-04 Down

hsa-miR-376c-3p 2.552 7.87E-06 Down 1.69 3.42E-03 Down

hsa-miR-382-5p 2.51 6.23E-03 Down 1.644 5.36E-03 Down

hsa-miR-154-5p 2.4 1.49E-05 Down 1.837 1.09E-03 Down

hsa-miR-134-5p 2.322 6.94E-03 Down 1.599 1.44E-03 Down

hsa-miR-656-3p 1.914 5.94E-03 Down 1.69 2.61E-02 Down

hsa-miR-655-3p 1.771 8.56E-04 Down 2.184 2.52E-03 Down

hsa-miR-496 1.106 6.55E-04 Down 1.396 3.43E-02 Down

hsa-miR-184 3.775 2.44E-04 Up 2.06 5.86E-11 Up

hsa-miR-486-5p 3.552 5.22E-05 Up 1.8 8.87E-06 Up

hsa-miR-2110 2.483 1.12E-03 Up 1.28 1.40E-09 Up

hsa-miR-92b-3p 1.874 1.41E-06 Up 1.49 8.46E-06 Up

hsa-let-7b-5p 1.806 3.96E-04 Up 1.1 3.26E-08 Up

hsa-miR-455-5p 1.256 4.60E-04 Up 2.566 3.04E-03 Up

Inconsistent (n = 11)

hsa-miR-20a-5p 2.178 3.21E-04 Down 2.63 3.57E-05 Up

hsa-miR-556-5p 2.175 1.85E-04 Down 2.381 1.83E-02 Up

hsa-miR-766-3p 2.089 1.60E-04 Down 1.362 1.48E-02 Up

hsa-miR-146b-5p 1.777 7.07E-05 Down 1.45 2.20E-16 Up

hsa-miR-362-5p 1.661 4.38E-04 Down 1.183 2.23E-03 Up

hsa-miR-130a-3p 1.583 3.90E-05 Down 1.58 2.89E-07 Up

hsa-miR-33a-5p 1.447 8.96E-04 Down 3.38 1.66E-05 Up

hsa-miR-1296-5p 1.439 4.30E-03 Down 1.275 8.47E-03 Up

hsa-miR-552-3p 1.322 1.03E-03 Down 1.49 1.28E-07 Up

hsa-miR-122-5p 4.746 1.14E-05 Up 3.644 3.83E-02 Down

hsa-miR-10b-5p 3.323 3.93E-04 Up 2.06 3.95E-08 Down

TCGA, Cancer Genome Atlas; FC, fold change.
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total, 319 DEmiRNAs (145 upregulated and 174 downregulated
miRNAs) were identified from the plasma comparing LUAD
and controls in the microarray data (Figure 2A). In addition,
we identified 515 LUAD patients (46% male, median age of
66 years, 2% Asian) from TCGA tissue samples, including
stage I (53.4%), stage II (23.7%), and stage III–IV (25.2%).
Furthermore, 4,206 DEmRNAs (1,105 upregulated and 3,101
downregulated) and 197 DEmiRNAs (126 upregulated and 71
downregulated) were identified using TCGA [(| log2 FC) | > 1
and p < 0.05, respectively, Figures 2B,C]. In addition, 147 of 197
DEmiRNAs (95 upregulated and 52 downregulated) exhibited
isoform expressions.

Constructing the miRNA–mRNA
Regulatory Network
The 30 common DEmiRNAs (Co-DEmiRNAs), including 19
consistent DEmiRNAs (6 upregulated and 13 downregulated

