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INTRODUCTION

The efficiency of deep learning based on feature recognition has 
been proven, and its performance in various medical applica-
tions, especially in medical imaging of the breast,1-3 chest,4,5 
brain,6,7 and other parts of the body,8-11 has improved. Accord-
ingly, the use of deep learning in medical imaging is progress-
ing not only in research but also in the medical industry. Food 
and Drug Administrations in several countries have released 
guidelines for the regulation of artificial intelligence (AI)-based 
software as medical devices.12 The primary prerequisite is that 
AI-based medical devices should provide information on how 
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to help medical doctors or patients in diagnosis, and studies13,14 
on chest radiographs support the performance of such software 
in disease classification and detection. 

Paranasal sinusitis is an inflammation of the mucosal lining 
of the paranasal sinuses (PNSs) and is a common clinical prob-
lem among the general population. Recently published stud-
ies15-17 have highlighted the performance of deep learning al-
gorithms in the classification of maxillary sinusitis, comparing 
performance between deep learning models and radiologists 
and generating an activation map to explain how deep learn-
ing models evaluate a result. However, practical use of AI mod-
els from previous studies has been limited due to the following 
reasons: First, most studies involved time-consuming prepro-
cessing steps, such as handcraft-based patch process for im-
ages. Second, developed algorithms have shown a high level 
of reliability on internal datasets, but low accuracy and sensi-
tivity in external validation sets, which limits their clinical ap-
plication. In addition, the major tasks involve minimizing over-
fitting for generalization and explainability to make reasonable 
decisions, such as the confidence score and localization infor-
mation.

To bolster the clinical impact of deep learning models in the 
medical field, inclusion of an end-to-end (E2E) process that 
proceeds a fully automatic process from input to output is be-
coming increasingly important18 to obtaining simpler and more 
explainable models. To increase high performance of deep 
learning model, published models was used complex model 
such as ensemble approach with several deep learning mod-
els,19,20 two or three phases approach,21-23 and various pre- or 
post-processing steps.24 These increase in the number of steps 
added to the evaluation model that classification, detection, 
and segmentation for specific disease is difficult because it is 
necessary to consider not only the optimization of each step 
but also harmony with other steps. In addition, there is a prob-
lem that it is difficult to explain about the final result due to 
complicated step-by-step process. Therefore, the E2E process 
with as simple model as possible is effective when consider-
ing the needs for explainable model, recently.

In this study, we propose an E2E-based process for medical 
imaging using the independent task learning (ITL) algorithm 
that is applicable in real clinics for diagnosing maxillary sinus-
itis on conventional X-ray images. The ITL algorithm is con-
catenated with multiple steps, such as role-based processing 
or deep learning, as detailed later, that can overcome issues 
with manpower and time-consuming processes by using fully 

automatic processes, generalization by minimizing bias of im-
ages from different institutions and uninterpretable problems 
by generating a conclusion that is concatenated reasonable re-
sults of each step. Furthermore, to overcome limitations with 
classifying maxillary sinusitis based on deep learning in previ-
ous studies,15-17 our proposed method was designed to be ap-
plied for maxillary sinusitis using X-ray imaging for reliable vali-
dation of its effectiveness.

MATERIALS AND METHODS

Independent task learning 
The purposed ITL algorithm was designed “end-to-end” based 
on similar processes as in a radiologist’s review process of med-
ical images. Fig. 1 shows the four ITL processes in the E2E work-
flow. The first step involves pre-processing, such as normaliza-
tion and other processes suitable for lesion characteristics. The 
second step is to extract a region containing a lesion using an 
object detector model (patch detector model). In this step, the 
input is a pre-processed image, and the output is a cropped 
patch image and the coordinate axes of the cropped image. The 
third step involves recognizing ambiguous features using a le-
sion-focused detector (lesion detector model): the input is the 
cropped patch image from the second step, and the output is a 
lesion-focused box-based area. The coordinate axes are set 
from the extracted patch by the lesion detector model. The fi-
nal step comprises post-processing with the recognized lesion 
localization and provides a report with the results of the model. 
The input data are two patch images and two coordinate axes 
from the patch and lesion detector models. The output is the 
lesion detection result of the input image from the third step 
and clinical reports.

