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Abstract

Radiomics–the high throughput extraction of quantitative features from medical images and

their correlation with clinical and biological endpoints- is the subject of active and extensive

research. Although the field shows promise, the generalizability of radiomic signatures is

affected significantly by differences in scan acquisition and reconstruction settings. Previous

studies reported on the sensitivity of radiomic features (RFs) to test-retest variability, inter-

observer segmentation variability, and intra-scanner variability. A framework involving

robust radiomics analysis and the application of a post-reconstruction feature harmonization

method using ComBat was recently proposed to address these challenges. In this study, we

investigated the reproducibility of RFs across different scanners and scanning parameters

using this framework. We analysed thirteen scans of a ten-layer phantom that were acquired

differently. Each layer was subdivided into sixteen regions of interest (ROIs), and the scans

were compared in a pairwise manner, resulting in seventy-eight different scenarios. Ninety-

one RFs were extracted from each ROI. As hypothesized, we demonstrate that the repro-

ducibility of a given RF is not a constant but is dependent on the heterogeneity found in the

data under analysis. The number (%) of reproducible RFs varied across the pairwise sce-

narios investigated, having a wide range between 8 (8.8%) and 78 (85.7%) RFs. Further-

more, in contrast to what has been previously reported, and as hypothesized in the robust

radiomics analysis framework, our results demonstrate that ComBat cannot be applied to all

RFs but rather on a percentage of those–the “ComBatable” RFs–which differed depending

on the data being harmonized. The number (%) of reproducible RFs following ComBat

harmonization varied across the pairwise scenarios investigated, ranging from 14 (15.4%)

to 80 (87.9%) RFs, and was found to depend on the heterogeneity in the data. We conclude
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that the standardization of image acquisition protocols remains the cornerstone for improv-

ing the reproducibility of RFs, and the generalizability of the signatures developed. Our pro-

posed approach helps identify the reproducible RFs across different datasets.

Introduction

With the advancement and involvement of artificial intelligence in performing high-level

tasks, its application has been extensively researched in the field of medical imaging analysis

[1]. Radiomics–the high throughput extraction of quantitative features from medical imaging

to find correlations with biological or clinical outcomes [2–4]–is currently one of the most

commonly used quantitative imaging analysis methods in medical imaging.

A major area of research in the field of radiomics is the selection of robust and informative

image features to be used as input for machine learning models [5]. Evidence suggests that

radiomic features (RFs) are sensitive to differences in several factors, including make and type

of imaging scanner, reconstruction settings, and protocols used to acquire the images [6,7].

Studies on the reproducibility of RFs across test-retest [8,9]; or across scans of a phantom

made on the same scanner using different exposure levels, while fixing other parameters [10];

or across scans of a phantom using different acquisition and reconstruction parameters [11]

highlighted the high sensitivity of RFs to variations within datasets.

The above-mentioned studies focused on the reproducibility of RFs in limited settings,

such as test-retest, inter-observer variability, and intra-scanner variability. As these studies

reported significant differences in groups of RFs, it is only intuitive that adding more variation

to image acquisition and reconstruction will further dampen the reproducibility of RFs. These

findings indicate that ignoring data heterogeneity will influence the performance and gener-

alizability of the models developed, especially in studies where training and validation sets are

independent. Therefore, a global initiative–the Image Biomarkers Standardization Initiative

(IBSI)–has been initiated in an effort to standardize the extraction of image biomarkers (RFs)

from medical images [12]. The IBSI aims to standardize both the computation of RFs and the

image processing steps required before RF extraction. However, little attention has been paid

in the bulk of literature to date to the heterogeneity in image acquisition and reconstruction

when performing radiomics analysis. As the goal of radiomics research is to employ quantita-

tive imaging features as clinical biomarker, the issue of accurate measurement and reproduc-

ibility must be addressed [13]. Biomarkers are defined as “the objective indications of medical

state observed from outside the patient–which can be measured reproducibly”. Therefore,

reproducible measurement is a corner stone in choosing a biomarker. In essence, RFs that can-

not be reproduced cannot be compared or selected as biomarkers.

Combining Batches (ComBat) harmonization is a method that was introduced for remov-

ing the effects of machinery and protocols used to extract gene expression data, in order to

make gene expression data acquired at different centres comparable [14]. ComBat is a method

that performs location and scale adjustments of the values presented to remove the discrepan-

cies in RF values introduced by technical differences in the images. These sources of variation

are further referred to as batch effects. ComBat was subsequently adopted in radiomics analy-

sis, and some studies reported that ComBat outperforms other harmonization methods (e.g,

histogram-matching, voxel size normalization, and singular value decomposition) in radio-

mics analyses [15,16]. Several radiomics studies have reported on the successful application of

ComBat in removing the differences in RFs introduced by different vendors and acquisition

protocols [17–21]. These studies investigated the differences in radiomic RF distributions
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across different batches following the application of ComBat harmonization. In contrast to

gene expression arrays, RFs have different definitions, and the batch effect might vary for each

RF. Using phantom data allows one to study the variations in a given RF extracted from scans

acquired with different scanners/reconstruction settings and to attribute these variations to the

changes in acquisition and reconstruction, which in theory ComBat harmonization is designed

to mitigate. However, we are not aware of any study that has performed a systematic evaluation

of the performance of ComBat harmonization across variations between imaging parameters,

which is the one of the objectives of this study.

