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ABSTRACT
This research presents the design and synthesis of a novel series of phthalazine derivatives as Topo II
inhibitors, DNA intercalators, and cytotoxic agents. In vitro testing of the new compounds against HepG-2,
MCF-7, and HCT-116 cell lines confirmed their potent cytotoxic activity with low IC50 values. Topo II inhib-
ition and DNA intercalating activities were evaluated for the most cytotoxic members. IC50 values deter-
mination demonstrated Topo II inhibitory activities and DNA intercalating affinities of the tested
compounds at a micromolar level. Amongst, compound 9d was the most potent member. It inhibited
Topo II enzyme at IC50 value of 7.02 ± 0.54mM with DNA intercalating IC50 of 26.19±1.14mM. Compound
9d was then subjected to an in vivo antitumor examination. It inhibited tumour proliferation reducing
solid tumour volume and mass. Additionally, it restored liver enzymes, proteins, and CBC parameters near-
normal, indicating a remarkable amelioration in their functions along with histopathological examinations.
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1. Introduction

Cancer is characterised by uncontrolled cell growth and prolifer-
ation following genetic mutation. It represents one of the most
important health issues worldwide and is the second leading
cause of death1,2. Therefore, it represents one of the greatest chal-
lenges to medical researchers, especially with the continued fail-
ure of current therapies from one side and the development of
drug resistance from the other side3–5.

The current search and discovery of new drug candidates with
anticancer activities have become one of the most important
issues for medicinal chemists nowadays6–11. Among the most
important chemotherapeutic agents applied for cancer treatment
are those that interact with DNA. Anticancer agents in the previ-
ously mentioned class belong to either alkylating agents, groove
binders, or intercalating agents12. DNA intercalating agents got
great attention from scientists due to their promising antitumoral
activity13–18. They are classified into two major groups of com-
pounds that intercalate between DNA base pairs (especially G and
C, 70%) without covalent binding: 1) acridines and related com-
pounds and 2) anthracyclines and related compounds19. These
compounds produce local structural changes to the DNA mol-
ecule, including the lengthening of the DNA strand following the
unwinding of its double helix. So, DNA intercalators are mutagenic

due to their retardation or even inhibition of DNA transcription
and replication20.

Doxorubicin is one of the two first isolated and introduced
anthracyclines as antitumor agents. It works through two mecha-
nisms of action; 1) intercalates into the DNA double helix without
covalent binding, and 2) binds covalently to topoisomerase II
(involved in DNA replication and transcription), poisons the cleav-
able complex of DNA and prevent its re-ligation, and finally results
in an apoptotic action21,22.

Phthalazine moiety was recommended in the area of medicinal
chemistry to have promising antitumor activity and primarily to act
as DNA intercalator and topoisomerase II inhibitors as well16,23,24. On
the other hand, many other organic moieties like triazoles, hydrazine
amides, hydrazine thioacetamides, benzylidene hydrazones, sulphona-
mides, benzoic acid, and thioacetamides derivatives were identified
and introduced as potential antitumor agents25–29. Some reported
DNA intercalators and topoisomerase II inhibitors showing their com-
mon pharmacophoric features were depicted in Figure 1.

1.1. The rationale of molecular design

A ligand-based drug design approach30,31 was performed to
design a new wave of promising DNA intercalators and
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topoisomerase II inhibitors taking into consideration the basic
pharmacophoric features of doxorubicin. It is worth mentioning
that there are three crucial pharmacophoric features present in
doxorubicin which guided our rationale. The first one is the planar
polyaromatic system (chromophore) inserted in between the DNA
base pairs. The second one is the presence of a groove binding
side to occupy the minor groove of DNA. The third part is the cat-
ionic moiety, or a species having the ability to be protonated in
the physiological PH to interact with the negatively charged phos-
phate group of DNA sugar moiety32,33.

Molecular hybridisation of triazolo phthalazine moieties instead
of the planar aromatic system of doxorubicin with different rec-
ommended anticancer moieties (hydrazine amides, hydrazine thio-
acetamides, benzylidene hydrazones, sulphonamides, benzoic acid,
and thioacetamides derivatives) as the groove binding site with

the presence of -NH- or -NH2 group to act as a cationic site were
designed and synthesised as depicted in Figure 2.

2. Results and discussion:

2.1. Chemistry

The new triazolo phthalazine members were synthesised following
the reactions outlined in Schemes 1 and 2. 2,3-
Dihydrophthalazine-1,4-dione 2 was prepared by reaction of
phthalic anhydride 1 with hydrazine hydrate in absolute ethanol34.
Compound 2 was then chlorinated with phosphorus oxychloride
to afford 1,4-dichlorophthalazine 335, which was then heated with
hydrazine hydrate in boiling ethanol36 to furnish 1-chloro-4-hydra-
zinylphthalazine 4. A solvent-free reaction was performed to

Figure 1. Some reported DNA intercalators and topoisomerase II inhibitors showing their common pharmacophoric features.

Figure 2. Molecular hybridisation of triazolo phthalazine moieties with different recommended anticancer moieties based on the basic pharmacophoric features of
doxorubicin as DNA intercalator and topoisomerase II inhibitors.
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cyclize compound 4; thus, compound 4 was heated with butyric
anhydride to give the cyclized member 537. Reflux of compound 5
with hydrazine hydrate in boiling ethanol afforded the target

hydrazinyl triazolo derivative 6. Compound 6, however, was
allowed to react with different isocyanates and/or isothiocyanates
to afford the corresponding semicarbazides 7a,b, and/or

Scheme 1. General procedure for synthesis of target compounds 7a,b, 8a,b and 9a-d; Reagents and conditions: (i) NH2NH2.H2O / EtOH/reflux/5 h, (ii) POCl3/heating/
1 h, (iii) NH2NH2.H2O / EtOH/reflux/0.5 h, (iv) Butyric anhydride/reflux/1 h, (v) NH2NH2.H2O / EtOH/reflux/0.5 h, (vi) The appropriate Isocyanates/EtOH/reflux/3 h, (vii) The
appropriate Isothiocyanate/EtOH/reflux/3h, (viii) The appropriate Aromatic aldehydes / EtOH / gl. acetic acid / reflux/4h.

Scheme 2. General procedure for synthesis of intermediates 11a-c, Reagents and conditions: (i) chloroacetyl chloride/DMF/stirring/1.5h.
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thiosemicarbazides 8a,b, respectively. Furthermore, treating the
hydrazinyl compound 6 with appropriate substituted benzalde-
hyde derivatives with a catalytic amount of glacial acetic acid
afforded the corresponding imines (Schiff’s bases) 9a-d. IR charts
of the later compounds revealed the loss of NH2 absorption band
of compound 6 and the presence of NH absorption bands in the
range of 3180 to 3242 cm�1. In contrast, 1H NMR spectra of mem-
bers 9a-d displayed characteristic singlet signals in the range of d
8.12� 8.72 ppm representing the new benzylidene protons. The
13C NMR spectra of compounds 9a-d, however, showed a charac-
teristic downfield peak around d 141 ppm corresponding to the
new benzyledine carbon (Scheme 1).