Application with medical imaging

Workflow for the application of maxillary sinusitis 
The entire workflow of sinusitis diagnosis by a radiologist is a 
chain process of finding the facial region, adjusting the win-
dow level and width, lesion detection, disease diagnosis, local-
ization, and writing a clinical report. The application for max-
illary sinusitis based on ITL algorithm was implemented in 
four steps (Fig. 2). Inverted digital imaging and communica-
tion in medicine (DICOM) image correction, intensity nor-
malization (0–1), and resizing (224 by 224) are performed as a 

Fig. 1. Overview of the independent task learning process in the end-to-end workflow.
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pre-processing step for ITL (step 1). For the patch detection 
step of the ITL, facial patch detection (step 2) based on deep 
learning is performed. After the facial patch detection step, a 
facial patch selected by the facial patch detector is cropped to 
remove the background. For the lesion detection step, maxil-
lary sinusitis detection (step 3) based on deep learning is per-
formed. Before maxillary sinusitis detection, image intensity 
normalization with a minimum to maximum of 0–1 is ap-
plied. Finally, the result of the maxillary sinusitis detection is 
displayed as a report in the form of boundary boxes on the orig-
inal image space (step 4).

Data collection
Table 1 shows the characteristics of internal and external vali-
dation sets. With the approval of the Institutional Review Board 
of Kyung Hee University Hospital (IRB number : KHU-IRB 

2019-10-010), our retrospective study collected X-ray imaging 
data from anonymized patients. A total of 2122 Water’s view 
images, consisting of 746 sinusitis (35.16%) and 1376 normal 
images (64.84%), were collected between July 2016 and Sep-
tember 2019 for the internal dataset. The mean and standard 
deviation (SD) of age was 34.84 and 24.94 years, with 1084 fe-
male individuals, which is 51.08% of the internal dataset. For 
external validation, 700 Waters’ view images (300, 200, and 
200) were collected between July 2019 and September 2019 
from three different institutions (#1, Kyung Hee University 
Hospital at Gangdong; #2, Korea Cancer Center; and #3, Sev-
erance Hospital, respectively) as external validation sets #1, 
#2, and #3. The number of images for sinusitis and normal were 
107 (35.67%) and 193 (64.33%), 96 (48.00%) and 104 (52.00%), 
118 (59.00%) and 82 (41.00%) for external validation sets #1, #2, 
and #3, respectively. The mean±SD age was 35.18±26.69, 

Input data Step 1. 
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Facial patch 

detection

Step 3. 
Maxillary sinusitis 

detection

Step 4. 
ITL sinusitis 

detection result

Fig. 2. Overview of the independent task learning (ITL) steps of the sinusitis detection process.

Table 1. Characteristics of the Training and Internal and External Validation Datasets

Characteristic Training set Internal validation set
External validation set

Dataset #1 Dataset #2 Dataset #3
No. of images 1824 298 300 200 200
Age (yr) (range) 34.84±24.94 (1–105) 34.21±25.45 (1–90) 35.18±26.69 (1–90) 46.04±25.14 (1–90) 18.46±24.64 (0–89)
Sex

Female   944 140 164 102   78
Male   880 158 136   98 122

Label
Normal 1227 149 193 104   82
Sinusitis   597 149 107   96 118

Right   188   51   33   33   32
Left   177   36   33   24   25
Bilateral   232   62   41   39   61

Manufacturer
Philips medical systems 1027 208 300 200
SIEMENS   657   49
AGFA   124   41
LISTEM 124
DongKang   54
INFINITT     16
Samsung Electronics   15
GE Healthcare     7

Data are presented as mean±standard deviation or n.
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46.04±25.14, and 18.46±24.64, with 164 (54.67%), 102 (51%), 
and 78 (39%) female individuals in external validation sets #1, 
#2, and #3, respectively. 