Ibrahim et al. (2020) [22] have proposed a new radiomics workflow (Fig 1) that tries to

address the challenges current radiomics analyses face. The framework was proposed based on

mathematical considerations of the complexity of medical imaging, and RFs’ mathematical

definitions. Our framework is based on the hypothesis that the reproducibility of a given RF is

a not constant, but depends on the variations of image acquisition and reconstruction in the

data under study. Furthermore, for ComBat to be applicable in radiomics, radiomic RF values

for a given region of interest obtained after ComBat must be (nearly) identical, regardless of

differences in acquisition and reconstruction.

Our general objective is to set-up the requirements for selecting biomarkers from RFs, to

ease their incorporation into clinical decision support systems. We hypothesize that variations

in image acquisition and reconstruction will variably affect RFs reproducibility. Furthermore,

the performance of ComBat on a given RF is dependent on those variations, i.e, a given RF can

be successfully harmonized with ComBat with specific variations in the imaging parameters

but not others. We investigate these hypotheses on CT scans using a ten-layer radiomics phan-

tom, which was scanned with different acquisition and reconstruction parameters on various

scanner models.

Methods

Phantom data

The publicly available Credence Cartridge Radiomics (CCR) phantom data, found in The Can-

cer Imaging Archive (TCIA.org) [23,24], was used. The CCR phantom is composed of 10 dif-

ferent layers that correspond to different texture patterns spanning a range of −900 to +700

Hounsfield units (HU). Each layer of the phantom was further subdivided into 16 distinct

regions of interest (ROI) with cubic volume of 8 cm3, resulting in a total of 2080 ROIs available

for further analysis. The phantom was originally scanned using 17 different imaging protocols

from four medical institutes using equipment from different vendors and a variety of acquisi-

tion and reconstruction parameters. Four of the scans lacked ROI definitions, thus to maintain

consistency, these were not included. The remaining 13 scans are as follows: seven different

scans acquired on GE scanners, five different scans acquired on Philips scanners, and one scan

acquired on a Siemens scanner (Tables 1 and 2).

Radiomic features extraction

For each ROI, quantitative imaging features were calculated using the open source Pyradio-

mics (V 2.0.2). The software contains IBSI-compliant RFs, with deviations highlighted in the

feature definitions. For the extraction step, no changes to the original slice thickness or pixel

spacing of the scans were applied. To reduce noise and computational requirements, images

were pre-processed by binning voxel greyscale values into bins with a fixed width of 25 HUs

prior to extracting RFs. The extracted features included HU intensity features, shape features,

and texture features describing the spatial distribution of voxel intensities using 5 texture

matrices (i.e., grey-level co-occurrence (GLCM), grey-level run-length (GLRLM), grey-level

PLOS ONE The reproducibility and harmonizability of radiomics features

PLOS ONE | https://doi.org/10.1371/journal.pone.0251147 May 7, 2021 3 / 14

http://TCIA.org
https://doi.org/10.1371/journal.pone.0251147


size-zone (GLSZM), grey-level dependence (GLDM), and neighbourhood grey-tone difference

matrix (NGTDM)). Detailed description of the features can be found online at https://

pyradiomics.readthedocs.io/en/latest/features.html.

Fig 1. The proposed framework (reprinted with permission from [22]).

https://doi.org/10.1371/journal.pone.0251147.g001
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ComBat harmonization

ComBat employs empirical Bayes methods to estimate the differences in feature values attrib-

uted to a batch effect. Empirical Bayes methods are able to estimate the prior distribution from

a given dataset via statistical inference. In the context of radiomics, ComBat assumes that fea-

ture values can be approximated by the equation:

Yij ¼ aþ bXij þ gi þ diεij ð1Þ

where α is the average value for feature Yij for ROI j on scanner i; X is a design matrix of the

covariates of interest; β is the vector of regression coefficients corresponding to each covariate;

γi is the additive effect of scanner i on features, which is presupposed to follow a normal distri-

bution; δi is the multiplicative scanner effect, which is presupposed to follow an inverse

Table 1. CT acquisition parameters�.