Upon cyclisation of hydrazinyl triazolo derivative 6 with carbon
disulphide in alcoholic potassium hydroxide, the corresponding
mercaptotriazole derivative 12 was afforded.16 1H NMR spectrum
of 12 displayed a singlet D2O exchangeable signal at d 14.24 ppm
corresponding to the SH proton. The potassium salt 13 was then
obtained upon heating compound 12 with potassium hydroxide
in absolute ethanol29. The potassium salt 13 was heated with the
appropriate N-aryl-2-chloroacetamide derivatives 11a-c and/or 2-
chloroacetamide in the presence of a catalytic amount of potas-
sium iodide in DMF following the reported procedure to afford
the corresponding thioacetamide derivatives, 14a-c and 15,
respectively (Scheme 3).

2.2. Biological evaluation

2.2.1. In vitro anti-proliferative activities
Anti-proliferative activities of the target compounds were assessed
via the standard MTT method38–40 against three cancer cell lines,
namely, hepatocellular carcinoma (HepG-2), colorectal carcinoma
(HCT-116), and human breast adenocarcinoma (MCF-7).
Doxorubicin was used in this test as a positive control.

As illustrated in Table 1, the obtained results revealed that
most synthesised compounds showed remarkable anti-proliferative
activities against the tested cell lines.

In general, compounds 9d and 14a were found to be more
active than the reference drug, doxorubicin, against the three
tested cell lines. In particular, compound 9d was the most potent
counterpart with IC50 values of 5.08, 4.74, and 4.95 mM as it was
1.63, 2.03, and 1.34 times more active than doxorubicin (IC50 ¼
8.28, 9.62, and 7.67 mM) against HepG2, HCT-116, and MCF-7 cell
lines, respectively. While, compound 14a was about 1.46, 2.28,
and 1.75 times as active as doxorubicin with IC50 values of 5.65,
4.35, and 4.36 mM. Moreover, compounds 8b and 14b were found
to have satisfactory cytotoxicity against HepG2, HCT-116, and
MCF-7 cell lines with IC50 values ranging from 10.92 to 14.94 mM.
The rest of the compounds exhibited moderate anti-proliferative
activities against the three tested cell lines.

Scheme 3. General procedure for synthesis of target compounds 14a-d and 15; Reagents and conditions: (i) 1) CS2/KOH/EtOH/reflux/3 h, 2) HCl, (ii) KOH/absolute
EtOH/reflux/0.5 h, (iii) N-Aryl-2-chloroacetamide derivatives 11a-c/DMF/heating/KI/heating/3 h. (iv) Chloroacetamide/DMF/heating over water bath/KI/heating/3 h.

Table 1. Anti-proliferative activities towards HepG2, HCT-116, and MCF-7
cell lines.

Comp. No.

In vitro Cytotoxicity IC50 (mM)
a

HepG-2 HCT-116 MCF-7

7a 24.92 ± 0.8 23.8 ± 0.81 19.45 ± 0.62
7b 44.96 ± 1.1 48.58 ± 1.60 50.69 ± 1.55
8a 28.86 ± 0.67 25.04 ± 0.70 16.48 ± 0.43
8b 10.92 ± 0.34 13.79 ± 0.44 12.54 ± 0.32
9a 25.16 ± 0.70 36.29 ± 1.10 45.52 ± 1.22
9b 63.86 ± 1.02 61.71 ± 1.89 35.99 ± 0.98
9c 56.32 ± 1.73 78.49 ± 2.04 57.76 ± 1.56
9d 5.08 ± 0.17 4.74 ± 0.15 4.95 ± 0.10
14a 5.65 ± 0.25 4.35 ± 0.19 4.36 ± 0.20
14b 13.40 ± 0.40 12.64 ± 0.45 14.94 ± 0.55
14c 24.75 ± 0.88 30.99 ± 0.11 20.64 ± 0.88
15 38.63 ± 1.00 53.54 ± 1.55 26.18 ± 0.77
Doxorubicin 8.28 ± 0.32 9.62 ± 0.50 7.67 ± 0.37
aIC50 values are the mean ± SD of three separate experiments.
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2.2.2. Structure activity relationship (SAR)
The biological testing results provided us with a valuable SAR.
Regarding the cyclohexyl bearing derivatives, it was noticed that
compound 7a (incorporating N-cyclohexylsemicarbazide moiety) was
more potent than compound 8b (incorporating N-cyclohexylthiosemi-
carbazide moiety) in both cytotoxic and Topo II inhibitory effects, as
well. However, the later compounds were more active that their
counterparts 7b (bearing a phenylsemicarbazide moiety) and 8a
(bearing an ethylthiosemicarbazide moiety), respectively. For benzyli-
denehydrazine derivatives (compounds 9a-d), the effect of the substi-
tution on the aromatic moieties in the order of 4-NO2 (9b) > 4-Cl
(9a) > 4-OH (9c) > 4-F (9b). With regard to bis([1, 2, 4]triazolo)[3,4-
a:40,30-c]phthalazine-3-thiol derivatives (compounds 14a-c), the activ-
ities decreased in the order of the substitution with 4-COOH (14a) >
4-NO2 (14b) > 4-SO2NH2 (14c).

2.2.3. Dna intercalation assay (DNA/methyl green colorimet-
ric assay)
DNA/methyl green assay was carried out for the synthesised deriv-
atives using doxorubicin as a positive control following the
reported procedure described by Burre et al.41, to give extra quan-
titative data about the binding affinity of the target compounds
towards the DNA molecules. DNA-binding affinities of the target
compounds were represented as IC50 values and are summarised
in Table 2.

Compounds 8a, 9d, and 14a exhibited excellent DNA binding
affinities more than the reference drug with IC50 values of
29.63 ± 1.41, 26.19 ± 1.10, and 28.74 ± 1.71 mM, respectively. In add-
ition, compounds 7a, 7b, 8b, and 14b showed remarkable activ-
ities but slightly less than the reference drug with IC50 values of
37.14 ± 2.0, 36.57 ± 1.8, 34.65 ± 1.1, and 34.35 ± 2.80mM, respect-
ively. Moreover, some compounds as 9a, 9b, and 14c showed
moderate activities with IC50 values ranging from 43.81 ± 2.20 to
49.93 ± 2.53 mM. Finally, compounds 9c and 15 exhibited weak
affinities towards DNA with IC50 values ranging from 62.18 ± 2.20
to 71.15 ± 3.11mM, respectively.

2.2.3. Topoisomerase II inhibitory activity
Seven compounds that exhibited significant DNA binding affinities
(8a, 8b, 9a, 9c, 9d, 14a, and 14b) were further estimated to
determine their inhibitory activities towards topoisomerase II. The
activity of topoisomerase II was determined according to the

reported procedure described by Patra et al.42. Doxorubicin was
utilised as a positive control in this test. The results were reported
as IC50 values and summarised in Table 2. Compounds 8b, 9d,
and 14a was found to be the most potent derivatives with IC50
values of 8.91 ± 0.77, 7.02 ± 0.54, and 7.64 ± 0.66 mM, which were
more active than the reference drug, doxorubicin (IC50 ¼
9.65 ± 0.77 mM). The other tested compounds, 8a, 9a, 9c, and 14b,
exhibited moderate to weak activities with high IC50 values rang-
ing from 13.66 ± 1.02 to 13.66 ± 1.02 mM.

2.2.4. In vivo antitumor activity
To examine the in vivo anticancer activity of compound 9d, adult
female Swiss albino mice (30 mice) inoculated with I.P. injection
of Solid Ehrlich Carcinoma (SEC) tumour cell lines in a volume of
0.2ml physiological saline contains 1� 106 viable cells for 24 h.