miRNAs) and 11 inconsistent DEmiRNAs (2 upregulated and
9 downregulated miRNAs from the microarray data and
9 upregulated and 2 downregulated miRNAs from TCGA),
were identified through an intersection analysis between the
TCGA and microarray datasets (Table 1). In total, 5,479
target mRNAs from 19 consistently Co-DEmiRNAs were
identified. Next, 760 Co-DEmRNAs (152 upregulated and 608
downregulated) were identified through the intersection analysis
comparing the DEmRNAs in the TCGA and microarray datasets.
The miRNA–mRNA regulatory network consists of 19 Co-
DEmiRNAs and 760 Co-DEmRNAs (Figure 3). Overall, 19
consistently Co-DEmiRNAs identified 985 targeted relationships
with 760 Co-DEmRNAs. Furthermore, the top five miRNAs
were identified as hub miRNAs in the network, including miR-
539-5p (216 degrees), miR-656-3p (209 degrees), let-7b-5p (135
degrees), miR-2110 (125 degrees), and miR-92b-3p (117 degrees).
Finally, 677 Co-DEmRNAs consisted of targeted mRNAs from
five hub miRNAs.

FIGURE 3 | The miRNA–mRNA regulatory network. The rectangles and triangles represent mRNAs and miRNAs, respectively. Red represents the upregulated
expression of miRNA or mRNA; blue represents the downregulated expression of miRNA or mRNA. miRNA, microRNA; mRNA, messenger RNA.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 February 2021 | Volume 9 | Article 641840

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-641840 February 14, 2021 Time: 16:49 # 7

Wang et al. microRNA–mRNA Network in Lung Adenocarcinoma

GO and KEGG Analyses of Targeted
mRNAs for Hub miRNAs
In total, we used 677 Co-DEmRNAs to identify the potential
functions of hub miRNAs using GO and KEGG pathway
enrichment analyses. We obtained 836 results in the GO analysis,
in which Figure 4A illustrates the top 10 results from the
biological process, cellular component and molecular function.
Some results associated with the occurrence and progression of
a tumor, including the regulation of the cellular response to
the growth factor stimulus, the collagen-containing extracellular
matrix and the basement membrane among others. In addition,
48 signaling pathways emerged from the KEGG pathways
analysis (Table 2), with the top ten results shown in Figure 4B.
Most of these pathways associated with the occurrence and
progression of a tumor, including focal adhesion, proteoglycans
in cancer, extracellular matrix–receptor interaction and the
Wnt signaling pathway (Table 2). The focal adhesion pathway
contained the largest number of mRNAs and the smallest adj.
p-value.

Identification of Hub Genes
The PPI networks identified 597 mRNAs from 677 Co-
DEmRNAs with 2,246 edges related to each other (Figure 5).
The top ten key mRNAs were identified using the cytoHubba
plugin MCC ranking, including neurogenic locus notch
homolog protein 1 (NOTCH1), matrix metalloproteinase 2
(MMP2), insulin-like growth factor 1 (IGF1), kinase-insert
domain-containing receptor (KDR), secreted phosphoprotein
1(SPP1), vascular endothelial growth factor receptor 1 (FLT1),
hepatocyte growth factor (HGF), angiopoietin-1 receptor (TEK),

angiopoietin-1 gene (ANGPT1) and platelet-derived growth
factor-beta (PDGFB; Figure 6). These key mRNAs were further
verified using GEPIA through the calculation of the survival
analysis. Here, only two (SPP1 and HGF) were identified as
hub genes and associated with survival (Figure 7). The survival
analysis revealed that the expression of SPP1 was negatively
correlated with survival, while HGF positively correlated with
survival in LUAD (Figure 7). In addition, SPP1 and HGF were
both enriched in the focal adhesion signaling pathway (Table 2).

DISCUSSION

LAUD is a high-risk disease with a high mortality, and its
potential occurrence and development mechanisms have not
been fully identified. Previously, several studies reported the
role of miRNAs in LAUD, although those findings lacked
agreement (Cazzoli et al., 2013; Zhong et al., 2018). Here, we
identified several hub miRNAs and hub mRNAs in LUAD using
the miRNA–mRNA regulatory network using multiple sample
types and ethnicities. In total, five hub miRNAs—namely, miR-
539-5p, miR-656-3p, let-7b-5p, miR-2110, and miR-92b-3p—
played important roles in LUAD tumorigenesis and progression.
Two hub mRNAs, namely, SPP1,and HGF, associated with
LUAD patient survival. These findings suggest that the specific
miRNA and mRNA expression patterns and functional analyses
contribute to identifying new predictive markers and therapeutic
targets for LUAD patients in clinical settings.