Subject labeling and dataset
To train an automatic facial patch detector, the internal datas-
et was randomly divided into a training set (1227 and 597 im-
ages labeled as normal and sinusitis, respectively) and inter-
nal validation set (149 and 149 images labeled as normal and 
sinusitis, respectively). To train a maxillary sinusitis detector, 
597 images were labeled as sinusitis from the training set of 
images used in training the facial patch detector. For the train-
ing and internal validation sets and external validation sets #1, 
#2 and #3, all images were labeled twice (once for facial patch 
detection and once for maxillary sinusitis detection) by two 
radiologists. After the primary screening of clinical records 
from the picture archiving and communication system (PACS; 
Infinitt Gx PACS, INFINITT Healthcare), a board-certified ra-
diologist with 10 years of experience rechecked and labeled 
all images in the internal set and three external validation sets. 
To train and evaluate the performance of the facial patch de-
tector and maxillary sinusitis detector, every image was la-
beled with two different labels, that is, facial patch labels (Fig. 
3A) and maxillary sinusitis labels (Fig. 3B). The facial patch la-
bel, which included the maxillary sinus, maxilla, nasal bone, 
and orbit, was selected as close to the square as possible to 
avoid distortion of the maxillary sinus shape when cropping 
and resizing the image. Maxillary sinusitis labeling was per-
formed in the left and right maxillary sinusitis, and a bilateral 
sinusitis label was assigned when the left and right maxillary 

sinuses both had sinusitis.
Furthermore, we trained the network to classify normal and 

sinusitis individuals using localized information. Every sinus-
itis label was further checked for four subclasses of sinusitis 
forms to determine bias in maxillary sinusitis detection: “air/
fluid,” “full opacification,” “cyst,” and “mucosal thickening.”

Training a detection network
The facial detection network was trained using a training da-
taset. The you only look once version 2 (YOLO v2) object detec-
tion network,25 which is a state-of-the-art deep learning tech-
nique based on pre-trained ResNet-50,26 was trained with the 
following parameters: number of anchor boxes=7, optimizer= 
“Adam,” size of mini-batch=256, initial learning rate=1e-3, fac-
tor for L2 regularization=1e-4, and max epochs=200. Similar 
to the facial patch detector, the YOLO v2 object detection net-
work was trained for maxillary sinusitis detection with a sub-
set of the training set, which was labeled as sinusitis. Bayesian 
hyperparameter optimization27,28 was applied to enhance the 
performance of the detector with the following parameters 
and ranges: input image size for training (isotropic)=224–512, 
number of anchor boxes=13–20, max epoch=30–100, initial 
learning rate=1e-6 to 1e-3, factor for L2 regularization=1e-6 to 
1e-3, and maximum time=12 h. The objective function used 
to evaluate the trained model during hyperparameter optimi-
zation was set as [1–accuracy], where the trained model eval-
uated the internal validation set as normal or sinusitis. The 
other training options were as follows: random horizontal 
reflection=true, factor for image scale=0.9–1.1, optimizer= 
“Adam,” and size of the mini-batch=64. Bayesian hyperpa-

Fig. 3. Facial patch and maxillary sinusitis annotations. (A) Facial patch label is drawn as a cyan rectangle. (B) Maxillary sinusitis labels are drawn as 
green and yellow rectangles for the right and left maxillary sinusitis, respectively.

A B
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rameter optimization was performed for 37573 s with 30 itera-
tions, and the performance of the best model was selected 
with the following parameters: the final value for the objective 
function=0.0738, input image size for training (isotropic)=270, 
number of anchor boxes=16, max epoch=30, initial learning 
rate=3.646×1e-4, and factor for L2 regularization=5.514×1e-5. 
To implement the flipping augmentation option that was ran-
domly flipped left to right, we disregarded the left and right 
maxillary sinusitis information in the training of the network.

All processes were performed on a single-server computer on 
a Linux operating system (Ubuntu 18.04) with a single NVIDIA 
Quadro RTX 8000 with a 48-GB memory GPU. Image labeling, 
image processing, and training networks were performed us-
ing MATLAB (MathWorks, R2019b, Natrick, MA, USA).