These mice were randomly divided into four groups (7 mice/
group). The 1st group (normal saline-control group) was used as a
negative control, the 2nd group (the SEC-control group) was
injected with the SEC, the 3rd group (compound-treated group)
was injected with SEC then with compound 9d, and the 4th group
was injected with the SEC then with a standard anticancer drug,
doxorubicin (DOX), as described in the experimental section.
Bodyweight and survival were recorded daily until the 24th day in
both treated and control groups. At the end of the experiment,
the blood of each group was collected under light anaesthesia for
the estimation of hematological and biochemical assays. The
anaesthetised animals were then sacrificed to evaluate of the anti-
tumor activity and to conduct hematological, biochemical, and
histopathological assays, Figure 3.

2.2.4.1. Antitumor potentiality. In vivo anticancer activity of the
compound, 9d was estimated against SEC development. At first,
the tumour development caused a 194mg increase in solid
tumour weight during the experimental period. During this study,
treatment with compound 9d and doxorubicin significantly
reduced the increase in the solid tumour mass by 63.4 (71mg)
and 59.8% (78mg), compared to control as represented in Figure
3. Treatment with Compound 9d significantly inhibited tumour
inhibition ratio (TIR) % by 64.5 in tumour volume (19mm3) com-
pared to doxorubicin (DOX) treatment with TIR% of 59 (22mm3),
compared to control. This indicated that compound 9d and doxo-
rubicin had a significant antitumor effect, Figure 4.

2.2.4.2. Hematological and biochemical assays (Blood parameters
assay). At the end of the experiment, animals from different
groups were sacrificed, and blood samples were collected for
hematological parameters, including Hb, RBC’s, and WBC’s levels,
and serum for determination of liver enzymes ALT, AST levels,
and proteins.

Liver enzymes ALT and AST were significantly increased to
63.4, 64.67 (U/L), respectively, following tumour inoculation as
shown in Table 3, compared with normal mice at 45.14 and 53.67
(U/L) because of hepatocellular damage. While liver protein and
albumin were decreased to 6.13 and 2.97 (g/dL). Treatment with
compound 9d substantially reduced liver enzymes to 42.9, 55.6 U/
L, respectively, and increased liver protein and albumin to 8.04
and 6.25 (g/dL), indicating a remarkable amelioration in the hepa-
tocellular functions.

In terms of hematological parameters in SEC-bearing mice, all
CBC parameters were changed in the SEC control, with Hb con-
tent and RBCs significantly decreased to 5.36 (g/dL) and 3.33
(106/mL), respectively. When compared to normal control levels,

Table 2. DNA intercalating affinity and IC50 values of the tested compounds
against DNA and Topo II, respectively.

Comp. No.
DNA/methyl green

(IC50) (mM)
a,b

Topoisomerase II
(IC50) (mM)

a,c

7a 37.14 ± 2.0 NTd

7b 36.57 ± 1.82 NTd

8a 29.63 ± 1.41 22.28 ± 2.00
8b 34.65 ± 1.10 8.91 ± 0.77
9a 43.81 ± 2.22 27.66 ± 2-51
9b 49.93 ± 2.53 NTd

9c 62.18 ± 2 .20 21.39 ± 1.90
9d 26.19 ± 1.14 7.02 ± 0.54
14a 28.74 ± 1.71 7.64 ± 0.66
14b 34.35 ± 2.80 13.66 ± 1.02
14c 46.34 ± 2.30 NTd

15 71.15 ± 3.11 NTd

Doxorubicin 31.27 ± 1.8 9.65 ± 0.77
aThree independent experiments were performed for each concentration.
b50% Inhibition concentration values of DNA/methyl green assay.
c50% Inhibition of Topo II.
dNot tested.
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the WBC count was significantly increased to 6.21 (103/mL).
Tumour propagation is routinely associated with decreased
haemoglobin, RBC, and WBC counts43,44. After treatment with
compound 9d, CBC levels were nearly restored to normal, where
it elevated the Hb (8.2 g/dL), RBC’s (5.37 106/mL) and reduced the
WBC’s (3.72 103/ml) levels.

Interestingly our results following previous studies45,46, illus-
trated the anticancer activity by improving hematological and bio-
chemical parameters after treatment with the tested compound.
Taken together, treatment of SEC mice with compound 9d
improved hematological and biochemical parameters, as well as
tumour weight and volume.

2.2.4.3. Histopathological examinations. Histopathological exami-
nations of liver tissues of the SEC-bearing mice in different treat-
ments were illustrated in Figure 5. According to compound 9d
ability to improve liver enzymes and proteins, its treatment was
able to keep liver structure close to normal.

2.3 In silico studies

2.3.1. Docking studies
Molecular docking studies were performed to shed light on the
binding modes of the newly synthesised compounds inside the

Figure 4. Left panel: Bar chart representation of the effect of compound 9d treatment on the proliferation of solid tumour mass in the SEC-bearing mice. Right panel:
Morphological representation for the tumour mass volume of A: SEC-group, B: SECþ 9d, and C: SECþDOX. Values are expressed as Mean± SEM values of mice in
each group (n¼ 7). Signs of � and # are values with significant differences in tumour weight and tumour volume, respectively compared to SEC control using an
unpaired t-test (P� 0.05) using GraphPad prism.

Table 3. Biochemical and hematological parameters in the tested groups.

Parameter/
Treatment

Biochemical parameters Hematological parameters

ALT
(U/L)

AST
(U/L)

Total Protein
(g/dL)

Albumin
(g/dL)

Hb
(g/dL)

RBCs count
(�106/mL)

WBCs count
(�103/mL)

Normal control 45.14 ± 2.69 53 ± 2.7 9.88 ± 0.35 5.95 ± 0.44 9.09 ± 0.61 6.08 ± 0.77 4.28 ± 0.44
SEC control 63.4 ± 4.53 64.67 ± 3.6 6.13 ± 0.24 2.97 ± 0.17 5.36 ± 0.41 3.33 ± 0.57 6.21 ± 0.57
SEC þ 9d (5mg/kg BW) 42.9#±1.01 55.6#±3.1 8.04#±0.41 6.25#±0.53 8.2#±0.31 5.37 ± 0.37 3.72#±0.46
SECþDOX (5mg/kg BW) 38.67#±1.6 48.4#±3.3 6.73 ± 0.26 6.01#±0.22 7.82 ± 0.27 5.26 ± 0.38 4.11 ± 0.57

Values are expressed as Mean ± SEM (n¼ 7).
#Significant difference between treated groups and SEC control using unpaired t-test (P� 0.05) using the GraphPad prism7.

Figure 3. Methodology and Experimental design of the in vivo study.
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DNA binding site of Topo II (PDB ID: 3qx3). Docking investigation
was carried out using Discovery Studio 2.5 software. An X-ray crys-
tallographic structure of Topo II with its co-crystallised ligand,

etoposide, was downloaded from the Protein Data Bank (PDB). Re-
docking of the co-crystalized ligand was initially performed aiming
to validate the used docking protocol. The simulation of the

Figure 5. Histopathological examinations of liver tissues of SEC-bearing mice in different treatments (A) Normal control group that shows the normal structure of cen-
tral vein surrounded with hepatocytes. (B) SEC control group shows pyknosis (arrows) & karyolysis (arrowhead), hydropic degeneration of hepatocytes, and loss of cell
boundaries. (C) SEC group treated with 9d (5mg/Kg BW) that shows hepatic cells are near normal and show tissue improvement as compared with a little hydropic
degeneration. (D) SEC group treated with DOX shows tissue enhancement like normal group, but still, some hydropic degeneration, pyknosis (arrows) and karyolysis
(arrowhead) were shown. (H&E stain, magnification �200).