Five hub miRNAs in the network played the most important
roles in LUAD tumorigenesis and progression. Specifically, miR-
539-5p emerged with the highest node degrees compared to

FIGURE 4 | Functional enrichment analysis of targeted mRNAs from the hub miRNAs. (A) Dotplot of the top ten results from the GO analysis in terms of BP, CC and
MF with the adjusted p-value from smallest to largest, respectively, and (B) dotplot of the top ten KEGG enrichment pathways. GO, Gene Ontology; BP, biological
process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes; miRNA, microRNA; mRNA, messenger RNA.
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TABLE 2 | Results from the Kyoto Encyclopedia of Genes and Genomes enrichment pathway analysis.

ID Description p-value Gene ID Count

hsa04510 Focal adhesion 2.070E-09 PXN/PIK3R3/LAMA4/SPP1/LAMC2/HGF/FYN/AKT3/SHC3/ITGA8/MAPK10/
COL4A3/ROCK1/THBS1/IGF1/COL1A1/COL4A2/PPP1R12B/PDGFB/CCND2/
PPP1R12C/ITGA5/LAMA2/PRKCB/FLT1/RAPGEF1/CAV2/KDR

28

hsa05205 Proteoglycans in cancer 5.760E-08 WNT7B/PXN/FGFR1/PIK3R3/MMP2/HGF/AKT3/DDX5/ROCK1/WNT3/FZD4/
THBS1/IGF1/CDKN1A/COL1A1/PPP1R12B/PPP1R12C/ITGA5/ITPR1/TLR4/
WNT7A/PRKCB/TIMP3/HBEGF/CAV2/KDR

26

hsa04512 Extracellular matrix–receptor
interaction

5.150E-06 LAMA4/CD36/SPP1/LAMC2/FRAS1/ITGA8/FREM1/COL4A3/THBS1/COL1A1/
COL4A2/ITGA5/NPNT/LAMA2

14

hsa04270 Vascular smooth-muscle
contraction

1.340E-05 MRVI1/PLA2G4A/GUCY1A2/ROCK1/PLA2G3/EDN1/PPP1R12B/PPP1R12C/
ADM/ADCY3/ITPR1/PRKCE/PRKG1/CALCRL/PRKCB/CACNA1C/CACNA1D

17

hsa04022 cGMP–PKG signaling pathway 2.030E-04 MRVI1/PIK3R5/PDE3B/AKT3/GUCY1A2/MEF2A/ROCK1/ADRB2/ADRB1/
ADCY3/ ITPR1/PRKCE/PRKG1/EDNRB/CACNA1C/PLN/CACNA1D

17

hsa04931 Insulin resistance 2.210E-04 PYGM/PIK3R3/PPP1R3E/PTPN1/CD36/AKT3/PPARGC1A/MAPK10/PPAR
GC1B/GFPT2/PRKCE/OGT/PRKCB

13

hsa04611 Platelet activation 2.530E-04 PIK3R3/FCER1G/PIK3R5/PLA2G4A/FYN/AKT3/GUCY1A2/ROCK1/P2RX1/
COL1A1/COL3A1/ADCY3/ITPR1/PRKG1

14

hsa04924 Renin secretion 2.590E-04 AQP1/PDE3B/GUCY1A2/ADRB2/EDN1/ADRB1/ITPR1/PTGER4/
CACNA1C/CACNA1D

10

hsa05414 Dilated cardiomyopathy 2.700E-04 SGCD/ITGA8/IGF1/ADRB1/ITGA5/ADCY3/ACTC1/CACNB2/LAMA2/
CACNA1C/PLN/CACNA1D

12

hsa04310 Wnt signaling pathway 3.810E-04 WNT7B/NKD1/PRICKLE4/SFRP1/RSPO3/SOX17/RSPO2/PRICKLE2/MAPK10/
WNT3/FZD4/CCND2/WNT7A/PRKCB /WIF1/AXIN2