Scan Vendor Model Scan Options Effective mAs�� kVp

CCR1-001 GE Discovery CT750 HD HELICAL 81 120

CCR1-002 GE Discovery CT750 HD AXIAL 300 120

CCR1-003 GE Discovery CT750 HD HELICAL 122 120

CCR1-004 GE Discovery ST HELICAL 143 120

CCR1-005 GE LightSpeed RT HELICAL 1102 120

CCR1-006 GE LightSpeed RT16 HELICAL 367 120

CCR1-007 GE LightSpeed VCT HELICAL 82 120

CCR1-008 Philips Brilliance Big Bore HELICAL 320 120

CCR1-009 Philips Brilliance Big Bore HELICAL 369 120

CCR1-010 Philips Brilliance Big Bore HELICAL 320 120

CCR1-011 Philips Brilliance Big Bore HELICAL 369 120

CCR1-012 Philips Brilliance 64 HELICAL 372 120

CCR1-013 SIEMENS Sensation Open AXIAL 26–70 120

� Values are directly extracted from the publicly available imaging tags.

https://doi.org/10.1371/journal.pone.0251147.t001

Table 2. CT reconstruction parameters�.

Scan Convolution Kernel Filter Type Slice thickness (mm) Pixel spacing (mm)

CCR1-001 STANDARD BODY FILTER 2.5 0.49

CCR1-002 STANDARD BODY FILTER 2.5 0.70

CCR1-003 STANDARD BODY FILTER 2.5 0.78

CCR1-004 STANDARD BODY FILTER 2.5 0.98

CCR1-005 STANDARD BODY FILTER 2.5 0.98

CCR1-006 STANDARD BODY FILTER 2.5 0.98

CCR1-007 STANDARD BODY FILTER 2.5 0.74

CCR1-008 B B 3 0.98

CCR1-009 C C 3 0.98

CCR1-010 B B 3 1.04

CCR1-011 B B 3 1.04

CCR1-012 B B 3 0.98

CCR1-013 B31s 0 3 0.54

� Values are directly extracted from the publicly available imaging tags.

https://doi.org/10.1371/journal.pone.0251147.t002
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gamma-distribution; and εij is an error term, presupposed to be normally distributed with

zero mean [17]. ComBat performs feature transformation based on the empirical Bayes prior

estimates for γ and δ for each batch:

YComBat
ij ¼

ðYij � â � b̂Xij � g
�
i Þ

d
�

i

þ â þ b̂Xij ð2Þ

where â and b̂ are estimators of parameters α and β, respectively. g�i and d
�

i are the empirical

Bayes estimates of γi and δi, respectively [17].

Statistical analysis

To assess the agreement of a given RF for the same ROI scanned using different settings and

scanners, the concordance correlation coefficient (CCC) was calculated using epiR (version

0.9–99) [25] on R [26] (version 3.5.1), using R studio (version 1.1.456) [27]. The CCC is used

to evaluate the agreement between paired readings [28], and provides the measure of concor-

dance as a value between 1 and -1, where 0 represents no concordance, 1 represents a perfect

direct positive concordance, and -1 indicates a perfect inverse concordance. It further takes

into account the rank and value of the RFs.

The analysis of the reproducibility before and after ComBat harmonization was performed

in a pairwise manner, resulting in 78 different investigated scenarios. To assess differences in

RF stability for differing data, the reproducibility of radiomics RFs across scans within a wide

spectrum of scenarios was calculated. Data ranging from differences in a single acquisition or

reconstruction parameter, to scans acquired using entirely different settings (See S1 Table)

were included. To identify reproducible radiomics, the CCC was calculated for all RFs for all

ROIs across the 78 investigated scenarios. A cut-off of CCC>0.9, as found in the literature,

suggests that a value < 0.9 indicates poor concordance [29].To identify the RFs that could be

harmonized using ComBat, the pairwise CCC was calculated following ComBat in each of the

investigated 78 scenarios. We applied ComBat using R package “SVA” (version 3.30.1) [30].

As the RFs are calculated for the same ROI but for different scans, the agreement in RF value is

expected to be high following ComBat harmonization. Thus, RFs that had a CCC<0.9 were

considered to be not harmonizable with ComBat. The extracted RFs and code used in this

work is publicly available on https://github.com/AbdallaIbrahim/The-reproducibility-and-

ComBatability-of-Radiomic-features.

Results

Reproducible radiomic features

For each ROI, a total of 91 RFs were extracted. The number (percentage) of reproducible RFs

in each pairwise comparison ranged from 9 (8.8%) to 78 (85.7%) RFs, depending on the varia-

tions in acquisition and reconstruction of the scans (Table 3). The highest concordance in fea-

ture values (85.7%) was observed between the two Philips scans (CCR1-010 and CCR1-011)

that were acquired using the same scanner model, and the same acquisition and reconstruction

parameters except for the effective mAs, which differed by just 15% (Tables 1 and 2).

The more profound the variations in scan acquisition parameters, the smaller the concor-

dance of the extracted RFs (Tables 1–3 and S1).