Figure 6. Superimposition of the co-crystallised ligand (light green) and the docking pose (light yellow) of the same molecule.

Figure 7. Binding of etoposide with DNA-Topo II, the hydrogen bonds are represented in red dashed lines.
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re-docked ligand successfully regenerated the same binding mode
of the co-crystalized one inside the DNA binding site of Topo II
with RMSD of 0.81 Å, which indicates the validity of the docking
process, Figure 6.

The predicted binding pattern of the co-crystallised ligand, eto-
poside, revealed an affinity value of �30.13 kcal/mol with the for-
mation of six H-bonds. The planar aromatic system occupied the
hydrophobic pocket formed by Glu477, Gly478, Asp479, Leu502,

Figure 8. Binding of doxorubicin with DNA-Topo II, the hydrogen bonds are represented in red dashed lines.

Figure 9. 3D and 2D illustration of compound 9d in the Topo II active site.

306 M. M. KHALIFA ET AL.



Arg503, Gln778, Met782, and Pro819. It was also stacked between
different DNA nucleotides, namely, Cytosine (DC-8 and DC-14),
Guanine (DG-7, DG-10, and DG-13), Adenine (DA-12), and Thymine
(DT-9). The sugar moiety of etoposide was directed towards the
DNA minor groove and stabilised by the formation of two H-bond
interactions with Gln778 and DG-13. Similarly, its phenolic OH
group formed two H-bond interactions with Asp479. Two H-bonds
were also formed between the etoposide oxygen atoms and the
DNA nucleotides DG-13 and DA-12 Figure 7.

The proposed binding mode of doxorubicin, with an affinity value
of �33.50 kcal/mol, revealed that the doxorubicin planar aromatic
chromophore formed aromatic stacking interactions with the differ-
ent key residues Glu477, Gly478, Asp479, Leu502, Arg503, Gln778,
Met782 in addition to the DNA nucleotides DT-9, DC-8, DC-11, DG-
13, and DA-12. The sugar moiety of doxorubicin was oriented into
the minor groove of DNA and stabilised by two H-bonds with
Asp479. The rest of the compound was involved in several H-bond
interactions with Arg503, DG-13, and DA-12, Figure 8.

Figure 10. 3D and 2D illustration of compound 14a in the Topo II active site.

Table 4. Predicted ADMET profile for the synthesised compounds

Comp. BBB levela Solubility levelb Absorption levelc CYP2D6 predictiond PPB predictione

7a 4 2 0 false true
7b 3 2 0 false true
8a 2 2 0 false true
8b 1 1 0 false true
9a 1 1 0 true true
9b 1 1 0 true true
9c 2 2 0 false false
9d 4 1 1 false true
14a 4 2 2 false false
14b 4 1 2 false false
14c 4 1 2 false true
15 3 2 0 false false
Doxorubicin 4 2 3 false false
aBBB level, blood brain barrier level, 0¼ very high, 1¼ high, 2¼medium, 3¼ low, 4¼ very low.
bSolubility level, 1¼ very low, 2¼ low, 3¼ good, 4¼ optimal.
cAbsorption level, 0¼ good, 1¼moderate, 2¼ poor, 3¼ very poor.
dCYP2D6, cytochrome P2D6, TRUE¼ inhibitor, FALSE¼ non inhibitor.
ePBB, plasma protein binding, FALSE means less than 90%, TRUE means more than 90%.
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A general investigation of docking results revealed that the
designed compounds displayed a binding pattern comparable to
that of the native ligand with predicted binding energy scores
ranging from �18.49 to �29.91 kcal/mol.

The predicted binding mode of compound 9d as illustrated in
Figure 9. Its triazolo phthalazine planner moiety was inserted
between the DNA nucleotides with the formation of many hydro-
phobic interactions with DT-9, DC-8, DG-13, and DA-12 as well as
Gly776, Gln778, and Ala779 amino acids. In addition, the 4-nitro-
phenyl part was oriented in the minor groove of DNA, forming
hydrophobic interactions with DA-12 and Arg503. The nitro group
of 9d, however, interacted with Arg503 via an H-bond interaction.

Compound 14a showed an affinity value of �27.36 kcal/mol.
The planar aromatic system occupied the hydrophobic pocket
formed by DT-9, DC-8, DG-13, and DA-12 nucleotides in addition
to Arg503, Gly504, Gly776, Gln778, and Ala779 residues forming
several pi-pi interactions. The benzoic acid moiety was directed
towards the DNA minor groove with the formation of H-bond
interaction with Arg503 residue Figure 10.

2.3.2. In silico ADMET analysis
ADMET studies were carried out for the synthesised compounds
using doxorubicin as a reference compound. The predicted
ADMET parameters were listed in Table 4.

The results revealed that compounds 7a, 9d, 14a, 14 b, and 14c
had very low Blood Brain Barrier penetration power. Accordingly,
such compounds were expected to be safe to CNS. Aqueous solu-
bility of the synthesised compounds ranged from low to very low.
Compounds 7a, 7 b, 8a, 8 b, 9a, 9 b, 9c, and 15 showed good
absorption level. Except compounds 9a and 9b, all members were
predicted as non-inhibitors of CYP2D6. Except compounds 9c, 14a,
14 b, and 15, all compounds were expected to bind plasma pro-
tein more than 90% (Figure 11).

2.3.3. Toxicity studies
Toxicity prediction was carried out based on the validated and
constructed models in Discovery studio software47,48. As shown in
Table 5, most compounds showed in silico low adverse effects
and toxicity against the tested models. Regarding developmental
toxicity potential (DTP), all the tested compounds were predicted
to be non-toxic. For Carcinogenic Potency TD50 (Rat), all com-
pounds showed higher values (from 0.873 to 34.570mg/kg body
weight/day) than that of doxorubicin (0.861mg/kg body weight/
day) except compound 7a (0.651mg/kg body weight/day). For rat
maximum tolerated dose model, compounds 7b, 8a, 8 b, 9a, 9 b,
and 9c showed higher levels than doxorubicin. The tested com-
pounds showed high oral LD50 values ranging from 0. 0.229to
12.326mg/kg body weight/day which were higher than that of

Figure 11. The expected ADMET study of the target compounds.