Performance evaluation
First, the detection performances of the facial patch detector 
and maxillary sinusitis detector were evaluated using the 
mean intersection over union (mIoU). IoU, also known as the 
Jaccard index, is commonly used for evaluating the perfor-
mance of object detection,29 and it is defined as

IoU=
Area of overlap

Area of union
       			         (1)

We calculated the mIoU using the average IoU of each de-
tection box using MATLAB (MathWorks, R2019b).

Second, the performance of the facial patch detector was 
evaluated using accuracy. All DICOM images of Waters’ view 
had a facial region that included the left and right maxillary si-
nuses, so we only evaluated accuracy because there were no 
negative samples. To calculate accuracy, a predicted patch 
was estimated as true positive if the predicted patch contained 
both left and right maxillary sinus.

Third, the performance of the maxillary sinusitis detector 
was evaluated using facial patch-cropped images after pro-
cessing the facial patch detector. To estimate performance, a 
predicted box including the whole region of sinusitis was eval-
uated as true positive. All images were divided into left and 
right sides based on the bilateral maxillary sinuses and evalu-
ated individually. The outcome of the maxillary sinusitis de-
tection box does not have information about the left and right 
maxillary sinusitis; therefore, we assumed that the facial patch 
image had proper bilateral symmetry. Furthermore, the si-
nusitis boundary box was supposed to include the left and right 
sinusitis, but due to the center of gravity in the sinusitis bound-
ary box, it was shifted to the left and right relative to the center of 
the facial patch image. 

Fourth, to verify the capability of the maxillary sinusitis de-
tector, subclasses labeled as air/fluid, full opacification, cyst, 
and mucosal thickening, representing the forms of sinusitis, 
were analyzed.

Finally, the performance of the ITL application for maxillary 

sinusitis was evaluated with outcome reports, which consist-
ed of a normal sinus, right sinusitis, left sinusitis, and bilateral 
sinusitis. The outcome report of normal and bilateral sinusitis 
is supposed to include any and all of the left and right sinusitis 
boxes from the maxillary sinusitis detector, respectively.

Accuracy, area under the receiver operating characteristic 
curve (AUC), standard error, 95% confidence interval (CI), sen-
sitivity, specificity, and results of statistical significance tests for 
AUC (i.e., significant differences in AUC based on 0.5) were 
measured to assess the maxillary sinusitis detector and ITL 
application for maxillary sinusitis. All statistical analyses were 
performed using MedCalc software (www.medcalc.org, Os-
tend, Belgium).

RESULTS

Performance evaluation for application to maxillary 
sinusitis 
The mIoUs of facial patch and maxillary sinusitis detection 
were 0.86±0.06 and 0.73±0.12, 0.86±0.6 and 0.71±0.12, 0.79± 
0.10 and 0.68±0.14, and 0.82±0.07 and 0.69±0.11 in the inter-
nal set and external validation sets #1, #2, and #3, respectively. 
Table 2 shows the performances in facial patch detection, max-
illary sinusitis detection, and ITL application for maxillary si-
nusitis in the internal set and external validation sets #1, #2, 
and #3. The accuracy of facial patch detection was 100%, 100%, 
99.5%, and 97.5% for the internal set and external validation 
sets #1, #2, and #3, respectively. The accuracy (and AUC) in 
maxillary sinusitis detection was 88.93% (0.89), 91.67% (0.90), 
90.45% (0.86), and 85.13% (0.85) for the internal set and exter-
nal validation sets #1, #2, and #3, respectively. For all accuracy 
and AUC values, the performance in left maxillary sinusitis de-
tection was slightly higher than that in right maxillary sinusitis 
detection, although the difference was not statistically signifi-
cant. The sensitivity (and specificity) of maxillary sinusitis de-
tection was 89.10 (88.83), 86.52 (93.25), 75.44 (96.48), and 85.37 
(84.96) for the internal set and external validation sets #1, #2, 
and #3, respectively.