As stated, in the best scenario (CCR1-010 and CCR1-011), 78 (85.7%) RFs were found to be

reproducible, while 13 (14.3%) RFs were found not to be reproducible. Some RFs (n = 8) were

found to be concordant across all pairs. These RFs were histogram-based RFs that take into

account the value of a single pixel/voxel, without looking at the relationship between
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neighbouring pixels/voxels. These RFs are (i) original first order 10Percentile; (ii) original first

order 90Percentile; (iii) original first order Maximum; (iv) original first order Mean (v) origi-

nal first order Median; (vi) original first order Minimum; (vii) original first order Root Mean

Squared; and (viii) original first order Total Energy. Nevertheless, the remainder (majority) of

the RFs (including 10 histogram-based RFs) were not found to be reproducible across all pairs.

Looking at (Tables 1–3 and S1), we can consider subgroups of scans. Scans CCR1-001-007

were all acquired using the same imaging vendor (GE), but different scanner models and scan-

ning parameters. The highest number of concordant RFs in this group was found between

CCR1-004 and CCR1-006 (71 RFs), which were acquired on two different scanner models, but

were scanned with identical scanning parameters except for the mAs. The lowest number of

concordant RFs in this group was found between scans CCR1-001 and CCR1-005 (13 RFs),

which were acquired on two different scanner models, with the same scanning parameters

except for the pixel spacing and mAs. Scans CCR1-007 to CCR1-012 were all acquired using

one of two Philips imaging vendors. The highest number of concordant RFs is documented

above. The lowest number of concordant RFs was found between CCR1-009 and CCR-010 (34

RFs), which differed in terms of the mAs, convolution kernel, filter type and pixel spacing.

Looking at the group of scans that were reconstructed to the same pixel spacing (CCR1-004 to

CCR1-006, CCR1-008, CCR1-009, and CCR-012), the highest number of concordant RFs was

observed between CCR1-006 and CCR1-009 (74 RFs), which were acquired using two different

imaging vendors, but using similar acquisition and reconstruction parameters except for the

slice thickness, and kernel. The lowest number of concordant RFs was found between CCR1-

005 and CCR1-012 (16 RFs), which were acquired using different imaging vendors, and differ-

ent acquisition and reconstruction parameters except for the kVp. Finally, comparing scans

acquired with different vendors resulted in a lower number of concordant RFs compared to

Table 3. The number (percentage) of concordant RFs before ComBat harmonization between pairwise combinations of scans with different acquisition and

reconstruction.

CCR1-001 CCR1-002 CCR1-003 CCR1-004 CCR1-005 CCR1-006 CCR1-007 CCR1-008 CCR1-009 CCR1-010 CCR1-011 CCR1-012

CCR1-

002

38

(41.76%)

CCR1-

003

46

(50.55%)

59

(64.84%)

CCR1-

004

18

(19.78%)

34

(37.36%)

25

(27.47%)

CCR1-

005

13

(14.29%)

23

(25.27%)

17

(18.68%)

66

(72.53%)

CCR1-

006

16

(17.58%)

24

(26.37%)

18

(19.78%)

71

(78.02%)

69

(75.82%)

CCR1-

007

49

(53.85%)

65

(71.43%)

67

(73.63%)

21

(23.08%)

14

(15.38%)

14

(15.38%)

CCR1-

008

8 (8.79%) 12

(13.19%)

14

(15.38%)

41

(45.05%)

34

(37.36%)

47

(51.65%)

10

(10.99%)

CCR1-

009

9 (9.89%) 19

(20.88%)

13

(14.29%)

67

(73.63%)

65

(71.43%)

74

(81.32%)

11

(12.09%)

48

(52.75%)

CCR1-

010

8 (8.79%) 10

(10.99%)

13

(14.29%)

32

(35.16%)

21

(23.08%)

27

(29.67%)

11

(12.09%)

59

(64.84%)

34

(37.36%)

CCR1-

011

8 (8.79%) 11

(12.09%)

12

(13.19%)

45

(49.45%)

34

(37.36%)

42

(46.15%)

11

(12.09%)

57

(62.64%)

52

(57.14%)

78

(85.71%)

CCR1-

012

8 (8.79%) 13

(14.29%)

12

(13.19%)

21

(23.08%)

16

(17.58%)

22

(24.18%)

10

(10.99%)

61

(67.03%)

36

(39.56%)

71

(78.02%)

69

(75.82%)

CCR1-

013

51

(56.04%)

44

(48.35%)

47

(51.65%)

41

(45.05%)

34

(37.36%)

32

(35.16%)

48

(52.75%)

12

(13.19%)

23

(25.27%)

10

(10.99%)

9 (9.89%) 10

(10.99%)

https://doi.org/10.1371/journal.pone.0251147.t003
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scans acquired with the scanners from the same imaging vendor, except for the scenario when

the majority of acquisition and reconstruction parameters were mostly identical (CCR1-006 vs

CCR1-009).