Table 5. Toxicity properties of the synthesised compounds

Comp. DTP
Carcinogenic Potency TD50

(Rat)a
Rat Maximum Tolerated Dose

(Feed)b Rat Oral LD50
b Ocular Irritancy Skin Irritancy

7a Non-Toxic 0.651 0.222 0.861 Mild Non-Irritant
7b Non-Toxic 19.886 0.369 2.513 Mild Non-Irritant
8a Non-Toxic 34.570 0.366 0.742 Mild Non-Irritant
8b Non-Toxic 0.873 0.260 0.297 Mild Non-Irritant
9a Non-Toxic 2.505 0.290 0.447 Mild Irritant
9b Non-Toxic 2.668 0.311 0.229 Mild Non-Irritant
9c Non-Toxic 20.483 0.779 0.501 Mild Non-Irritant
9d Non-Toxic 1.991 0.177 0.573 Mild Irritant
14a Non-Toxic 25.171 0.429 2.371 Mild Non-Irritant
14b Non-Toxic 5.431 0.090 1.863 Mild Non-Irritant
14c Non-Toxic 22.020 0.095 12.326 Mild Non-Irritant
15 Non-Toxic 23.275 0.118 0.542 Mild Non-Irritant
Doxorubicin Toxic 0.861 0.277 0.227 Mild Non-Irritant
aUnit: mg/kg body weight/day.
bUnit: g/kg body weight.
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doxorubicin (0.227mg/kg body weight/day) Moreover, except
compounds 9a and 9d, all compounds were predicted to be mild
and non-irritant against ocular irritancy and skin irritancy models,
respectively.

3. Conclusion

A new series of phthalazine derivatives was designed hoping to
discover novel Topo II inhibitor and DNA intercalator agents as
well. Twelve compounds were synthesised and tested in vitro for
their anti-proliferative activities against three human cancer cell
lines, HepG-2, MCF-7, and HCT-116. The tested members exhibited
a promising cytotoxic effect with IC50 values ranging from
4.35 ± 0.19 to 78.49 ± 2.04mM. All compounds were further esti-
mated for their in vitro DNA intercalating effects. Amongst, seven
compounds were further examined for their in vitro inhibitory
activity against Topo II enzyme. Three compounds, 8b, 9d, and
14a, out of the seven exhibited potent Topo II inhibitory activities
with IC50 values of 8.91 ± 0.77, 7.02 ± 0.54, and 7.64 ± 0.66 mM,
respectively. Finally, in vivo antitumor studies were carried out for
compound 9d. In vivo study exhibited that treatment with com-
pound 9d substantially inhibited tumour proliferation reducing
solid tumour volume and mass. Additionally, it restored liver
enzymes, proteins, and CBC parameters near-normal, indicating a
remarkable amelioration in their functions along with histopatho-
logical examinations. Hence, compound 9d was investigated as a
novel anti-cancer agent through Topo II inhibition and DNA-bind-
ing affinity. To conclude, compounds presented in the current
study were proved to be potent Topo II inhibitors with DNA inter-
calating efficacy that can be further adopted for hit optimisation
and/or lead discovery.

4. Experimental

4.1. Chemistry

Starting materials and reagents were purchased from Sigma-
Aldrich and used without purification. Melting points measure-
ment was carried out by a Gallen lamp melting point apparatus
and are uncorrected. Reactions progress was monitored by TLC
(Merck, Germany), the spots were detected by exposure to UV
lamp at k 254 nm. IR spectra were recorded by pye Unicam SP
1000 IR spectrophotometer using KBr discs and expressed in
wavenumber (cm�1). 1H and 13C NMR spectra were recorded with
Bruker Advance 400 spectrophotometer operating at 400MHz and
100MHz, respectively and the chemical shifts were given in d as
parts per million (ppm) downfield from tetramethylsilane (TMS) as
internal standard. The mass spectra were recorded on Varian MAT
311-A (70 e.v.).

The previously reported compounds 2,3-dihydrophthalazine-
1,4-dione 234, 1,4-dichlorophthalazine 335 and 1-chloro-4-hydrazi-
neylphthalazine 435, 6-chloro-3-propyl-[1, 2, 4]triazolo[3,4-a]phtha-
lazine 549, and N-aryl-2-chloroacetamide 11a-c50 were synthesised
following the described procedures.

4.1.1. 6-Hydrazineyl-3-propyl-[1, 2, 4]triazolo[3,4-a]phthalazine 6
To a boiling solution of hydrazine hydrate 70% (3.73ml,
0.074mol) in ethanol (50ml), 6-chloro-3-propyl-[1, 2, 4]triazolo[3,4-
a]phthalazine 5 (2.46 g, 0.01mol) was added .The reaction mixture
was refluxed for 0.5 h then cooled. The obtained precipitate was
filtered, washed with petroleum ether (3� 20ml), dried, and
recrystallized from ethanol to obtain compound 6.

White crystals (yield 83%); m.p. 259–261 �C; IR (KBr) � cm-1:
3329, 3143, 3136; 1H NMR (DMSO-d6) d ppm: 0.98 (t, J¼ 7.2 Hz,
3H, CH3), 1.36 (m, 2H, CH2), 3.01 (t, J¼ 7.2 Hz, 2H, CH2), 3.75 (br s,
2H, exchangeable with D2O, NH2), 7.77 (dd, J¼ 8.4, 7.2 Hz, 1H, Ar-
H,), 7.89 (dd, J¼ 7.2, 8.0 Hz, 1H, Ar-H), 8.24 (d, J¼ 8.4 Hz, 1H, Ar-H),
8.36 (d, J¼ 8.0 Hz, 1H, Ar-H), 8.95 (s, 1H, exchangeable with D2O,
NH); Mass (m/z): 242.51 (Mþ, 16%), 143.05 (100%).

4.1.2. General procedure for the synthesis of target com-
pounds 7a,b
A mixture of the hydrazinyl compound 6 (0.242 g, 0.001mol) and
the appropriate isocyanate namely, cyclohexyl isocyanate and
phenyl isocyanate (0.001mol) were refluxed in absolute ethanol
(25ml) for 3 h. The solution was cooled. Then, the obtained solid
was filtered and recrystallized from ethanol to produce com-
pounds 7a,b, respectively.

4.1.2.1. N-Cyclohexyl-2–(3-propyl-[1, 2, 4]triazolo[3,4-a]phthalazin-
6-yl)hydrazine-1-carboxamide 7a. White crystals (yield 89%); m.p.
269–271 �C; IR (KBr) � cm�1: 3290, 3271, 3147, 1674; 1H NMR
(DMSO-d6) d ppm: 0.95 (t, 3H, CH3), 1.06 (m, 2H, CH2), 1.14 (m, 2H,
CH2), 1.19 (m, 3H, CH3), 1.53 (m, 2H, CH2), 1.65 (m, 2H, CH2), 1.75
(m, 2H, CH2), 2.94 (t, J¼ 7.6 Hz, 2H, -CH2), 3.44 (m, 1H, CH), 6.48 (s,
1H, exchangeable with D2O, NH), 7.68 (s, 1H, exchangeable with
D2O, -NH), 7.84 (dd, J¼ 8.0, 7.6 Hz, 1H, Ar-H), 7.91 (dd, J¼ 7.6,
7.6 Hz, 1H, Ar-H,), 8.35 (d, J¼ 8.0 Hz, 1H, Ar-H), 8.41 (d, J¼ 7.6 Hz,
1H, Ar-H), 9.41 (s, 1H, exchangeable with D2O, NH); MS (m/z):
367.19 (Mþ, 14.7%), 332 (100%, base peak).