The accuracy (and AUC) of the ITL application for maxillary 
sinusitis was 79.87% (0.80), 84.67% (0.82), 83.92% (0.82), and 
73.85% (0.74) for the internal set and external validation sets 
#1, #2, and #3, respectively. The sensitivity (and specificity) of 
the ITL application for maxillary sinusitis was 68.46 (91.28), 
75.25 (89.45), 69.62 (93.33), and 74.53 (73.03) for the internal 
set and external validation sets #1, #2, and #3, respectively. 
The ITL application for maxillary sinusitis showed the lowest 
performance in regards to accuracy and AUC in external vali-
dation set #3 and in regards to sensitivity in external validation 
set #2. Figs. 4 and 5 show the outcomes and receiver operating 
characteristic curves of the ITL application for maxillary si-
nusitis. 

http://www.medcalc.org
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Table 2. Performance Evaluation of the Internal and External Test Datasets for Each Deep Learning Model
ACC AUC SE 95% CI Sensitivity Specificity p value

Internal validation set
Facial patch detection 100
Sinusitis detection 88.93 0.89 0.013 0.862 to 0.914 89.10 88.83 <0.001
ITL application for maxillary sinusitis 79.87 0.80 0.022 0.749 to 0.843 68.46 91.28 <0.001

External validation set #1
Facial patch detection 100
Sinusitis detection 91.67 0.90 0.016 0.872 to 0.922 86.52 93.25 <0.001
ITL application for maxillary sinusitis 84.67 0.82 0.024 0.776 to 0.865 75.25 89.45 <0.001

External validation set #2
Facial patch detection 99.50
Sinusitis detection 90.45 0.86 0.021 0.822 to 0.892 75.44 96.48 <0.001
ITL application for maxillary sinusitis 83.92 0.82 0.028 0.754 to 0.866 69.62 93.33 <0.001

External validation set #3
Facial patch detection 97.50
Sinusitis detection 85.13 0.85 0.018 0.812 to 0.885 85.37 84.96 <0.001
ITL application for maxillary sinusitis 73.85 0.74 0.032 0.670 to 0.798 74.53 73.03 <0.001

ACC, accuracy; AUC, area under the curve; CI, confidence interval; ITL, independent task learning; SE, standard error.

Internal validation set External validation set #1 External validation set #2 External validation set #3
A

B

C

D

Fig. 4. Results of the independent task learning (ITL) application for maxillary sinusitis. (A) Normal, (B) right maxillary sinusitis, (C) left maxillary sinus-
itis, and (D) bilateral maxillary sinusitis for the internal validation set and external validation sets #1, #2, and #3, respectively. On the image, the right 
and left label information is marked with green and yellow rectangles, respectively; the right and left outcomes of the ITL application for maxillary si-
nusitis are marked with red and blue rectangles, respectively.
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Interpretation for subclass of maxillary sinusitis and 
characteristics of trained model
Table 3 summarizes the accuracy and standard error of the 
maxillary sinusitis detector for diagnosing the subclasses of 
sinusitis. We investigated the sinusitis characteristics (Table 3) 
and sample cases of the individual subclasses of sinusitis pre-
sented in Fig. 6. The percentages of inaccurate detection for 
retention cysts were 66.7%, 40%, and 28.6% for the internal set 
and external validation sets #1 and #3, respectively. We reviewed 
cases with different results between the radiologists and AI. Al-
though there was one normal PNS radiograph, most cases were 
misinterpreted: for instance, an underlying bone contour was 
mistaken as sinusitis. In these cases, radiologists and AI had 
high error rates. In cystic cases, the density of cysts is weaker 
than that of the surrounding bones, making them difficult to 
detect. In young patients, AI misinterpreted a baby tooth as si-
nusitis.

To understand the differences in the internal and external 
validation sets, the image characteristics incorrectly detected 
by the ITL application for maxillary sinusitis were investigat-
ed. Second, we investigated the age distribution, which was 
grouped by decades (Table 4), and found that the youngest 
group tended to be incorrectly detected by the ITL application 
for maxillary sinusitis, although no significant difference in age 
distribution between the validation datasets was found. Third, 
we investigated the scan parameters, which were kVp, mAs, ex-
posure time, and source-to-detector distance (Table 4), and 
found no significant differences in scan parameters between the 
validation datasets.