ComBat harmonization

As previously shown in the literature, we used each scan as a different batch in the ComBat

equation. ComBat was applied pairwise (78 different pairs) and the concordance between RFs

was measured for each pair (Table 4). The percentage of RFs that became concordant follow-

ing ComBat application ranged from 1.4% (71 concordant RFs increased to 72) to 344% (9

concordant RFs increased to 40).

The highest number of concordant RFs following ComBat application was 80 (87.9%) RFs.

In this scenario, a single acquisition parameter differed between the two scans (Philips, CCR1-

010 and CCR1-011). ComBat application improved the concordance of only two RFs (80 RFs

after ComBat compared to 78 RFs before), and failed to improve the concordance of the

remaining 11 RFs. On the other hand, in cases where the differences in acquisition and recon-

struction parameters differed more (e.g., CCR1-001 (GE) vs CCR1-007 (Philips)), the applica-

tion of ComBat improved the concordance of 31 RFs, resulting in a total of 40 concordant RFs

(~44% of the total number of RFs), more than 3 times the number of concordant RFs before

harmonization. Furthermore, the successful application of ComBat on RFs depended on the

variations in the batches defined. Only two RFs were found to be concordant in all pairwise

scenarios following ComBat harmonization: (i) original first order Energy; and (ii) original

gldm Small Dependence High Gray Level Emphasis; in addition to the 8 RFs mentioned

above.

Table 4. The number (percentage) of concordant RFs after ComBat harmonization between pairwise combinations of scans with different acquisition and

reconstruction.

CCR1-001 CCR1-002 CCR1-003 CCR1-004 CCR1-005 CCR1-006 CCR1-007 CCR1-008 CCR1-009 CCR1-010 CCR1-011 CCR1-012

CCR1-

002

63

(69.23%)

CCR1-

003

69

(75.82%)

75

(82.42%)

CCR1-

004

48

(52.75%)

72

(79.12%)

57

(62.64%)

CCR1-

005

43

(47.25%)

60

(65.93%)

54

(59.34%)

72

(79.12%)

CCR1-

006

50

(54.95%)

63

(69.23%)

59

(64.84%)

76

(83.52%)

72

(79.12%)

CCR1-

007

70

(76.92%)

69

(75.82%)

74

(81.32%)

56

(61.54%)

49

(53.85%)

57

(62.64%)

CCR1-

008

27

(29.67%)

36

(39.56%)

36

(39.56%)

61

(67.03%)

54

(59.34%)

56

(61.54%)

28

(30.77%)

CCR1-

009

40

(43.96%)

57

(62.64%)

53

(58.24%)

76

(83.52%)

74

(81.32%)

81

(89.01%)

52

(57.14%)

57

(62.64%)

CCR1-

010

18

(19.78%)

22

(24.18%)

19

(20.88%)

54

(59.34%)

48

(52.75%)

48

(52.75%)

17

(18.68%)

68

(74.73%)

53

(58.24%)

CCR1-

011

14

(15.38%)

23

(25.27%)

25

(27.47%)

67

(73.63%)

59

(64.84%)

59

(64.84%)

16

(17.58%)

65

(71.43%)

67

(73.63%)

80

(87.91%)

CCR1-

012

16

(17.58%)

29

(31.87%)

28

(30.77%)

56

(61.54%)

48

(52.75%)

49

(53.85%)

16

(17.58%)

70

(76.92%)

53

(58.24%)

72

(79.12%)

74

(81.32%)

CCR1-

013

65

(71.43%)

75

(82.42%)

69

(75.82%)

65

(71.43%)

55

(60.44%)

59

(64.84%)

67

(73.63%)

35

(38.46%)

58

(63.74%)

35

(38.46%)

36

(39.56%)

34

(37.36%)

https://doi.org/10.1371/journal.pone.0251147.t004
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Discussion

In this work, for our first objective to investigate RFs reproducibility, we show that the major-

ity of RFs are affected to different amounts depending upon the variations in acquisition and

reconstruction parameters. We also show that the reproducibility of a given RF is not constant,

but rather it is dependent on the variations in the data under study, as seen in Table 3. We

identified a number of RFs that were robust to the variations in scan acquisition in the dataset

we analysed. These RFs could be used without any post–processing harmonization. While the

same dataset has been analysed for similar purposes previously [11,21], we analysed the data

differently, and report different results than those studies. Our results show a substantial intra-

scanner variability, and even greater inter-scanner variability, which is in line with other previ-

ous findings [10,31,32]. Only eight RFs (~9%) of the extracted RFs showed insensitivity to the

differences in acquisition shown in Tables 1 and 2, and could be directly used to build radio-

mic signatures. The rest of the RFs (91%) could not be used without addressing the acquisition

differences. Our sub-groups analysis showed that changes in pixel spacing and convolution

kernel have more profound effects on the reproducibility of RFs, compared to variations lim-

ited solely to the effective mAs, scanner model or imaging vendor used. While the percentages

reported are representative of the reproducibility of RFs in the data analysed, it highlights the

sensitive nature of RFs, and helps set guidelines to preselect meaningful and reproducible RFs.