4.1.2.2. N-Phenyl-2–(3-propyl-[1, 2, 4]triazolo[3,4-a]phthalazin-6-
yl)hydrazine-1-carboxamide 7 b. White crystals (yield 82%); mp:
258–260 �C; IR (KBr) � cm�1: 3271, 3217, 3147, 1662; 1H NMR
(DMSO-d6) d ppm: 0.97 (t, J¼ 7.6 Hz, 3H, CH3), 1.72 (m, 2H, CH2),
2.95 (t, J¼ 7.6 Hz, 2H, CH2), 6.95 (t, 1H, Ar-H), 7.25 (t, 2H, Ar-H), 7.4
(d, 2H, Ar-H), 7.88 (dd, J¼ 7.2, 8.0 Hz, 1H, Ar-H), 7.99 (dd, J¼ 8.0,
7.2 Hz, 1H, Ar-H), 8.40 (d, J¼ 8.0 Hz, 1H, Ar-H), 8.43 (d, J¼ 8.0 Hz,
1H, Ar-H), 8.18 (s, 1H, exchangeable with D2O, NH), 8.76 (s, 1H,
exchangeable with D2O, NH), 9.64 (s, 1H, exchangeable with D2O,
NH); 13C NMR (DMSO-d6) d ppm: 11.40, 13.61, 17.82, 117.82,
123.06, 124.17, 124.99, 127.20, 129.30 (2 C), 129.33, 130.03, 130.64,
133.60, 135.16, 141.93, 145.59, 148.75, 151.17.

4.1.3. General procedure for the synthesis of target com-
pounds 8a,b
A mixture of compound 6 (0.242 g, 0.001mol) and appropriate iso-
thiocyanate namely, ethyl isothiocyanate, and cyclohexyl isothio-
cyanate (0.001mol) in absolute ethanol (20ml) were heated under
reflux for 3 h. After cooling, the precipitate was collected, dried,
and recrystallized from ethanol to afford compounds 8a,b,
respectively.

4.1.3.1. N-Ethyl-2–(3-propyl-[1, 2, 4]triazolo[3,4-a]phthalazin-6-
yl)hydrazine-1-carbothioamide 8a. White crystals (yield 69%); mp:
242–244 �C; IR (KBr) � cm�1: 3365, 3273, 3228; 1H NMR (DMSO-d6)
d ppm: 0.95 (t, J¼ 6.4 Hz, 3H, CH3), 1.02 (t, J¼ 6.0 Hz, 3H, CH3),
1.67 (t, J¼ 7.6 Hz, 2H, CH2), 2.92 (q, J¼ 7.6 Hz, 2H, -CH2), 3.48 (q,
J¼ 6.0 Hz, 2H, CH2), 7.80 (dd, J¼ 7.6, 7.2 Hz, 1H, Ar-H), 7.91 (dd,
J¼ 7.2, 7.2 Hz, 1H, Ar-H), 8.25 (d, J¼ 7.6 Hz, 1H, Ar-H), 8.31 (s, 1H,
exchangeable with D2O, NH), 8.34 (d, J¼ 7.2 Hz, 1H, Ar-H), 9.27 (s,
1H, exchangeable with D2O, NH), 9.68 (s, 1H, exchangeable with
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D2O, NH);
13C NMR (DMSO-d6) d ppm: 11.37, 14.94, 17.78, 19.56,

38.86, 117.66, 122.72, 123.62, 124.85, 130.45, 133.52, 142.02,
150.97, 151.44, 182.20.

4.1.3.2. N-Cyclohexyl-2–(3-propyl-[1, 2, 4]triazolo[3,4-a]phthalazin-
6-yl)hydrazine-1-carbothioamide 8 b. White crystals (yield 80%);
mp: 221–223 �C; IR (KBr) � cm�1: 3367, 3242, 2924; 1H NMR
(DMSO-d6) d ppm: 0.94 (m, 1H, CH), 0.97 (t, 3H, CH3), 1.23 (m, 4H,
2CH2), 1.49 (m, 1H, CH), 1.62 (m, 2H, CH2), 1.71 (m, 2H, -CH2), 1.79
(m, 2H, CH2), 2.93 (t, J¼ 7.6 Hz, 2H, CH2), 4.23 (m, 1H, CH), 7.69 (s,
1H, exchangeable with D2O, NH), 7.82 (dd, J¼ 7.7, 7.5 Hz, 1H, Ar-
H), 8.02 (dd, J¼ 7.8, 7.7 Hz, 1H, Ar-H), 8.14 (d, J¼ 7.5 Hz, 1H, Ar-H),
8.25 (d, J¼ 7.8 Hz, 1H, Ar-H), 9.22 (s, 1H, exchangeable with D2O,
NH), 9.63 (s, 1H, exchangeable with D2O, NH); MS (m/z): 383.21
(Mþ, 14.7%), 301.33 (100%, base peak).

4.1.4. General procedure for the synthesis of target compounds
9a-d
Equimolar amounts of compound 6 (0.242 g, 0.001mol) and the
appropriate aldehyde namely 4-chlorobenzaldehyde, 4-flouroben-
zaldehyde, 4-hydroxybenzaldehyde, 4-nitrobenzaldehyde,
(0.001mol) were refluxed in absolute ethanol (25ml) with a cata-
lytic amount of glacial acetic acid for 4 h. The reaction was fol-
lowed up by TLC. After the completion of the reaction, the
mixture was cooled. The formed precipitate was filtered, dried,
and recrystallized from ethanol to afford compounds 9a-d,
respectively.

4.1.4.1. 6-[2–(4-Chlorobenzylidene)hydrazineyl]-3-propyl-[1, 2, 4]tri-
azolo[3,4-a]phthalazine 9a. White crystals (yield 79%); mp:
251–253 �C; IR (KBr) � cm�1: 3242, 3072; 1H NMR (DMSO-d6) d
ppm: 0.96 (t, J¼ 7.0 Hz, 3H, CH3), 1.45 (m, 2H, CH2), 3.09 (t,
J¼ 7.6 Hz, 2H, CH2), 7.56 (2d, J¼ 8.4 Hz, 2H, Ar-H), 7.81 (2d,
J¼ 8.8 Hz, 2H, Ar-H), 7.97 (dd, J¼ 8.0, 7.2 Hz, 1H, Ar-H), 8.02 (dd,
J¼ 8.0, 8.8 Hz, 1H, Ar-H), 8.51 (d, J¼ 7.2 Hz, 1H, Ar-H), 8.54 (s, 1H,
CH), 8.60 (d, J¼ 8.8 Hz, 1H, Ar-H), 11.56 (s, 1H, exchangeable with
D2O, NH);

13C NMR (DMSO-d6) d ppm: 11.40, 17.83, 21.61, 117.85,
123.08, 124.16, 124.96, 127.20, 128.75, 129.91, 130.68, 132.42,
133.61, 139.82, 141.94, 145.80, 148.76, 151.19, 161.68.

4.1.4.2. 6-[2–(4-Fluorobenzylidene)hydrazineyl]-3-propyl-[1, 2, 4]tri-
azolo[3,4-a]phthalazine 9 b. Yellowish white crystals (yield 71%);
mp: 267–269 �C; IR (KBr) � cm�1: 3180, 3064, 3031; 1H NMR
(DMSO-d6) d ppm: 0.99 (t, 3H, CH3), 1.59 (m, 2H, CH2), 3.10 (t,
J¼ 7.6 Hz, 2H, CH2), 7.32 (2d, J¼ 8.8 Hz, 2H, Ar-H),7.83 (dd, J¼ 7.2,
7.6 Hz, 1H, Ar-H), 7.93 (2d, 2H, J¼ 8.8 Hz, Ar-H), 8.01 (dd, J¼ 7.6,
7.6 Hz, 1H, Ar-H), 8.52 (d, J¼ 7.2 Hz, 1H, Ar-H), 8.54 (d, J¼ 7.6 Hz,
1H, Ar-H), 8.72 (s, 1H, CH), 11.41 (s, 1H, exchangeable with
D2O, NH).