16

hsa04933 AGE–RAGE signaling pathway in
diabetic complications

3.960E-04 PIK3R3/EGR1/MMP2/AKT3/MAPK10/COL4A3/EDN1/COL1A1/COL4A2/
COL3A1/PRKCE/PRKCB

12

hsa04151 PI3K–Akt signaling pathway 4.370E-04 FGFR1/PIK3R3/LAMA4/PIK3R5/SPP1/LAMC2/HGF/AKT3/ITGA8/COL4A3/
FOXO3/THBS1/GHR/IGF1/CDKN1A/COL1A1/COL4A2/PDGFB/CCND2/ITGA5/
TLR4/ANGPT1/NR4A1/LAMA2/TEK/FLT1/KDR

27

hsa05146 Amebiasis 4.760E-04 PIK3R3/LAMA4/CXCL2/LAMC2/ITGAM/COL4A3/COL1A1/COL4A2/COL3A1/
TLR4/LAMA2/PRKCB

12

hsa04360 Axon guidance 5.260E-04 ROBO2/SEMA5A/SEMA6A/PIK3R3/FYN/DPYSL2/ABLIM2/ROCK1/SEMA3D
/CFL2/LIMK2/BMPR2/SEMA6D/PLXNA2/SLIT2/SEMA3F/EFNB2

17

hsa04666 Fc gamma R-mediated
phagocytosis

7.770E-04 MARCKSL1/PIK3R3/PLA2G4A/AKT3/WASF3/CFL2/GAB2/LIMK2/ASAP1/
PRKCE/PRKCB

11

hsa04912 GnRH signaling pathway 7.770E-04 EGR1/MMP2/PLA2G4A/MAPK10/MAP3K3/ADCY3/ITPR1/PRKCB/CACNA1C/
HBEGF/CACNA1D

11

hsa01521 EGFR tyrosine kinase inhibitor
resistance

7.850E-04 PIK3R3/HGF/AKT3/SHC3/FOXO3/IGF1/PDGFB/NRG1/PRKCB/KDR 10

hsa05418 Fluid shear stress and
atherosclerosis

8.150E-04 GSTM5/PIK3R3/MMP2/AKT3/NQO1/MEF2A/MAPK10/DUSP1/EDN1/PDGFB/
KLF2/BMPR2/CAV2/KDR

14

hsa04015 Rap1 signaling pathway 1.075E-03 FGFR1/PIK3R3/HGF/AKT3/ITGAM/THBS1/IGF1/PDGFB/ADCY3/DOCK4/
ANGPT1/PRKCB/TEK/FLT1/RAPGEF5/RAPGEF1/CNR1/KDR

18

hsa01522 Endocrine resistance 1.206E-03 PIK3R3/MMP2/AKT3/SHC3/MAPK10/IGF1/CDKN1A/NOTCH1/ADCY3/
HBEGF/DLL4

11

hsa04072 Phospholipase D signaling
pathway

1.504E-03 AGPAT4/PIK3R3/FCER1G/PIK3R5/PLA2G4A/FYN/AKT3/SHC3/DGKH/DNM3/
GAB2/PDGFB/ADCY3/MS4A2

14

hsa04935 Growth hormone synthesis,
secretion and action

1.875E-03 PIK3R3/AKT3/SHC3/MAPK10/GHR/IGF1/ADCY3/ITPR1/PRKCB/JUNB/
CACNA1C/CACNA1D

12

hsa05410 Hypertrophic cardiomyopathy 2.154E-03 SGCD/ITGA8/IGF1/EDN1/ITGA5/ACTC1/CACNB2/LAMA2/CACNA1C/CACNA1D 10