We deduce that the use of RFs extracted from scans acquired with different hardware and

parameters, without addressing the issue of reproducibility and harmonization, can lead to

spurious results as the vast majority of RFs are sensitive to even minor variations in image

acquisition and reconstruction. Therefore, models developed using RFs with large unexplained

variances will most likely not be generalizable.

As our second aim, we investigated the applicability of ComBat harmonization to removing

differences in RF values attributed to batch effects. Studies [11,21] have reported on the repro-

ducibility of RFs on the same or a similar dataset to the one we analysed. However, our find-

ings and conclusions vary significantly from theirs. In contrast to previous studies, we are the

first to report that the reproducibility of RFs is dependent on the variations in the data under

analysis. Previous studies referred to RFs as generally reproducible or non-reproducible. Our

analysis shows that a given RF can be reproducible in some scenarios and not in the others,

depending on the variations in acquisition and reconstruction parameters. Moreover, ComBat

was mathematically defined to remove one (technical) batch effect at a time while considering

all the biologic covariates at the same time. However, as our results show (Tables 3 and 4), the

variations in acquisition and reconstruction parameters within one scanner, at least in some

instances, have a stronger impact on the reproducibility of RFs than the variations between

two scanners. As such, grouping the scans by the scanner type is not generally the way to

define “batches” in the ComBat equation [14]. In contrast to what is reported in the literature,

our analysis shows ComBat did not perform uniformly on most of the RFs when there were

variations in the batches being harmonized. In contrast to those studies, we employed the con-

cordance correlation coefficient (CCC) to assess the reproducibility of RFs, since the aim of

harmonization is to improve the reproducibility of data. We did not use the increment of

model performance as a measure for the success of harmonization for several reasons. First,

the aim of harmonization is to improve the reproducibility of RFs, and ultimately the gener-

alizability of the developed signatures, and not their model performance [33]. Second, by

assuming that an increment in the model performance following harmonization is an indica-

tion that the harmonization is successful carries with it the assumption that radiomic models

decode the information under analysis; this is against the essence of the study, which is to

investigate whether radiomics has that potential or not. However, by using the CCC, we ensure
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that the results generated are based on reproducible RFs, and are therefore generalizable,

regardless of the change in model performance. Furthermore, the aim of ComBat harmoniza-

tion is only to remove the variance in RF values attributed to the batch effects, while maintain-

ing the biologic information. As such, using ComBat to correct batch effects directly on

patient data without providing the correct biological covariates that actually do have an effect

on RF values will lead to loss of biological signals. This is because ComBat tries to harmonize

the distribution of the RF across different batches, and without providing the correct biological

covariates that have effects on RF values, ComBat assumes that the variations in RF value are

only attributed to the defined batch, and thus would not perform uniformly as shown in

Table 3. In clinical settings, this is by default spurious, as the differences in RF values are attrib-

uted to both the machine and the biology/physiology. As the aim of radiomics studies is to

investigate the biological correlations of RFs, we are unable to actually provide a list of biologic

covariates that influence the values. In addition, each time an observation is added to the data

being harmonized, ComBat has to be re-performed, and models have to be refitted, as the esti-

mated batch effects will change each time. Therefore, the harmonization of patient RFs should

follow the process of estimating fixed batch effects on phantom data, then applying the loca-

tion/scale shift estimated from the phantom data on patient data, as previously described by

Ibrahim et al [22].

The pairwise approach we used shows how the variations in scan acquisition and recon-

struction parameters affect the reproducibility of RFs. Therefore, aside from probably a few

RFs, the reproducibility of the majority of the RFs cannot be guessed in untested scenarios.

The workflow (Fig 1) addresses this problem by introducing the assessment of RF reproduc-

ibility on representative phantom data. This workflow differs from existing radiomics work-

flows by the addition of an intermediary RF pre-selection step between RF extraction and RF

selection by one of two approaches: (i) only extracting the reproducible RFs for analysis; (ii)

extracting and harmonizing the ‘ComBatable’ RFs before RF selection and model building.

The application of ComBat and the definition of what constitutes a ‘batch’ should be per-

formed based on the data being analysed, as could be deduced from Tables 3 and 4. For exam-

ple, RFs extracted from scans acquired with different scanner models, but similar settings were

found to be more concordant than RFs extracted with the same scanner model but with pro-

found differences in acquisition and reconstruction parameters. Our proposed radiomics anal-

ysis workflow would ensure that the RFs being analysed are not affected by scan acquisition

differences, and henceforth, signatures built would be more robust and generalizable. The first

part of the model (steps 1–4), where only reproducible RFs are extracted and further analysed,

might significantly limit the number of RFs used for further modelling. However, using the

whole framework may significantly increase the number of RFs that can be used, depending

on the data under study.