4.1.4.3. 4-[(2–(3-Propyl-[1, 2, 4]triazolo[3,4-a]phthalazin-6-yl)hy-
drazineylidene)methyl]-phenol 9c. Reddish white crystals (yield
81%); mp: 249–251 �C; IR (KBr) � cm�1: 3421, 3213, 3066; 1H NMR
(DMSO-d6) d ppm: 0.96 (t, 3H, CH3), 1.59 (m, 2H, CH2), 3.04 (t,
J¼ 7.6 Hz, 2H, CH2), 6.86 (2d, J¼ 8.0 Hz, 2H, Ar-H), 7.61 (2d,
J¼ 8.0 Hz, 2H, Ar-H), 7.86 (dd, J¼ 7.2, 7.6 Hz, 1H, Ar-H), 7.99 (dd,
J¼ 7.2, 7.6 Hz, 1H, Ar-H), 8.39 (s, 1H, CH), 8.44 (d, J¼ 7.6 Hz, 1H, Ar-
H), 8.48 (d, J¼ 7.6 Hz, 1H, Ar-H), 9.90 (s, 1H, exchangeable with
D2O, OH), 11.03 (s, 1H, exchangeable with D2O, NH);

13C NMR
(DMSO-d6) d ppm: 11.43, 17.84, 21.52, 117.90, 123.13, 124.24,

125.04, 127.23 (2 C), 129.96 (2 C), 130.73, 132.46, 133.68, 139.87,
141.98, 145.83, 148.82, 151.22.

4.1.4.4. 6-[2–(4-Nitrobenzylidene)hydrazineyl]-3-propyl-[1, 2, 4]tria-
zolo[3,4-a]phthalazine 9d. Yellow crystals (yield 83%); mp:
251–253 �C; IR (KBr) � cm�1: 3217, 3078, 3047, 2931; 1H NMR
(DMSO-d6) d ppm: 0.98 (t, 3H, CH3), 1.59 (m, 2H, CH2), 2.62 (t,
J¼ 6.8 Hz, 2H, CH2), 7.46 (dd, J¼ 8.0, 7.6 Hz, 1H, Ar-H), 7.56 (2d,
2H, J¼ 8.8 Hz, Ar-H), 7.58 (dd, J¼ 8.0, 8.4 Hz, 1H, Ar-H), 7.87 (2d,
J¼ 8.8 Hz, 2H, Ar-H), 8.03 (d, J¼ 7.6 Hz, 1H, Ar-H), 8.08 (d,
J¼ 8.4 Hz, 1H, Ar-H), 8.12 (s, 1H, CH), 11.90 (s, 1H, exchangeable
with D2O, NH);

13C NMR (DMSO-d6) d ppm: 11.40, 17.53, 21.55,
117.82, 123.06, 124.17, 124.99, 127.20 (2 C), 129.30 (2 C), 130.03,
130.64, 133.60, 135.16, 141.93, 145.59, 148.75, 151.17.

4.1.5. 6-Propylbis([1, 2, 4]triazolo)[3,4-a:4’,3’-c]phthalazine-3-
thiol 12
A mixture of compound 6 (2.42 g, 0.01mol), carbon disulphide
(0.71ml, 0.01mol) and potassium hydroxide (0.56 g, 0.01mol) was
refluxed in absolute ethanol (20ml) for 3 h. The mixture was then
cooled to room temperature and poured onto 1N HCl (l20ml).
The yellow precipitated product was filtered, washed with distilled
water, dried, and crystallised from ethanol to give compound 12.

Yellowish white crystal (yield 72%); mp > 300 �C; IR (KBr) �

cm�1: 3067, 2919, 2563, 1599; 1H NMR (DMSO-d6) d ppm: 0.96 (t,
3H, CH3), 1.60 (m, 2H, CH2), 3.40 (t, J¼ 6.8 Hz, 2H, CH2), 7.38 (dd,
J¼ 6.4, 7.6 Hz, 1H, Ar-H), 7.43 (dd, J¼ 7.6, 6.4 Hz, 1H, Ar-H), 7.77 (d,
J¼ 7.6 Hz, 1H, Ar-H), 7.94 (d, J¼ 7.6 Hz, 1H, Ar-H), 14.24 (s, 1H,
exchangeable with D2O, SH); MS (m/z): 284.11 (Mþ, 16.90%),
173.33 (100%, base peak).

4.1.6. Potassium 6-propylbis([1, 2, 4]triazolo)[3,4-a:4’,3’-c]phthala-
zine-3-thiolate 13
A mixture of 20 (2.84 g, 0.01mol) and potassium hydroxide (0.56 g,
0.01mol) in absolute ethanol (20ml) was heated with continuous
stirring for 0.5 h. After cooling, a precipitate was produced. The
precipitate was collected and washed with diethyl ether to afford
the corresponding potassium salt 13.

4.1.7. General procedure for the synthesis of target compounds
14a-c and 15
A mixture of the potassium salt 13 (0.322 g, 0.001mol) and the
appropriate chloroacetanilides namely, 4–(2-chloroacetamido)ben-
zoic acid 11a, 2-chloro-N-(4-nitrophenyl)acetamide 11b, 2-chloro-
N-(4-sulfamoylphenyl) acetamide 11c, or 2-chloroacetamide
(0.001mol) in dry DMF (20ml) with a catalytic amount of potas-
sium iodide was heated over a water bath for 3 h. The reaction
mixture was then cooled, poured into ice water (50ml) and stirred
well for 1 h. The separated solid was filtered, washed with water,
dried, and crystallised from ethanol to afford the corresponding
derivatives 14a-c and 15, respectively.

4.1.7.1. 4-[2-((6-Propylbis([1, 2, 4]triazolo)[3,4-a:4’,3’-c]phthalazin-
3-yl)thio)acetamido]benzoic acid 14a. White (yield 81%); mp:
244–246 �C; IR (KBr) � cm�1: 3425, 3248, 3178, 1685, 1673; 1H
NMR (DMSO-d6) d ppm: 0.99 (t, 3H, CH3), 1.67 (m, 2H, CH2), 3.47 (t,
J¼ 6.8 Hz, 2H, CH2), 4.51 (s, 2H, SCH2), 7.79 (2d, J¼ 6.0 Hz, 2H, Ar-
H), 8.03 (m, 4H, Ar-H), 8.56 (2d, J¼ 6.0 Hz, 2H, Ar-H), 10.64 (s, 1H,
exchangeable with D2O, NH).
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4.1.7.2. N-(4-Nitrophenyl)-2-[(6-propylbis([1, 2, 4]triazolo)[3,4-
a:4’,3’-c]phthalazin-3-yl)thio]acetamide 14 b. Yellowish white crys-
tals (yield 74%); mp: 277–279 �C; IR (KBr) � cm�1: 3278, 3082,
1701; 1H NMR (DMSO-d6) d ppm: 0.97 (t, 3H, CH3), 1.55 (m, 2H,
CH2), 3.65 (t, J¼ 6.8 Hz, 2H, CH2), 4.38 (s, 1H, SCH2), 7.78 (dd,
J¼ 8.4 Hz, 2H), 7.93 (m, 2H, Ar-H), 8.24 (dd, J¼ 8.4, 2H, Ar-H), 8.45
(m, 2H, Ar-H), 10.95 (s, 1H, exchangeable with D2O, -NH);

13C NMR
(DMSO-d6) d ppm: 11.46, 17.84, 23.20, 40.76, 119.20 (2 C), 119.91,
120.39, 123.72, 123.66, 127.22 (2 C), 131.98, 132.29, 139.14, 141.91,
143.67, 145.52, 147.07, 149.78, 166.40.