hsa04928 Parathyroid hormone synthesis,
secretion and action

2.285E-03 FGFR1/EGR1/AKAP13/MEF2A/PDE4B/CDKN1A/ADCY3/ITPR1/
PRKCB/KL/HBEGF

11

hsa05412 Arrhythmogenic right-ventricular
cardiomyopathy

2.504E-03 SGCD/DSG2/ITGA8/ITGA5/DSC2/CACNB2/LAMA2/CACNA1C/CACNA1D 9

hsa04929 GnRH secretion 2.817E-03 GABBR1/PIK3R3/SPP1/AKT3/ITPR1/PRKCB/CACNA1C/CACNA1D 8

hsa04066 HIF-1 signaling pathway 2.851E-03 PIK3R3/EGLN3/AKT3/IGF1/EDN1/CDKN1A/TLR4/
ANGPT1/PRKCB/TEK/FLT1

11

hsa04014 Ras signaling pathway 3.255E-03 FGFR1/PIK3R3/SYNGAP1/HGF/PLA2G4A/AKT3/SHC3/MAPK10/IGF1/
PLA2G3/GAB2/PDGFB/ANGPT1/PRKCB/TEK/FLT1/RAPGEF5/KDR

18

hsa04926 Relaxin signaling pathway 3.686E-03 PIK3R3/MMP2/AKT3/SHC3/MAPK10/COL4A3/EDN1/COL1A1/COL4A2/COL3A1/
ADCY3/EDNRB

12

hsa05165 Human papillomavirus infection 3.847E-03 WNT7B/PXN/PIK3R3/LAMA4/SPP1/LAMC2/AKT3/ITGA8/
COL4A3/WNT3/FZD4/THBS1/CDKN1A/COL1A1/COL4A2/CCND2/NOTCH1/
ITGA5/PTGER4/WNT7A/DLG3/LAMA2/AXIN2

23

hsa05224 Breast cancer 3.960E-03 WNT7B/FGFR1/PIK3R3/AKT3/SHC3/WNT3/FZD4/IGF1/
CDKN1A/NOTCH1/WNT7A/AXIN2/DLL4

13

(Continued)
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TABLE 2 | Continued

ID Description p-value Gene ID Count

hsa05231 Choline metabolism in cancer 4.036E-03 PIK3R3/PLA2G4A/AKT3/DGKH/WASF3/LYPLA1/MAPK10/
PDGFB/GPCPD1/PRKCB

10

hsa04724 Glutamatergic synapse 4.041E-03 SLC1A1/PLA2G4A/DLG4/GRIA1/ADCY3/ITPR1/SLC38A2/
SHANK3/PRKCB/CACNA1C/CACNA1D

11

hsa04664 Fc epsilon RI signaling pathway 4.126E-03 PIK3R3/FCER1G/PLA2G4A/FYN/AKT3/MAPK10/GAB2/MS4A2 8

hsa04392 Hippo signaling pathway—multiple
species

4.366E-03 DCHS1/FAT4/RASSF2/LIMD1/LATS2 5

hsa04923 Regulation of lipolysis in
adipocytes

5.111E-03 PIK3R3/PDE3B/AKT3/ADRB2/ADRB1/ADCY3/PRKG1 7

hsa04071 Sphingolipid signaling pathway 5.598E-03 PIK3R3/FCER1G/SGPP2/FYN/AKT3/MAPK10/ROCK1/
GAB2/PRKCE/MS4A2/PRKCB

11

hsa04921 Oxytocin signaling pathway 5.867E-03 PIK3R5/PLA2G4A/GUCY1A2/ROCK1/CDKN1A/PPP1R12B/
PPP1R12C/ADCY3/ITPR1/CACNB2/PRKCB/CACNA1C/CACNA1D

13

hsa04910 Insulin signaling pathway 5.979E-03 PYGM/PHKA1/PIK3R3/PPP1R3E/PTPN1/PDE3B/AKT3/
SHC3/PPARGC1A/MAPK10/INPP5A/RAPGEF1