While the data used for this analysis are not representative of diagnostic clinical protocols

and do not provide all technical details needed for proper analysis, our aim was to show that

changes in scan acquisition and reconstruction parameters differently affect the majority of

RFs. The variations in the reproducibility of RFs–as well as ComBat applicability–due to the

heterogeneity in acquisition and reconstruction highlight the necessity of the standardization

of image acquisition and reconstruction across centres. RFs have already been reported to be

sensitive to test-retest [8,34], which is the acquisition of two separate scans using the same

parameters, as well as to the variations in the parameters within the same scanner [10]. Adding

the variable sensitivity of RFs to different acquisition and reconstruction parameters signifi-

cantly lowers the number of RFs that could be used for the analysis of heterogeneous data. As

there is currently a pressing desire to analyse big data, a sound methodology is needed to

address the heterogeneity introduced by machinery in retrospective data. Nevertheless, we
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strongly recommend the start of imaging protocol standardization across centres to facilitate

future quantitative imaging analysis.

Recently, there has been an attempt to modify ComBat methodology in radiomics analysis

[35]. The authors added a modification to ComBat (B-ComBat), which adds Bootstrapping

and Monte Carlo to the original ComBat. The other functionality of ComBat the authors

investigated was to use one of the batches as a reference (M-ComBat). The authors compared

the performance of the four versions of ComBat by comparing the performance of radiomic

models developed after the use of each method. The authors reported that all the methods are

equally effective [35]. Therefore, we anticipate that the modified ComBat functions will have

the same limitations of the original ComBat we discussed above.

Another method to harmonize RFs that is currently gaining momentum is deep learning

based harmonization. A recent study developed deep learning algorithms, which were

reported to improve the reproducibility of RFs across variations in scanner type, acquisition

protocols and reconstruction algorithms [36]. A more recent study [37] applied a similar

approach to reduce the sensitivity of RFs to scanner types. The authors reported a significant

improvement in the performance of radiomic models following harmonization. These studies

highlight the potential efficacy of deep learning based harmonization methods.

One limitation of our study is in considering each scan as a separate batch effect (due to

lack of data) while differences between pair batches are not similar (different numbers of vary-

ing parameters), which may have affected the performance of ComBat. Acquisition and recon-

struction settings include a set of different parameters, which can singularly or collectively

result in differences in RFs values. Another limitation is the lack of scans generated by other

commonly used scanners and protocols in the clinics; and the lack of scans with the same set-

tings acquired using different scanners, as the data currently available is limited to the changes

introduced in the imaging parameters on the available scanners. While we did not investigate

the added value of this approach on a clinical dataset, our focus in this study was in designing

a framework to assess the reproducibility and ‘ComBatability’ of RFs. However, it is fair to

assume that if RFs are not reproducible on phantom data, they would be equally, or possibly

even more, unstable on patient datasets. For example, clinical data will be acquired at a variety

of mAs values across a population of patients. Lastly, while Combat has been reported to out-

perform other harmonization methods in terms of apparent model performance, the systemic

evaluation of the effects of these methods on the reproducibility of RFs, and the comparison

with the effects of ComBat harmonization will be the aim of future studies, in addition to

addressing the above mentioned limitations.

Conclusion

In conclusion, we demonstrate that the reproducibility of RFs is not a constant, but changes

with variations in the data acquisition and reconstruction parameters. Moreover, ComBat can-

not be successfully applied on all RFs, and its successful application on a given RF is dependent

on the heterogeneity of the dataset. We conclude that ComBat harmonization should not be

blindly performed on patient data, but following the estimation of adjustment parameters on a

phantom dataset. We anticipate that radiomics studies will benefit from our proposed harmo-

nization workflow, as it allows comparison of a greater number of RFs, and enhances the gen-

eralizability of radiomic models. Yet, standardization of imaging protocols remains the

cornerstone for improving the generalizability of prospective quantitative image studies. We

recommend the standardization of scan acquisition across centres, especially in prospective

clinical trials that include medical imaging; and/or the development of a specific imaging pro-

tocols for scans acquired to be used for quantitative imaging analysis.

PLOS ONE The reproducibility and harmonizability of radiomics features

PLOS ONE | https://doi.org/10.1371/journal.pone.0251147 May 7, 2021 11 / 14

https://doi.org/10.1371/journal.pone.0251147


Supporting information

S1 Table. The agreements and disagreements in the scanner models and scanning parame-

ters in the pairwise comparisons.

(DOCX)

Author Contributions

Conceptualization: Abdalla Ibrahim, Ralph T. H. Leijenaar, Andrew D. A. Maidment, Phi-

lippe Lambin.

Data curation: Abdalla Ibrahim, Turkey Refaee, Sergey Primakov.

Formal analysis: Abdalla Ibrahim, Turkey Refaee, Ralph T. H. Leijenaar, Andrew D. A.