DISCUSSION

Recent deep learning-based medical studies have been intro-
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duced with improved clinical impact, explainability,30 inter-
pretability,31 uncertainty,32 etc. for better clinical applicability. 
In this study, we introduced an effective learning method ap-
plicable for medical images that are difficult to train due to am-
biguous lesions.

Previous studies15-17 have used classification-based meth-
ods to train features of PNS. Doing so, however, poses limita-
tions in diagnostic assistance of sinusitis. To use a classifica-
tion-based model, at least two categories should exist: normal 
and abnormal. This is because classification-based networks 
do not learn independent features. Dependent learning, such 
as classification, trains the relative features among categories. 
Therefore, a normal case that cannot visualize the lesion is in-
dicated in a heatmap. For these reasons, lesion localization 
performance is low and inefficient. Since classification-based 
networks are not intended for target localization, it is difficult 
to determine the performance of feature recognition from a 
learned model. Explainability is also essential in diagnostic 
assistance software for medical imaging, and lesion localiza-
tion is an efficient approach for explaining a learned model. 

Table 3. Performance of the Maxillary Sinusitis Detector for Subclasses 
of Sinusitis 

Full 
opacification

Air/fluid Cyst
Mucosal 

thickening
Temporal dataset

Number of data 101 28 24 59
ACC (%) 97.0 85.7 66.7 86.4
SE 0.017 0.066 0.096 0.045

External validation set #1
Number of data 70 21 15 35
ACC (%) 95.7 95.2 40.0 82.9
SE 0.024 0.046 0.126 0.064

External validation set #2
Number of data 40 15 10 49
ACC (%) 90.0 53.3 80.0 69.4
SE 0.047 0.129 0.126 0.066

External validation set #3
Number of data 113 7 7 37
ACC (%) 91.2 71.4 28.6 81.1
SE 0.027 0.171 0.171 0.064

ACC, accuracy; SE, standard error.

Fig. 6. Sample cases of each subclass of sinusitis. Sinusitis detection was performed after facial patch detection for all sample cases of (A) full opaci-
fication, (B) air/fluid, (C) cyst, and (D) mucosal thickening. Right and left label information is marked with green and yellow rectangles; the right and 
left outcomes of the independent task learning application for maxillary sinusitis are marked with red and blue rectangles, respectively.

A

C

B

D
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Although there is a heatmap-based localization approach, it 
lacks sufficient information with which to indicate lesion lo-
cation because a heatmap from a classification network is not 
trained pixel-by-pixel ground truth. Several studies have been 
conducted to localize lesions in medical imaging using seg-
mentation-based network.33,34 However, ambiguous lesions 
are difficult to label as ground truth: full opacification and air/
fluid in PNSs have clear margins on radiography, whereas cyst 
or mucosal thickening is difficult to label pixel-by-pixel by a 
radiologist. 

To overcome the limitations of previous studies, we devel-
oped an approach with an ITL process that was shown to be 
reliable in diagnostic assistance of maxillary sinusitis with X-
ray images. The proposed model was compared with those in 
previous studies. In previous studies15,17 of conventional Wa-
ters’ view radiographs and another study16 of panoramic radio-
graphs, a convolutional neural network based on deep learn-
ing was utilized, and handcrafted patched maxillary sinus 
images were classified as sinusitis or normal. These studies 
showed the relevance of a conventional neural network that 
shows superior or comparable accuracy, AUC, sensitivity, and 
specificity to results obtained by radiologists. These classifica-
tion performances are highly comparable to ours in internal 
validation. The sensitivity and specificity of our model were 
75.44% to 89.10% and from 84.96% to 96.48%, respectively, 
which are comparable to a previous study.17 In external valida-
tion, our results showed that a gap between sensitivity and 
specificity 0.41 to 21.04 in external validation sets, which is low-
er than that in previous work.17 ITL application for maxillary 
sinusitis provides not only the classification of normal or si-

nusitis, but also visual indication for localization of lesions, such 
as the right or left side. The use of our model minimizes time 
and manpower consumption for medical staff and provides 
more accurate diagnosis results to patients.