12

hsa04115 p53 signaling pathway 6.369E-03 STEAP3/PERP/RRM2/THBS1/IGF1/CDKN1A/MDM4/CCND2 8

hsa05100 Bacterial invasion of epithelial cells 6.369E-03 ARHGEF26/PXN/PIK3R3/SHC3/DNM3/CD2AP/ITGA5/CAV2 8

hsa05202 Transcriptional misregulation in
cancer

6.542E-03 TSPAN7/ETV4/NFKBIZ/ETV1/ITGAM/
NR4A3/ZEB1/DDX5/SIX4/IGF1/CDKN1A/RUNX1T1/CCND2/LMO2/FLT1

15

hsa04390 Hippo signaling pathway 6.881E-03 WNT7B/NKD1/DLG4/WNT3/FZD4/LIMD1/CCND2/BMPR2/
LATS2/SMAD7/WNT7A/DLG3/AXIN2

13

hsa04730 Long-term depression 7.480E-03 PLA2G4A/GUCY1A2/IGF1/GRIA1/ITPR1/PRKG1/PRKCB 7

hsa04024 cAMP signaling pathway 8.340E-03 GABBR1/PIK3R3/PDE3B/AKT3/PDE4B/MAPK10/ROCK1/ADRB2/EDN1/
ADRB1/GRIA1/ADCY3/CACNA1C/PLN/HHIP/CACNA1D

16

hsa04550 Signaling pathways regulating
pluripotency of stem cells

8.347E-03 WNT7B/FGFR1/PIK3R3/AKT3/WNT3/LIFR/FZD4/IGF1/
BMPR2/WNT7A/KLF4/AXIN2

12

hsa00514 Other types of O-glycan
biosynthesis

8.432E-03 GALNT15/GALNT7/EOGT/GALNT4/OGT/COLGALT2 6

hsa04010 MAPK signaling pathway 8.579E-03 FGFR1/HGF/PLA2G4A/AKT3/MAP3K8/MAPK10/DUSP1/
IGF1/MAP3K3/DUSP7/PDGFB/ANGPT1/NR4A1/CACNB2/PRKCB/TEK/
CACNA1C/FLT1/CACNA1D/KDR

20

other nodes in the network. Several studies found that miR-
539-5p expression levels associated with a poor prognosis and
negatively correlated with hypoxia and the stem index among
LUAD patients (González-Vallinas et al., 2018; Guo et al., 2020).
Yet, further experiments are needed to verify these results given
the limited evidence documenting the direct mechanisms of
miR-539-5p in LUAD. For example, Chen et al. showed that
miR-656-3p could reduce AKT serine/threonine kinase 1 (AKT1)
expression and suppress the occurrence and development of non-
small cell lung cancer (NSCLC) (Chen et al., 2019). Additionally,
upregulating miR-656-3p might improve the chemotherapeutic
efficacy in NSCLC by target-regulating sex-determining region
Y-related high-mobility group box 4 (SOX4) (Wang et al.,
2020). The expression of let-7b-5p was upregulated and might
play a vital role in NSCLC based on the GEO dataset using
bioinformatics analysis (Zhou et al., 2020), and participate in
lymph node micro-metastases of LUAD stage IA (Zhu et al.,
2019). miR-2110 and miR-92b-3p express at different levels in
different tumors (Long et al., 2017; Gong et al., 2018; Neerincx
et al., 2018; Zhao et al., 2018; Ma et al., 2019). To the best of
our knowledge, very few studies have attempted to clarify the
effect of these two miRNAs in LUAD. In our study, we found
that miR-2110 and miR-92b-3p were upregulated in LUAD. Thus,

these studies confirmed that miR-539-5p, miR-656-3p, and let-
7b-5p are indeed involved in the occurrence and progression of
LUAD. Furthermore, miR-92b-3p and miR-2110 may represent
new potential therapeutic targets in LUAD.