Maidment.

Methodology: Abdalla Ibrahim, Andrew D. A. Maidment, Philippe Lambin.

Project administration: Abdalla Ibrahim, Philippe Lambin.

Resources: Abdalla Ibrahim, Turkey Refaee.

Software: Abdalla Ibrahim.

Supervision: Roland Hustinx, Felix M. Mottaghy, Henry C. Woodruff, Andrew D. A. Maid-

ment, Philippe Lambin.

Visualization: Abdalla Ibrahim, Sergey Primakov.

Writing – original draft: Abdalla Ibrahim, Turkey Refaee.

Writing – review & editing: Ralph T. H. Leijenaar, Roland Hustinx, Felix M. Mottaghy,

Henry C. Woodruff, Andrew D. A. Maidment, Philippe Lambin.

References
1. Walsh S, de Jong EE, van Timmeren JE, Ibrahim A, Compter I, Peerlings J, et al. Decision support sys-

tems in oncology. JCO clinical cancer informatics. 2019; 3:1–9.

2. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour

phenotype by noninvasive imaging using a quantitative radiomics approach. Nature communications.

2014; 5:4006. https://doi.org/10.1038/ncomms5006 PMID: 24892406

3. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, Van Stiphout RG, Granton P, et al. Radiomics:

extracting more information from medical images using advanced feature analysis. European journal of

cancer. 2012; 48(4):441–6. https://doi.org/10.1016/j.ejca.2011.11.036 PMID: 22257792

4. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology.

2015; 278(2):563–77. https://doi.org/10.1148/radiol.2015151169 PMID: 26579733

5. Reiazi R, Abbas E, Faima P, Kwan JY, Rezaie A, Bratman SV, et al. The Impact of the Variation of

Imaging Factors on the Robustness of Computed Tomography Radiomic Features: A Review. medR-

xiv. 2020.

6. van Timmeren JE, Carvalho S, Leijenaar RT, Troost EG, van Elmpt W, de Ruysscher D, et al. Chal-

lenges and caveats of a multi-center retrospective radiomics study: an example of early treatment

response assessment for NSCLC patients using FDG-PET/CT radiomics. PloS one. 2019; 14(6):

e0217536. https://doi.org/10.1371/journal.pone.0217536 PMID: 31158263

7. Traverso A, Wee L, Dekker A, Gillies R. Repeatability and reproducibility of radiomic features: a system-

atic review. International Journal of Radiation Oncology* Biology* Physics. 2018; 102(4):1143–58.

https://doi.org/10.1016/j.ijrobp.2018.05.053 PMID: 30170872

8. van Timmeren JE, Leijenaar RT, van Elmpt W, Wang J, Zhang Z, Dekker A, et al. Test–retest data for

radiomics feature stability analysis: Generalizable or study-specific? Tomography. 2016; 2(4):361.

https://doi.org/10.18383/j.tom.2016.00208 PMID: 30042967

PLOS ONE The reproducibility and harmonizability of radiomics features

PLOS ONE | https://doi.org/10.1371/journal.pone.0251147 May 7, 2021 12 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0251147.s001
https://doi.org/10.1038/ncomms5006
http://www.ncbi.nlm.nih.gov/pubmed/24892406
https://doi.org/10.1016/j.ejca.2011.11.036
http://www.ncbi.nlm.nih.gov/pubmed/22257792
https://doi.org/10.1148/radiol.2015151169
http://www.ncbi.nlm.nih.gov/pubmed/26579733
https://doi.org/10.1371/journal.pone.0217536
http://www.ncbi.nlm.nih.gov/pubmed/31158263
https://doi.org/10.1016/j.ijrobp.2018.05.053
http://www.ncbi.nlm.nih.gov/pubmed/30170872
https://doi.org/10.18383/j.tom.2016.00208
http://www.ncbi.nlm.nih.gov/pubmed/30042967
https://doi.org/10.1371/journal.pone.0251147


9. Prayer F, Hofmanninger J, Weber M, Kifjak D, Willenpart A, Pan J, et al. Variability of computed tomog-

raphy radiomics features of fibrosing interstitial lung disease: A test-retest study. Methods. 2020.

https://doi.org/10.1016/j.ymeth.2020.08.007 PMID: 32891727

10. Zhovannik I, Bussink J, Traverso A, Shi Z, Kalendralis P, Wee L, et al. Learning from scanners: Bias

reduction and feature correction in radiomics. Clinical and translational radiation oncology. 2019;

19:33–8. https://doi.org/10.1016/j.ctro.2019.07.003 PMID: 31417963

11. Mackin D, Fave X, Zhang L, Fried D, Yang J, Taylor B, et al. Measuring CT scanner variability of radio-

mics features. Investigative radiology. 2015; 50(11):757. https://doi.org/10.1097/RLI.

0000000000000180 PMID: 26115366
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