Although we compared performance with previous research, 
we utilized datasets for internal and external validation that 
were labeled by humans using conventional Waters’ view ra-
diography without verifying paranasal computed tomography, 
which is essential for ambiguous data, such as cystic or muco-
sal thickening subclasses of sinusitis, and this is a limitation of 
this study. It is unusual to obtain conventional radiography and 
paranasal computed tomography17 simultaneously. According 
to previous studies35,36 that evaluated the performance of radi-
ologists using X-ray to detect maxillary sinusitis, the sensitivity 
was reported as 70% and 80%, and the specificity was report-
ed as 100% and 92%. Another limitation is that the maxillary 
sinusitis detector was trained without normal maxillary sinus 
information. The purpose of this study was to efficiently detect 
maxillary sinusitis from the input data, so our study was de-
signed to focus on sinusitis, not the normal maxillary sinus. To 
train a normal maxillary sinus label, an additional normal si-
nus label box is required, and the results of the detection meth-
od can overlap with one object. For example, for sinusitis and 
normal maxillary sinus label boxes on the cystic sinusitis (a 
well-trained network will detect small cystic lesions on the 
maxillary sinus), results of a normal maxillary sinus or sinus-
itis can be confused. In addition, an infection on other regions, 
such as the frontal, ethmoid, and sphenoid sinuses, that can 
diagnosed in conventional X-ray images was not targeted in 
this study, and this is another limitation of this study.

Table 4. Specific Information of Incorrectly Detect Subjects

Internal validation set External validation set #1 External validation set #2 External validation set #3
Normal Sinusitis Normal Sinusitis Normal Sinusitis Normal Sinusitis

Number of subjects 13 47 21 25 8 24 24 27
Sex (F/M) 7/6 20/27 9/12 12/13 3/5 14/10 10/14 11/16
Age (Incorrected/group total)

0–10 4/26 (15.4) 18/66 (27.3) 10/70 (14.3) 7/40 (17.5) 5/15 (33.3) 3/21 (14.3) 17/56 (30.4) 21/83 (25.3)
10–20 1/16 (6.3) 2/7 (28.6) 1/5 (20) 2/9 (22.2) 0/2 (0) 0/3 (0) 0/1 (0) 1/3 (33.3)
20–30 2/25 (8) 3/6 (50) 1/13 (7.7) 0/5 (0) 1/11 (9.1) 1/4 (25) 1/6 (16.7) 0/1 (0)
30–40 0/17 (0) 2/9 (22.2) 0/13 (0) 2/6 (33.3) 0/14 (0) 0/1 (0) 0/4 (0) 2/4 (50)
40–50 3/16 (18.8) 8/13 (61.5) 2/17 (11.8) 5/10 (50) 0/12 (0) 4/6 (66.7) 1/4 (25) 1/2 (50)
50–60 0/19 (0) 4/18 (22.2) 2/25 (8) 1/9 (11.1) 2/26 (7.7) 4/14 (28.6) 1/5 (20) 3/8 (37.5)
60–70 2/17 (11.8) 5/20 (25) 4/37 (10.8) 3/12 (25) 0/23 (0) 4/15 (26.7) 5/7 (71.4) 1/4 (25)
70–80 0/9 (0) 3/7 (42.9) 1/17 (5.9) 5/8 (62.5) 1/14 (7.1) 4/11 (36.4) 0/4 (0) 2/5 (40)
80–90 1/4 (25) 2/3 (66.7) 0/2 (0) 0/2 (0) 0/4 (0) 4/4 (100) 0/3 (0) 0/0 (0)

Scan parameters
kVp     76.30     73.45     70.76     72.52     77.00     77.00     78.19     79.39
mAs     20.50     20.98     20.38     17.92     13.25     19.67     17.62     16.50
Exposure time (ms)   100.00     62.45     49.90     45.64     39.25     57.50     55.33     57.17
SDD (mm) 1500.00 1506.74 1113.65 1126.40 1400.00 1400.00 1036.00 1153.30

SDD, source-to-detector distance.
Data are presented as n (%).
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In conclusion, for an AI assistant software to be applied in 
clinical practice, an ITL approach must be applied to each 
step, and a system that includes the entire process of diagno-
sis of sinusitis and different diseases should be designed. 
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