SPP1 and HGF were identified as hub mRNAs in PPI and
significantly predicted survival outcomes in LUAD. These two
mRNAs appear enriched in the focal adhesion signaling pathway,
containing the largest number of mRNAs with the smallest
significant adj. p-value. The focal adhesion signaling pathway
could involve the tumor microenvironment (TME), resulting in
tumor progression and indicative of a poor outcome in LUAD
(Yue et al., 2019; Wei et al., 2020). Accumulating evidence has
revealed that the TME could influence malignant behavior and
the progression of tumors. Previous studies found that SPP1
played a role in lung cancer escape and mediating macrophage
polarization, while inhibiting SPP1 expression might overcome
resistance to second-generation epidermal growth factor receptor
gene (EGFR)–tyrosine kinase inhibitors (TKIs) (Zhang et al.,
2017; Wang et al., 2019). HGF is a pleiotropic cytokine composed
of an α-chain and a β-chain, which mediates malignant biological
behaviors in LUAD, including growth, invasion, metastasis and
the epithelial-to-mesenchymal transition (EMT), as well as
increases resistance to EGFR–TKIs in LUAD (Tarhini et al., 2017;
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FIGURE 5 | PPI network diagram of targeted mRNAs from the hub miRNAs. PPI, protein–protein interaction; miRNA, microRNA; mRNA, messenger RNA.

Suzuki et al., 2019). Importantly, it is worth noting that SPP1
presented with the targets of miR-539-5p, correlated with a poor
survival in LUAD and appeared involved in the regulation of
focal adhesion and the extracellular matrix–receptor interaction
pathways. Thus, we found a significant miR-539-5p–SPP1
axis, which played important roles in LUAD occurrence and
progression by regulating the TME through the aforementioned
pathways in our regulatory network. Although the other eight
key mRNA played some important roles in LUAD or lung
cancer (Ding et al., 2008; Roybal et al., 2011; Licciulli et al.,
2013; Li et al., 2017; Neri et al., 2017; Tian et al., 2018;
Yao et al., 2019), these were not the significant predictors of
survival in LUAD.

Aside from the strengths of our study, we should point
out several limitations. Firstly, the small sample size in our
cohort mirrors the limitations of similar previous studies

(Patnaik et al., 2012; Xu et al., 2020). Yet, all of these miRNA
expression profiling studies offer opportunities to develop new
therapeutic targets. Although increasing numbers of miRNAs
have been identified, a meta-analysis approach and a larger cohort
are needed in future in order to minimize the drawbacks resulting
from small sample sizes and different technological platforms.
Secondly, given our findings related to the target genes from the
Co-DEmiRNAs and hub miRNAs identified primarily based on
bioinformatics analyses, further mechanistic studies from cells
as well as animal models and clinical validation studies may be
necessary in the future.

In this study, we constructed a miRNA–mRNA regulatory
network for LUAD, identifying five hub miRNAs (namely,
miR-539-5p, miR-656-3p, let-7b-5p, miR-2110, and miR-
92b-3p) and two hub mRNAs (SPP1and HGF) through our
microarray data and TCGA dataset. We also performed a
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FIGURE 6 | The network of key mRNAs. (A) The network diagram of the top ten hub miRNAs and (B) the rank and score of the top ten hub mRNAs in the PPI
network. PPI, protein–protein interaction; miRNA, microRNA; mRNA, messenger RNA; NOTCH1, neurogenic locus notch homolog protein 1; MMP2, matrix
metalloproteinase 2; IGF1, insulin-like growth factor 1; KDR, kinase-insert domain-containing receptor; SPP1, secreted phosphoprotein 1; FLT-1, vascular endothelial
growth factor receptor 1; HGF, hepatocyte growth factor; TEK, angiopoietin-1 receptor; ANGPT1,angiopoietin-1 gene; PDGFB, platelet-derived growth factor-beta.

FIGURE 7 | Survival analysis for the hub genes. (A) SPP1, secreted phosphoprotein 1 and (B) HGF, hepatocyte growth factor. TPF, transcripts per kilobase of exon
model per million mapped reads; HR, hazard ratio.

functional enrichment analysis on these final target genes
to understand the potential functional mechanisms in
LUAD. These findings provide new molecular markers
for the prediction, prognosis and therapeutic targets in
clinical settings, as well as emphasize new mechanistic
insights into LUAD.
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