4.1.7.3. 2-[(6-Propylbis([1, 2, 4]triazolo)[3,4-a:4’,3’-c]phthalazin-3-
yl)thio]-N-(4-sulfamoyl-phenyl)acetamide 14c. Yellowish white
crystals (yield 76%); mp: 245–247 �C; IR (KBr) � cm�1: 3297, 3243,
3194, 1676; 1H NMR (DMSO-d6) d ppm: 0.97 (t, 3H, CH3), 1.57 (m,
2H, CH2), 3.67 (t, J¼ 6.0 Hz, 2H, CH2), 4.40 (s, 1H, SCH2), 7.39 (s, 2H,
exchangeable with D2O, NH2), 7.73 (dd, J¼ 8.0 Hz, 2H, Ar-H), 7.84
(dd, J¼ 8.0, 2H, Ar-H), 7.91 (m, 2H, Ar-H), 8.39 (m, 2H, Ar-H), 10.74
(s, 1H, exchangeable with D2O, NH); MS (m/z): 496 (Mþ, 12.91%),
320 (100% base peak).

4.1.7.4. 2-[(6-Propylbis([1, 2, 4]triazolo)[3,4-a:4’,3’-c]phthalazin-3-
yl)thio]acetamide 15. Yellowish white crystals (yield 73%); mp:
238–240 �C; IR (KBr) � cm�1: 3194, 3084, 1655; 1H NMR (DMSO-d6)
d ppm: 0.95 (t, 3H, CH3), 1.60 (m, 2H, CH2), 3.68 (t, J¼ 7.0 Hz, 2H,
CH2), 4.18 (s, 2H, SCH2), 7.41 (s, 1H, exchangeable with D2O, H-N-
H), 7.81 (s, 1H, exchangeable with D2O, H-N-H), 7.94 (m, 2H, Ar-H),
8.45 (d, 2H, Ar-H).

4.2. Biological evaluation

4.2.1. In vitro anti-proliferative activity
Anti-proliferative activity of the synthesised compounds was esti-
mated using the MTT assay protocol8,38–40 as shown in
Supplementary data.

4.2.2. Dna intercalation assay (DNA/methyl green colorimet-
ric assay)
The DNA/methyl green assay was estimated in vitro for all the tar-
get derivatives using doxorubicin as a reference drug, adopting
the protocol described by Burres et al.41 as shown in the
Supplementary data.

4.2.3. Measurement of topoisomerase II activity
Compounds (8a, 8b, 9a, 9c, 9d, 12a, and 12b) that showed the
better results in anti-proliferative and DNA/methyl green assay
were further evaluated for their in vitro inhibitory activities against
Topoisomerase II using doxorubicin as a reference drug following
to reported procedure described by Patra et al.42 as shown in the
Supplementary data.

4.2.4. In vivo antitumor activity
4.2.4.1. Animals and tumour cell line. Adult female Swiss albino
mice purchased from Theodor Bilharzia Research Institute, Giza,
Egypt, with an average bodyweight of (18–23) g were used. Mice
were housed under constant conditions of 12 h light/dark cycle in
a temperature under conditions of controlled humidity (22 ± 2 �C),
with free access to standard laboratory mice food and water. All
procedures related to care and maintenance of the animals were

performed according to the international guiding principles for
animal research and approved by the Faculty of Science, Suez
Canal University bioethics and animal ethics committee (Approval
number REC-07–2021).

Solid Ehrlich carcinoma (SEC) was purchased from the National
Cancer Institute (Cairo University, Egypt). The tumour cell line was
proliferated in mice through serial intraperitoneal (I.P.) transplant-
ation of a volume of 0.2ml physiological saline contains 1� 106

viable cells for 24 h. SEC cells were collected 7 days after I.P.
implantation. The harvested cells were diluted with saline to
obtain a concentration of 5� 106 viable SEC cells/mL. A volume of
0.2ml saline contains 1� 106 SEC cells that were I.P. implanted
into each normal mouse. SEC cells (1� 106 tumour cells/mouse)
were implanted subcutaneously into the right thigh of the
hind limb.

The experimental animals were randomly divided into four
groups. Group 1 served as the normal saline control (5ml/kg
B.Wt., I.P.). Group 2 served as the SEC control (1� 106 cells/
mouse). Group 3 served as the compound-treated group (5mg/kg
B.Wt., I.P.). Group 4 received the standard anticancer drug doxo-
rubicin (5mg/kg BW, I.P.) and is considered as a reference control.
Bodyweight and survival were recorded daily until the 24th day in
both treated and control groups. At the end of the experiment,
the blood of each group was collected under light anaesthesia to
the estimate of hematological and biochemical assays. The anaes-
thetised animals were then sacrificed for evaluation of the antitu-
mor activity and histopathological examination.

4.2.4.2. Antitumor potentiality. It includes tumour volume, weight,
and tumour inhibition ratio (TIR%). Time interval measurements of
tumour volume using digital Vernier calliper (Tricle Brand,
Shanghai, China). Measure tumour length and width using a clip-
per and then calculate tumour volume using formulations V ¼ (L
� W � W)/2, where V is tumour volume, W is tumour width, L is
tumour length. While TIR% was calculated according to the follow-
ing equation

Tumor volume Controlð Þ�Tumor volume ðtreatedÞ
Tumor volume ðcontrolÞ � 100:

4.2.4.3. Blood assays. At the end of the experiment, animals from
different groups were sacrificed, and blood samples were col-
lected for hematological parameters including, Hb, RBC’s, and
WBC’s levels, and serum for determination of liver enzymes ALT,
AST levels, and proteins. Complete blood count (CBC) was investi-
gated using the Abbott CELL-DYNVR 1800 automated haematology
analyser (USA) using ready-made kits (Abbott Laboratories, Abbott
Park, IL, USA). Activities of aspartate aminotransferase (AST) and
alanine aminotransferase (ALT) were evaluated using commercial
kits (ELITech clinical systems, France). Serum albumin level was
determined by kit purchased from STANBIO Company (USA).
Protein content was determined by colorimetric method using
ready-made kits produced by Instrumentation Laboratory SpA,
Inova diagnostics, Milano, Italy.

4.2.4.4. Histopathological study. Specimens of liver-sacrificed mice
were fixed in 10% saline formalin. The fixed liver specimens were
dehydrated in ascending series of ethyl alcohol and embedded in
paraffin. Sections at 5mm thicknesses were stained with haema-
toxylin and eosin and examined under the light microscope.
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4.3. In silico studies

4.3.1. Docking study
Discovery Studio 2.5 software was used to perform docking and
visualisation according to the described protocol.16

4.3.2. In silico ADMET analysis
ADMET studies were performed according to the reported proced-
ure as adescribed in Supplementary data51–53.

4.3.3. Toxicity studies
Toxicity studies were performed according to the reported pro-
cedure as adescribed in Supplementary data54–56
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